\mathbb{R} -actions and invariant differential operators

Gerardo Mendoza Temple University

Virtual International Conference on Pseudo-differential Operators

Ghent, July 7, 2020

/ connected

 A^{ζ} closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

/ connecte

 A^l closed manifold M together with a nowhere vanishing real vector field $\mathcal T$ that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P: C^{\infty}(M;E) \to C^{\infty}(M;E), \quad [\mathcal{L}_{\mathcal{T}},P] = 0,$$

acting on sections of a Hermitian vector bundle,

/ connecte

 A^{l} closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P: C^{\infty}(M; E) \to C^{\infty}(M; E), \quad [\mathcal{L}_{\mathcal{T}}, P] = 0, \ PP^{\star} = P^{\star}P$$
 acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure.

/ connected

 A^{ζ} closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P: C^{\infty}(M;E) \to C^{\infty}(M;E)$$
, $[\mathcal{L}_{\mathcal{T}},P]=0$, $PP^{\star}=P^{\star}P$ acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure. On $\ker P \subset L^2$, $\mathcal{L}_{\mathcal{T}}$ will act as a Fredholm selfadjoint operator with compact parametrix (assuming some sort of ellipticity).

/ connected

 A^{l} closed manifold M together with a nowhere vanishing real vector field \mathcal{T} that is a Killing vector field for some Riemannian metric behaves in many ways like a circle bundle over a compact base.

To illustrate the point, I will discuss a theorem concerning the action of such a vector field on the kernel of an invariant differential operator

$$P: C^{\infty}(M; E) \to C^{\infty}(M; E)$$
, $[\mathcal{L}_{\mathcal{T}}, P] = 0$, $PP^* = P^*P$ acting on sections of a Hermitian vector bundle, assumed to be normal with respect to the natural Hilbert space structure. On ker $P \subset L^2$, $\mathcal{L}_{\mathcal{T}}$ will act as a Fredholm selfadjoint operator with compact parametrix (assuming some sort of ellipticity).

As an application I will discuss how with certain hypoellipticity condition one gets a result resembling Kodaira's vanishing theorem.

At the end I will sketch the basic ideas of the proofs.

Set-up M is a closed manifold, compact no boundary (and connected)

M is a closed manifold, compact no boundary (and connected)

 ${\mathcal T}$ is a nowhere vanishing real vector field preserving some Riemannian metric ${\it g}$

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

 ${\mathcal T}$ is a nowhere vanishing real vector field preserving some Riemannian metric ${\it g}$

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g = 0$. We only care that such g exists

 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density

E o M is a Hermitian vector bundle, metric h

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $F \xrightarrow{\mathfrak{A}_t} F$

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

etric
$$h$$

This phism covering \mathfrak{a}_t

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 ${\mathcal T}$ is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_{r} is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$ $E \to M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

$$\phi$$
 section of E , $p \in M$.

M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$

 $\mathfrak{a}_t(p)$

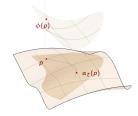
E o M is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$.

 $E \xrightarrow{\mathfrak{A}_t} E$ $\downarrow \qquad \qquad \downarrow$ $M \xrightarrow{\mathfrak{a}_t} M$



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

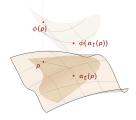
 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $\phi(\mathfrak{a}_t(p))$



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

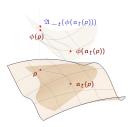
 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$

E o M is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $\mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

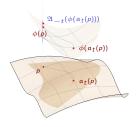
 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 ${\mathcal T}$ is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h

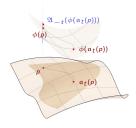
 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

$$E \xrightarrow{\mathfrak{A}_t} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{\mathfrak{a}_t} M$$

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,
$$\frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$$



M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

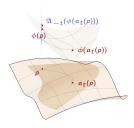
 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$ $E \to M$ is a Hermitian vector bundle, metric h

 $E \xrightarrow{\mathfrak{A}_t} E$ $\downarrow \qquad \qquad \downarrow$ $M \xrightarrow{\mathfrak{a}_t} M$

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,

$$\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$$



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

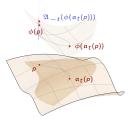
 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$ $E \to M$ is a Hermitian vector bundle, metric h

 $E \xrightarrow{\mathfrak{A}_t} E$ $\downarrow \qquad \qquad \downarrow$ $M \xrightarrow{\mathfrak{a}_t} M$

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \xrightarrow{of \text{ order } m} C^{\infty}(M; E)$.



