Tommaso Bruno

I am a postdoctoral fellow of the Research Foundation – Flanders (FWO) at Ghent University. I received my PhD in Mathematics and Applications from the University of Genova in December 2017, under the supervision of Prof. Giancarlo Mauceri. Before joining the group in Ghent, I was a postdoctoral researcher at the Politecnico di Torino.

I am primarily interested in Harmonic Analysis and Analysis on Manifolds. My main contributions concern spectral properties of sub-Laplacians and function spaces on Lie groups, singular integral operators on weighted Riemannian manifolds, and Gaussian Analysis. In 2019 I was awarded the “Gioacchino Iapichino” Prize for Mathematical Analysis by the Accademia Nazionale dei Lincei.

My personal page

A list of my publications and preprints:

[11] T. Bruno, P. Sjögren, On the Riesz transforms for the inverse Gauss measure, arXiv:1906.03827
[10] T. Bruno, M. G. Cowling, F. Nicola, A. Tabacco, Estimates for matrix coefficients of representations, arXiv:1906.02060 
[9] T. Bruno, M. M. Peloso, M. Vallarino, Potential spaces on Lie groups, arXiv:1903.06415
[8] T. Bruno, Singular integrals and Hardy type spaces for the inverse Gauss measure, arXiv:1801.09000 
[7] T. Bruno, M. M. Peloso, M. Vallarino, Besov and Triebel–Lizorkin spaces on Lie groups, Math. Ann., to appear. 
[6] T. Bruno, Maximal hypoellipticity for left-invariant differential operators on Lie groups, J. Lie Theory 29 (2019), no. 3, 801–809. 
[5] T. Bruno, Endpoint results for the Riesz transform of the Ornstein–Uhlenbeck operator, J. Fourier Anal. Appl. 25 (2019), no. 4, 1609–1631.
[4] T. Bruno, A. Tabacco, M. Vallarino, Endpoint Results for Fourier Integral Operators on Noncompact Symmetric Spaces, Landscapes of Time-Frequency Analysis, pp 33-58. Applied and Numerical Harmonic Analysis, Birkhäuser (2019).
[3] T. Bruno, M. M. Peloso, A. Tabacco, M. Vallarino, Sobolev spaces on Lie groups: embedding theorems and algebra properties, J. Funct. Anal. 276 (2019), no. 10, 3014–3050.
[2] T. Bruno, M. Calzi, Asymptotics for the Heat Kernel on H-type groups, Ann. Mat. Pura Appl. (4) 197 (2018), no. 4, 1017–1049.
[1] T. Bruno, M. Calzi, Weighted sub-Laplacians on Métivier groups: essential self-adjointness and spectrum, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3579–3594.