Hardy-Littlewood inequality and L^p - L^q Fourier multipliers on compact

Vishvesh Kumar¹ and Michael Ruzhansky^{1,2}

Department of Mathematics: Analysis, Logic and Discrete mathematics, and Ghent Analysis & PDE Center (Ghent-Belgium) 1 School of Mathematical Sciences, Queen Mary University of London (London-UK) 2

Hausdorff-Young-Paley inequality on compact hypergroups

Theorem (Hausdorff-Young-Paley (Pitt) inequality)

Let K be a compact hypergroup and let $1 . If a positive sequence <math>\varphi(\pi), \pi \in \widehat{K}$,

 $M_{\varphi} := \sup_{y>0} y \sum_{\pi^{\circ}} k_{\pi}^2 < \infty,$

 $\left(\sum_{\pi \in \mathcal{P}} k_{\pi}^{2} \left(\frac{\|\widehat{f}(\pi)\|_{\mathrm{HS}}}{\sqrt{k_{\pi}}} \varphi(\pi)^{\frac{1}{b} - \frac{1}{p'}}\right)^{b}\right)^{\frac{1}{b}} \lesssim M_{\varphi}^{\frac{1}{b} - \frac{1}{p'}} \|f\|_{L^{p}(K)}.$

Non-commutative version of Hardy-Littlewood inequality

Theorem (Hardy-Littlewood inequality for compact hypergroups)

Let $1 and let K be a compact hypergroup. Assume that a sequence <math>\{\mu_{\pi}\}_{\pi \in \widehat{K}}$ grows sufficiently

 $\sum_{\pi \in \widehat{K}} \frac{\kappa_{\pi}^{2}}{|\mu_{\pi}|^{\beta}} < \infty \quad for \ some \, \beta \geq 0.$

 $\sum_{\pi \in \widehat{\mathcal{P}}} k_{\pi}^{2} |\mu_{\pi}|^{\beta(p-2)} \left(\frac{\|\widehat{f}(\pi)\|_{HS}}{\sqrt{k_{\pi}}} \right)^{p} \lesssim \|f\|_{L^{p}(K)}.$

Aim

- To prove Hardy-Littlewood inequality and Paley inequality for compact hypergroups [8].
- ullet To establish Hörmander's L^p - L^q Fourier multiplier theorem on compact hypergroups for the range 1 [8].

Hypergroups: What & why?

- ullet Roughly, a hypergroup K is a locally compact Hausdorff space with a convolution on the space $M_b(K)$ of regular bounded Borel measures on K with properties similar to those of group convolution.
- In non commutative setting, the analysis on hypergroups provides a natural extension of analysis on locally compact groups. While in commutative setting, they extend the theory of spherical functions and Gelfand pairs.
- Some of important examples are double coset spaces, the space of conjugacy classes on (Lie) groups and the space of group orbits.
- In particular, the results presented here are true for several interesting examples including Jacobi hypergroups with Jacobi polynomials as characters, compact hypergroup structure on the fundamental alcove with Heckman-Opdam polynomials as characters and multivariant disk hypergroups.
- A compact hypergroup can be countable infinite also ([6]). This property distinguishes them from compact groups.
- Unlike locally compact abelian groups, the support of the Plancherel measure on the dual space may not be full space in the case of commutative hypergroups.
- For more details on analysis on hypergroups and several interesting examples, see [4, 10, 6].

Fourier analysis on compact hypergroups

- Let K be compact hypergroup with normalised Haar measure λ . Denote by \widehat{K} the dual space consisting of irreducible inequivalent continuous representations of K equipped with the discrete topology.
- Every $\pi \in \hat{K}$ is finite dimensional but may not be unitary in contrast to compact groups case.
- In commutative setting also, the dual space \hat{K} may not have a hypergroup structure, in contrary to abelian groups.
- Denote the dimension and hyperdimension of $\pi \in \widehat{K}$ by d_{π} and k_{π} .
- For each $\pi \in \widehat{K}$, the Fourier transform \widehat{f} of $f \in L^1(K)$ is defined as

$$\widehat{f}(\pi) = \int_K f(x)\overline{\pi}(x) d\lambda(x),$$

where $\bar{\pi}$ is the conjugate representation of π .

• We refer to [10, 4, 9] for more details on Fourier analysis and representation theory of compact hypergroups.

Methods

- To establish Hausdorff-Young-Paley inequality we first prove Paley inequality [2, 11] for compact hypergroups [8] and then we use weighted interpolation with Hausdorff-Young inequality [9].
- An application of Paley inequality gives Hardy-Littlewood inequality for compact hypergroups.