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$

 $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

 $E \xrightarrow{\mathfrak{A}_t} E$ $\downarrow \qquad \qquad \downarrow$ $M \xrightarrow{\mathfrak{a}_t} M$

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \xrightarrow{of \text{ order } m} C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0$. $[P, P^{*}] = 0$

$$\phi(\rho)$$

$$\phi(a_{\tau}(\rho))$$

$$\phi(a_{\tau}(\rho))$$

M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 ${\mathcal T}$ is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$E \xrightarrow{\mathfrak{A}_t} E$$

$$\downarrow \qquad \qquad \downarrow$$

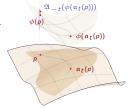
$$M \xrightarrow{\mathfrak{a}_t} M$$

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,

$$\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$$

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$

$$\sigma(P) + \sigma(-i\mathcal{L}_T)^m - \lambda I$$
 is invertible if $\lambda \in \Lambda$.



M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

 $\mathcal T$ is a nowhere vanishing real vector field preserving some Riemannian metric g $\mathfrak a_t$ is the flow of $\mathcal T$, $\mathfrak m$ is an invariant smooth density $E \xrightarrow{\mathfrak A_t} E$

E o M is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

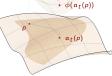
Lie derivative

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask

$$[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$$

$$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$$
 is invertible if $\lambda \in \Lambda$.



M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

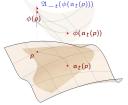
 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is ell $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.



Set-up, Theorem

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0$. We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$

E o M is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$E \xrightarrow{\mathfrak{A}_t} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{\mathfrak{a}_t} M$$

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

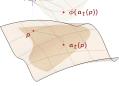
P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask

$$[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$$

(so $P + (-i\mathcal{L}_T)^m$ is elliptic)

$$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$$
 is invertible if $\lambda \in \Lambda$.

Let $\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$



 $\mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$

Set-up, Theorem

M is a closed manifold,

 $\mathcal{L}_T g = 0$. We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density

 $E \rightarrow M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask

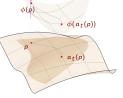
$$[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$$

$$(so P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptically a probable of } P)$$

$$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$$
 is invertible if $\lambda \in \Lambda$.

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$$

$$-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$



 $\mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$

 $M \longrightarrow M$

Set-up, Theorem

M is a closed manifold,

 $\mathcal{L}_{\mathcal{T}}g=0.$ We only care that such g exists

 \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$

E o M is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: $\downarrow \qquad \qquad \downarrow \\
M \xrightarrow{\alpha_t} M$

Lie derivative

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask

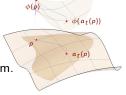
$$[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$$
(so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic)
$$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - 1$$
 is invertible if $\lambda \in \Lambda$

$$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$$
 is invertible if $\lambda \in \Lambda$.

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$$

$$-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.



 $\mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$

 $H = \ker P \cap L^2$ is a Hilbert space on its own.

M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists $\mathcal{L}_{Tg} = 0$ is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $\mathcal{L}_{Tg} = \mathcal{L}_{Tg} = \mathcal{$

$$\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p$$

$$\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))).$$

 $\begin{array}{l} P \text{ is a differential operator } C^{\infty}(M;E) \to C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 & \text{(so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$$

$$-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is selfadjoint with compact resolvent, in particular Fredholm.

4

· \(\alpha_t(p) \)

· a+(p)

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

M is a closed manifold, $\mathcal{L}_{\mathcal{T}\mathcal{G}}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t $M \to K$. Lie derivative:

 $\begin{array}{l} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{array}$

P is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}},P]=0$, $[P,P^*]=0$ (so $P+(-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P)+\sigma(-i\mathcal{L}_{\mathcal{T}})^m-\lambda I$ is invertible if $\lambda\in\Lambda$.

Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$, let $\wp : M \to B := M/\sim$. The fibers of \wp are tori.

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$,

M is a closed manifold, $\mathcal{L}_{\mathcal{T}\mathcal{B}}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t H Lie derivative:

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

 $\begin{array}{l} P \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let $\mathscr{D} = \{\phi \in \overline{H: \mathcal{L}_T \phi \in H}\}.$ $-i\mathcal{L}_T|_{\mathscr{D}}: \mathscr{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

 $\phi(a_t(p))$ $\alpha_t(p)$

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of a_t in Iso(M) is isomorphic to a torus \mathbb{T} .

M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t $M \to M$ lie derivative:

 $\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$

 $\begin{array}{l} \overline{P} \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^{*}] = 0 \\ \text{ (so } p + (-i\mathcal{L}_{\mathcal{T}})^{m} \text{ is elliptic)} \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^{m} - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

· \(\alpha_t(p) \)

· a+(p)

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \mathcal{O}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of \mathfrak{a}_t in $\mathrm{Iso}(M)$ is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\text{reg}} \subset M$, $B^{\text{reg}} \subset B$ such that $\pi: M^{\text{reg}} \to B^{\text{reg}}$ is a principal torus bundle.

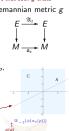
M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,

 $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$

 \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm



· \(\alpha_t(p) \)

· a+(p)

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of a_t in Iso(M) is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, r] = 0$, $[r, r^m] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$.

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of \mathfrak{a}_t in $\mathrm{Iso}(M)$ is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, r] = 0$, $[r, r^m] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it}p$, $p \in M$,

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of a_t in Iso(M) is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

a hypersurface in the complex manifold L $M=\{\eta\in L: |\eta|^2=1\} \text{ for some Hermitian metric}$

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it}p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$,

Circle bundle?

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of a_t in Iso(M) is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

a hypersurface in the complex manifold L $M=\{\eta\in L: |\eta|^2=1\}$ for some Hermitian metric

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it}p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^{\infty}(\bigwedge^q \overline{\mathcal{V}}^*)$ (0, q)-forms on M

Circle bundle?

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of a_t in Iso(M) is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

> a hypersurface in the complex manifold L $M = \{ \eta \in L : |\eta|^2 = 1 \}$ for some Hermitian metric

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it}p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^{\infty}(\bigwedge^q \overline{\mathcal{V}}^*)$ $P + (-i\mathcal{L}_{\mathcal{T}})^2$ is elliptic, $\ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_m, -i\mathcal{L}_{\mathcal{T}}\phi = m\phi$.

Circle bundle?

For $p \in M$: $\mathcal{O}_p = \text{orbit of } p$, say $p \sim p'$ iff $p' \in \overline{\mathcal{O}}_p$,

let $\wp: M \to B := M/\sim$.

The fibers of \wp are tori.

Reason:

The closure of \mathfrak{a}_t in $\mathrm{Iso}(M)$ is isomorphic to a torus \mathbb{T} .

There are open dense sets $M^{\mathrm{reg}} \subset M, \ B^{\mathrm{reg}} \subset B$ such that $\pi: M^{\mathrm{reg}} \to B^{\mathrm{reg}}$ is a principal torus bundle.

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p . $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

a hypersurface in the complex manifold L $M = \{ \eta \in L : |\eta|^2 = 1 \}$ for some Hermitian metric

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it}p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^{\infty}(\bigwedge^q \overline{\mathcal{V}}^*)$ $P + (-i\mathcal{L}_{\mathcal{T}})^2$ is elliptic, $\ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_m$, $-i\mathcal{L}_{\mathcal{T}}\phi = m\phi$.

(And there is an isomorphism $\mathcal{E}_{-m} \approx H^{0,q}(M; L^{\otimes m})$)

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p)))$.

 $\begin{array}{l} \overline{P} \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^{*}] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^{m} - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{array}$

Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

and α_t and

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

M is a closed manifold, $\mathcal{L}_{Tg}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $F \xrightarrow{\mathfrak{A}_t} F \oplus \mathcal{A}_t \oplus F \oplus \mathcal{A}_t$ is a Hermitian vector bundle, metric $h \oplus \mathcal{A}_t : E \to E$ is a unitary bundle homomorphism covering $\mathfrak{a}_t \oplus \mathcal{A}_t \oplus \mathcal{A}_t \oplus \mathcal{A}_t$ Lie derivative:

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p)))$.

 $\begin{array}{l} P \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, [P,P^*] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$$

$$-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

$$\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_{\mathcal{T}}(e^{isf} \phi) = \langle \mathit{d}f, \mathcal{T} \rangle \phi$$
so $\tau(\boldsymbol{\xi}) = \langle \boldsymbol{\xi}, \mathcal{T} \rangle$

5

· \(\alpha_t(p) \)

· a+(p)

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

M is a closed manifold, $\mathcal{L}_{\mathcal{T}\mathcal{G}}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_{t} is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_{t}} E$ $E \xrightarrow{\mathfrak{A}_{t}} E$ \mathfrak{A}_{t} is a Hermitian vector bundle, metric h $\mathfrak{A}_{t}: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_{t}

 ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p)))$.

 $\begin{array}{c} P \text{ is a differential operator } C^{\infty}(M;E) \to C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 & \text{forder } m \\ [so P + (-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

is selfadjoint with compact resolvent, in particular Fredholm.