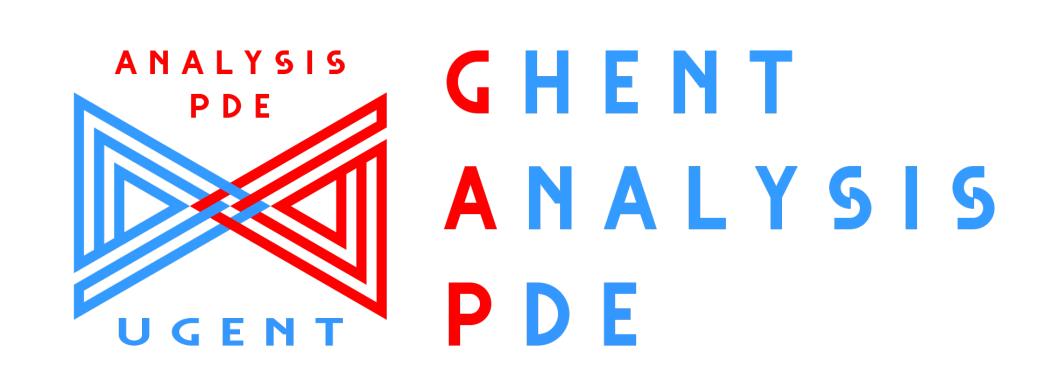
satisfies the condition

then we have

fast, that is,

Then we have

• We obtain Hörmander L^p - L^q boundedness of Fourier multiplier [7] in context of compact hypergroup with the help of the Hausdorff-Young-Paley inequality.



Literature

- Hardy-Littlewood inequality [5] was recently estalished for compact homogeneous spaces [2] and for compact quantum groups [1, 11].
- L^p - L^q boundedness of Fourier multipliers on locally compact unimodular groups was proved in [3] using von-Neumann algebra techniques.

H-L inequality for Conj(SU(2))

If $1 and <math>f \in L^p(\text{Conj}(SU)(2))$, then we

 $\sum_{l} (2l+1)^{5p-8} |\widehat{f}(l)|^p \le C ||f||_{L^p(\text{Conj}(SU)(2))}$ $l \in \frac{1}{2} \mathbb{N}_0$

H-L for D-R hypergroups [6]

If 1 then there exists a constant <math>C =C(p) such that

 $f(0) + \sum_{p} ((1-a)a^{-n})^{p(\frac{5}{2} - \frac{4}{p})} |\widehat{f}(n)|^p \le C||f||_{L^p(H_a)}$

References

- [1] R. Akylzhanov, S. Majid and M. Ruzhansky, Smooth dense subalgebras and Fourier multipliers on compact quantum groups,
- Nursultanov, Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L^p - L^q Fourier multipliers on compact homogeneous manifolds. J. Math. Anal. Appl. 479 (2019),
- [3] R. Akylzhanov, M. Ruzhansky, L^p - L^q multipliers on locally compact groups, J. Func. Analysis, 278(3) (2019), DOI: https://doi.org/10.1016/j.jfa.2019.108324
- [4] W. R. Bloom and Herbert Heyer, *Harmonic* analysis on probability measures on hypergroups, De Gruyter, Berlin (1995)
- [5] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constant, Math. Annalen
- [6] C. F. Dunkl and D. E. Ramirez, A family of countable compact P_* -hypergroups, Trans.
- [7] L. Hörmander, Estimates for translation invariant operators in L^p spaces. $Acta\ Math.$, 104, (1960) 93–140.
- [8] V. Kumar and M. Ruzhansky, Hardy-Littlewood inequality and L^p - L^q Fourier multipliers on compact hypergroups, (2020). https://arxiv.org/abs/2005.08464
- [9] V. Kumar and R. Sarma, The Hausdorff-Young inequality for Orlicz spaces on compact hypergroups, Colloquium Mathematicum 160 (2020), 41-51.
- [10] R. C. Vrem, Harmonic analysis on compact hypergroups, Pacific J. Math., 85(1) (1979)239-251.

- Comm. Math. Phys. 362(3) (2018) 761–799.
- [2] R. Akylzhanov, M. Ruzhansky and E. no. 2, 1519–1548.
- (Reprint: 2011).
- 97 (1927) 159-209.
- Amer. Math. Soc., 202 (1975), 339–356.

- [11] S.-G. Youn, Hardy-Littlewood inequalities on compact quantum groups of Kac type, Anal. PDE 11(1) (2018) 237–261.

L^p -L^q-boundedness of Fourier multipliers on compact hypergroups

Theorem (Hörmander theorem for Fourier multipliers)

Let K be a compact hypergroup and let 1 . Let A be a left Fourier multiplier withsymbol σ_A , that is, A satisfies

 $\widehat{Af}(\pi) = \sigma_A(\pi)\widehat{f}(\pi), \quad \pi \in \widehat{K}.$

Then we have

$$||A||_{L^p(K)\to L^q(K)} \lesssim \sup_{y>0} y \left(\sum_{\substack{\pi\in \widehat{K} \\ ||\sigma_A(\pi)||_{op} \ge y}} k_\pi^2 \right)^{\frac{1}{p} - \frac{1}{q}}.$$

The authors were supported by the FWO Odysseus Project. Michael Ruzhansky was also supported by the Leverhulme Grant RPG-2017-151 and EPSRC grant EP/R003025/1.

Webpage: https://analysis-pde.org/vishvesh-kumar/ Email: vishveshmishra@gmail.com,