Let $\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$

Lie derivative:

 $\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_{\mathcal{T}}(e^{isf} \phi) = \langle df, \mathcal{T} \rangle \phi$ so $\tau(\boldsymbol{\xi}) = \langle \boldsymbol{\xi}, \mathcal{T} \rangle$

5

· \(\alpha_t(p) \)

· a+(p)

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) =$$

 $\mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$

according to au>0 or au<0

M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

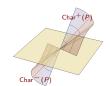
Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p)))$.

 $\begin{array}{l} \overline{P} \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{array}$

Let $\mathscr{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

 $\lim_{s \to \infty} \frac{1}{s} e^{-isf} \frac{1}{i} \mathcal{L}_{\mathcal{T}}(e^{isf} \phi) = \langle df, \mathcal{T} \rangle \phi$ so $\tau(\boldsymbol{\xi}) = \langle \boldsymbol{\xi}, \mathcal{T} \rangle$



· \(\alpha_t(p) \)

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau: T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \\ \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$

according to $\tau > 0$ or $\tau < 0$

M is a closed manifold, $\mathcal{L}_{\mathcal{T}g}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t lie derivative:

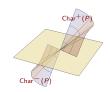
$$\begin{split} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{split}$$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_{\mathcal{T}}\phi \in H\}.$$

$$-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is colfadions with compact resolvent, in particles

is selfadjoint with compact resolvent, in particular Fredholm.

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_{\mathcal{T}}\big|_{\mathscr{D}}$ is semibounded from above.



Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$

according to au > 0 or au < 0

M is a closed manifold, $\mathcal{L}_{\mathcal{T}g} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

Lie derivative: $\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} | \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))).$

 $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ $[So \ P + (-i\mathcal{L}_{\mathcal{T}})^m \ is \ elliptic)$ $[So \ P + (-i\mathcal{L}_{\mathcal{T}})^m \ is \ elliptic)$ $[So \ P + (-i\mathcal{L}_{\mathcal{T}})^m \ is \ elliptic)$

Let $\mathscr{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$

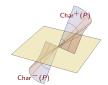
 $-i\mathcal{L}_{\mathcal{T}|_{\widehat{\mathscr{D}}}}: \mathscr{D} \subset \mathcal{H} \to \mathcal{H}$

is selfadjoint with compact resolvent, in particular Fredholm.

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_{\mathcal{T}}\Big|_{\mathscr{D}}$ above.

is semibounded from (At most finitely many posi-

(At most finitely many positive elements in spectrum.)



Observe $\sigma(-i\mathcal{L}_{\tau}) = \tau I$ for some $\tau: T^*M \to \mathbb{R}$.

Invertibility of

degree $q \neq q^{\pm}$.

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \\ \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$

according to $\tau > 0$ or $\tau < 0$

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$
$$\begin{split} [\mathcal{L}_{\mathcal{T}}, P] &= 0, \ [P, P^\star] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m &- \lambda \text{I is invertible if } \lambda \in \Lambda. \end{split}$$
Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\omega}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_{\mathcal{T}}$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in

is semibounded from

(At most finitely many positive elements in spectrum.)

 $q^{\pm} = \# pos/neg Levi eigenvalues.$

Observe $\sigma(-i\mathcal{L}_{\tau}) = \tau I$ for some $\tau: T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \\ \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$

according to $\tau > 0$ or $\tau < 0$

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

$$\begin{split} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{split}$$

 \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, r_1] = 0$, $[r, r^n] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}.$$

 $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

is semibounded from

(At most finitely many positive elements in spectrum.) $q^{\pm} = \# pos/neg Levi eigenvalues.$

by work of Boutet de Monvel

& Siöstrand, '70s

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_T$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in degree $q \neq q^{\pm}$.

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_{\mathcal{T}})^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \\ \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$
 according to $\tau > 0$ or $\tau < 0$

 $\begin{aligned} & [\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0 \\ & \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{aligned}$ Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_{\mathcal{T}}\phi \in H\}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\varpi} : \mathscr{D} \in H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}}$ is semibounded from above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in $q^\pm = \#\operatorname{pos/neg}$ Levi eigenvalues. degree $q \neq q^\pm$. So finite spectrum in these degrees by work of Boutet de Monvel & Sjöstrand, '70s $\operatorname{Char}_{\mathcal{A}}$ Chart (P)

Observe $\sigma(-i\mathcal{L}_{\mathcal{T}}) = \tau I$ for some $\tau : T^*M \to \mathbb{R}$.

Invertibility of

$$\sigma(P) + \sigma((-i\mathcal{L}_T)^m)$$

gives $\tau \neq 0$ on Char(P):

$$\mathsf{Char}(P) = \\ \mathsf{Char}^+(P) \cup \mathsf{Char}^-(P)$$

according to au>0 or au<0

M is a closed manifold, $\mathcal{L}_{\mathcal{T}\mathcal{G}}=0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , m is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering a_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(a_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

P is a differential operator $C^\infty(M; E) \to C^\infty(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0$, $[P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m \to \lambda I$ is invertible if $\lambda \in \Lambda$.

Let $\mathcal{Q} = \{\phi \in H: \mathcal{L}_{\mathcal{T}}\phi \in H\}$.

is selfadjoint with compact resolvent, in particular Fredholm.

(0, q)-forms on M

Theorem. If P is hypoelliptic on $\operatorname{Char}^+(P)$ then $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{L}}$ above. If M carries an invariant Levi non-degenerate CR structure then the Kohn Laplacians are hypoelliptic in

is semibounded from

(At most finitely many positive elements in spectrum.) $q^{\pm} = \#pos/neg \text{ Levi eigenvalues.}$

degree $q \neq q^{\pm}$. So finite spectrum in these degrees by work of Boutet de Monvel & Sjöstrand, '70s

Example. Let B be a compact complex manifold, $\wp: M \to B$ the circle bundle

of a holomorphic line bundle $L \to \mathcal{B}$, \mathcal{T} the generator of $t \mapsto e^{it} p$, $p \in M$, \mathcal{V} be the CR structure of $M \subset L$, P be the Kohn Laplacian acting on $C^{\infty}(\bigwedge^q \overline{\mathcal{V}}^*)$

 $P + (-i\mathcal{L}_T)^2$ is elliptic, $\ker P = \bigoplus_{m \in \mathbb{Z}} \mathcal{E}_{m_1} - i\mathcal{L}_T \phi = m\phi$.

(And there is an isomorphism $\mathcal{E}_{-m} \approx H^{0,q}(M; L^{\otimes m})$)

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.$ $[\mathcal{L}_{T}, P] = 0, [P, P^{*}] = 0$ · \(\alpha_t(p) \) Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\omega}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_T)^m$.

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ $(\text{so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic.})$ $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.$ · \(\alpha_t(p) \) Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\omega}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then $\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{T}, P] = 0, [P, P^{*}] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ $(\text{so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic.})$ $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.$ Let $\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ · \(\alpha_t(p) \) $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_{\mathcal{T}})^m$. Then $\phi - R\phi = Q(P + (-i\mathcal{L}_{\mathcal{T}})^m)\phi = Q(-i\mathcal{L}_{\mathcal{T}})^m\phi$ if $P\phi = 0$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose
$$Q$$
 is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_{\mathcal{T}})^m$. Then
$$\phi - R\phi = Q(P + (-i\mathcal{L}_{\mathcal{T}})^m)\phi = Q(-i\mathcal{L}_{\mathcal{T}})^m\phi = [Q(-i\mathcal{L}_{\mathcal{T}})^{m-1}](-i\mathcal{L}_{\mathcal{T}})\phi$$
 if $P\phi = 0$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ · \(\alpha_t(p) \) Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose
$$Q$$
 is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_{\mathcal{T}})^m$. Then
$$\phi - R\phi = Q(P + (-i\mathcal{L}_{\mathcal{T}})^m)\phi = Q(-i\mathcal{L}_{\mathcal{T}})^m\phi = \underbrace{[Q(-i\mathcal{L}_{\mathcal{T}})^{m-1}](-i\mathcal{L}_{\mathcal{T}})\phi}_{\text{parametrix, compact}}$$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $\begin{aligned} [\mathcal{L}_{\mathcal{T}}, P] &= 0, \ [P, P^{\star}] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^{m} &- \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{aligned}$ Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [Q(-i\mathcal{L}_T)^{m-1}](-i\mathcal{L}_T)\phi$$
if $P\phi = 0$

Symmetry:

parametrix, compact
$$d\big(h(\phi,\psi)\mathcal{T}\rfloor\mathfrak{m}\big)\underbrace{\int_{M}d(h(\phi,\psi)\mathcal{T}\rfloor\mathfrak{m})}_{=0}$$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $\begin{aligned} [\mathcal{L}_{\mathcal{T}}, P] &= 0, \ [P, P^{\star}] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m &- \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{aligned}$ Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a \mathcal{T} -invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [\underbrace{Q(-i\mathcal{L}_T)^{m-1}}_{\text{if }P\phi = 0}](-i\mathcal{L}_T)\phi$$

Symmetry:

parametrix, compact
$$\mathcal{L}_{\mathcal{T}}(h(\phi,\psi)\,\mathfrak{m}) = d(h(\phi,\psi)\mathcal{T}\rfloor\mathfrak{m}) \underbrace{\int_{M} d(h(\phi,\psi)\mathcal{T}\rfloor\mathfrak{m})}_{=0}$$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ (so $P + (-i\mathcal{L}_{\mathcal{T}})^m$ is elliptic) $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$. Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ · a+(p) is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a
$$\mathcal{T}$$
-invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = \underbrace{[Q(-i\mathcal{L}_T)^{m-1}]}_{\text{parametrix, compact}}(-i\mathcal{L}_T)\phi$$
in metry:

inflictive:
$$(h(\mathcal{L}_{\mathcal{T}}\phi,\psi) + h(\phi,\mathcal{L}_{\mathcal{T}}\psi)) \mathfrak{m} = \mathcal{L}_{\mathcal{T}}(h(\phi,\psi)\mathfrak{m}) = d(h(\phi,\psi)\mathcal{T}\mathfrak{m})$$

$$= 0$$

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask
$$\begin{split} [\mathcal{L}_{\mathcal{T}},P] &= 0, \ [P,P^{\star}] = 0 \\ &\text{(so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ &\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{split}$$
Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

Parametrix:

Suppose Q is a
$$\mathcal{T}$$
-invariant parametrix for $P + (-i\mathcal{L}_T)^m$. Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = \underbrace{[Q(-i\mathcal{L}_T)^{m-1}]}_{\text{parametrix. compact}} (-i\mathcal{L}_T)\phi$$
Symmetry:

Symmetry. parametrix, compact
$$(h(\mathcal{L}_{\mathcal{T}}\phi,\psi) + h(\phi,\mathcal{L}_{\mathcal{T}}\psi)) \mathfrak{m} = \mathcal{L}_{\mathcal{T}}(h(\phi,\psi)\mathfrak{m}) = d(h(\phi,\psi)\mathcal{T}\mathfrak{m})$$

Selfadjointness uses $\sigma(P) + \sigma((-i\mathcal{L}_T)^m) - \lambda I$ invertible for large λ (Λ is a ray of minimal growth) and formal normality of P.

Proofs, details in (1)

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt}\Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$ \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask
$$\begin{split} [\mathcal{L}_{\mathcal{T}},P] &= 0, \ [P,P^{\star}] = 0 \\ &\text{(so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ &\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{split}$$
Let $\mathcal{D} = \{ \phi \in H : \mathcal{L}_{\tau} \phi \in H \}.$ $-i\mathcal{L}_{\mathcal{T}}|_{\mathcal{Q}}: \mathcal{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm

Parametrix:

Suppose
$$Q$$
 is a \mathcal{T} -invariant parametrix for $P+(-i\mathcal{L}_{\mathcal{T}})^m.$ Then

$$\phi - R\phi = Q(P + (-i\mathcal{L}_T)^m)\phi = Q(-i\mathcal{L}_T)^m\phi = [Q(-i\mathcal{L}_T)^{m-1}](-i\mathcal{L}_T)\phi$$
if $P\phi = 0$

Symmetry:

Selfadjointness uses $\sigma(P) + \sigma((-i\mathcal{L}_T)^m) - \lambda I$ invertible for large λ (Λ is a ray of minimal growth) and formal normality of P.

(1) —, Hypoellipticity and vanishing theorems, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), 231–258.

M is a closed manifold, $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

$$\begin{array}{l} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \left| \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{array} \right. \end{array}$$

Lie derivative:

P is a differential operator $C^{\infty}(M; E) \to C^{\infty}(M; E)$. We ask $[\mathcal{L}_{\mathcal{T}},P]=0,\,[P,P^{\star}]=0$ $\frac{[\mathcal{L}_{\mathcal{T}}, r] = 0, [r, r'] = 0}{\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I} \text{ is invertible if } \lambda \in \Lambda.$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$$

$$-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is self-adjoint with compact resolvent, in particular Fredholm

is selfadjoint with compact resolvent, in particular Fredholm.

· \(\alpha_t(p) \)

· a+(p)

M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h

Lie derivative: ϕ section of E, $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(a_t(p))).$

 $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

 \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}}, P] = 0, [P, P^*] = 0$ $[\mathcal{L}_{\mathcal{T}}, P] = 0, \ [P, P^*] = 0$ $(\text{so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic.})$ $\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda.$

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_T \phi \in H \}.$$

 $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose *P* is hypoelliptic on $\tau > 0$ but there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$

$$-i\mathcal{L}_{\mathcal{T}}\phi_k = \tau_k\phi_k, \qquad \|\phi_k\| = 1 \qquad \text{(and } P\phi_k = 0\text{)}.$$

· \(\alpha_t(p) \) · a+(p)

M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h

 $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative: ϕ section of E, $p \in M$, $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p , $\mathcal{L}_T(\phi)(p) = \frac{d}{dt} \Big|_{t \to \infty} \mathfrak{A}_{-t}(\Phi(a_t(p)))$.

$$P$$
 is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask $[\mathcal{L}_{\mathcal{T}},P]=0, \ [P,P^*]=0 \ (so\ P+(-i\mathcal{L}_{\mathcal{T}})^m \ is elliptic)$ $\sigma(P)+\sigma(-i\mathcal{L}_{\mathcal{T}})^m-\lambda I$ is invertible if $\lambda\in\Lambda$.

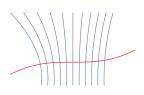
Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$ $-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$ is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$

$$-i\mathcal{L}_{\mathcal{T}}\phi_k = au_k\phi_k, \qquad \|\phi_k\| = 1 \qquad ext{(and } P\phi_k = 0).$$

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

· a+(p)



M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{\mathfrak{A}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering a_t

$$\begin{array}{l} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{array}$$

 $\begin{array}{c} P \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \text{ (so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$$

$$-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$

Lie derivative:

$$-i\mathcal{L}_{\mathcal{T}}\phi_k = au_k\phi_k, \qquad \|\phi_k\| = 1 \qquad \text{(and } P\phi_k = 0\text{)}.$$

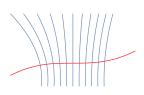
Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to T.

7

· \(\alpha_t(p) \)

· a+(p)



M is a closed manifold. $\mathcal{L}_T g = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \rightarrow M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t

$$\phi$$
 section of E , $p \in M$. $t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p)))$ is a curve in E_p ,
$$\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))).$$

 \overline{P} is a differential operator $C^{\infty}(M;E) \to C^{\infty}(M;E)$. We ask
$$\begin{split} [\mathcal{L}_{\mathcal{T}},P] &= 0, \ [P,P^{\star}] = 0 \\ &\text{(so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ & \text{$\sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I$ is invertible if $\lambda \in \Lambda$.} \end{split}$$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$$

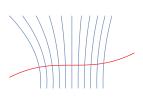
$$-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is selfadjoint with compact resolvent, in particular Fredholm.

Suppose
$$P$$
 is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$ $-i\mathcal{L}_{\mathcal{T}}\phi_k = \tau_k\phi_k$, $\|\phi_k\| = 1$ (and $P\phi_k = 0$).

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to T. If $p \in S$, then $\mathfrak{A}_{-t}\phi(\mathfrak{a}_t(p))=e^{i\tau_k t}\phi(p).$

Lie derivative:



M is a closed manifold, $\mathcal{L}_{\mathcal{T}g} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , m is an invariant smooth density $E \xrightarrow{\mathcal{M}_t} E$ $E \to M$ is a Hermitian vector bundle, metric h $\mathcal{M}_t : E \to E$ is a unitary bundle homomorphism covering a_t

$$\begin{array}{l} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \left| \underset{t=0}{\mathfrak{A}} \mathfrak{A}_{-t}(\Phi(a_t(p))). \end{array} \right.$$

 $\begin{array}{c} P \text{ is a differential operator } C^{\infty}(M;E) \to C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \text{ (so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic)} \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{\phi \in H : \mathcal{L}_T \phi \in H\}.$$

$$-i\mathcal{L}_T|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$
is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$

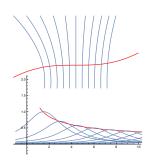
Lie derivative:

$$-i\mathcal{L}_{\mathcal{T}}\phi_k = au_k\phi_k, \qquad \|\phi_k\| = 1 \qquad \text{(and $P\phi_k = 0$)}.$$

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T} . If $p \in S$, then $\mathfrak{A}_{-t}\phi(\mathfrak{a}_t(p))=e^{i\tau_k t}\phi(p)$. If $\chi \in C^\infty$ has small support near p_0 , then

$$(\chi(\mathfrak{a}_t(p))\phi)(\tau) = \sum_k \hat{\chi}(\tau - \tau_k)\phi_k(p)$$



M is a closed manifold, $\mathcal{L}_{\mathcal{T}g} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of \mathcal{T} , m is an invariant smooth density $E \to M$ is a Hermitian vector bundle, metric h $\mathfrak{A}_t : E \to E$ is a unitary bundle homomorphism covering \mathfrak{a}_t $M \to M$.

$$\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p,$$

$$\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))).$$

 $\begin{array}{l} P \text{ is a differential operator } C^{\infty}(M;E) \to C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$$

$$-i\mathcal{L}_{\mathcal{T}}|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose
$$P$$
 is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$ $-i\mathcal{L}_{\mathcal{T}}\phi_k = \tau_k\phi_k$, $\|\phi_k\| = 1$ (and $P\phi_k = 0$).

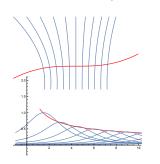
Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T} . If $p \in S$, then $\mathfrak{A}_{-t}\phi(\mathfrak{a}_t(p))=e^{i\tau_kt}\phi(p)$. If $\chi \in C^\infty$ has small support near p_0 , then

$$(\chi(\mathfrak{a}_t(p))\phi)(\tau) = \sum_k \hat{\chi}(\tau - \tau_k)\phi_k(p)$$

7

· a+(p)



M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists \mathcal{T} is a nowhere vanishing real vector field preserving some Riemannian metric g \mathfrak{a}_t is the flow of \mathcal{T} , \mathfrak{m} is an invariant smooth density $E \xrightarrow{M_t} E E \to M$ is a Hermitian vector bundle, metric $E \to E \to E$ is a unitary bundle homomorphism covering $\mathfrak{a}_t \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E$ is a unitary bundle homomorphism covering $E \to E \to E \to E \to E$

$$\begin{array}{l} \phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p, \\ \mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \bigg|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))). \end{array}$$

 $\begin{array}{c} P \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda I \text{ is invertible if } \lambda \in \Lambda. \end{array}$

Let
$$\mathscr{D} = \{ \phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H \}.$$

$$-i \mathcal{L}_{\mathcal{T}} \Big|_{\mathscr{D}} : \mathscr{D} \subset H \to H$$

is selfadjoint with compact resolvent, in particular Fredholm.

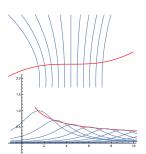
Suppose
$$P$$
 is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$ $-i\mathcal{L}_{\mathcal{T}}\phi_k = \tau_k\phi_k$, $\|\phi_k\| = 1$ (and $P\phi_k = 0$).

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$.

Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T} . If $p \in S$, then $\mathfrak{A}_{-t}\phi(\mathfrak{a}_t(p))=e^{i\tau_k t}\phi(p)$. If $\chi \in C^\infty$ has small support near p_0 , then

$$(\chi(\mathfrak{a}_t(p))\phi)(\tau) = \sum_k \hat{\chi}(\tau - \tau_k)\phi_k(p)$$

Hypoellipticity implies this is rapidly decreasing a $au o \infty$.



M is a closed manifold, $\mathcal{L}_{Tg} = 0$. We only care that such g exists T is a nowhere vanishing real vector field preserving some Riemannian metric g a_t is the flow of T, m is an invariant smooth density $\frac{m}{t} = \frac{m}{t} \frac{g}{t} \frac{g}{$

E o M is a Hermitian vector bundle, metric h $\mathfrak{A}_t: E o E$ is a unitary bundle homomorphism covering \mathfrak{a}_t Lie derivative:

 $\phi \text{ section of } E, \ p \in M. \ t \mapsto \mathfrak{A}_{-t}(\phi(\mathfrak{a}_t(p))) \text{ is a curve in } E_p,$ $\mathcal{L}_{\mathcal{T}}(\phi)(p) = \frac{d}{dt} \Big|_{t=0} \mathfrak{A}_{-t}(\Phi(\mathfrak{a}_t(p))).$

$$\begin{array}{l} P \text{ is a differential operator } C^{\infty}(M;E) \rightarrow C^{\infty}(M;E). \text{ We ask} \\ [\mathcal{L}_{\mathcal{T}},P] = 0, \ [P,P^*] = 0 \\ (\text{so } P + (-i\mathcal{L}_{\mathcal{T}})^m \text{ is elliptic}) \end{array} \\ \sigma(P) + \sigma(-i\mathcal{L}_{\mathcal{T}})^m - \lambda \text{I is invertible if } \lambda \in \Lambda. \end{array}$$
 Let $\mathscr{D} = \{\phi \in H : \mathcal{L}_{\mathcal{T}} \phi \in H\}.$
$$-i\mathcal{L}_{\mathcal{T}}|_{\varnothing} : \mathscr{D} \subset H \rightarrow H$$

is selfadjoint with compact resolvent, in particular Fredholm.

Suppose P is hypoelliptic on $\tau > 0$ but there there is $\{\tau_k\}_{k=1}^{\infty}$, $\{\phi_k\}_{k=0}^{\infty}$

$$-i\mathcal{L}_{\mathcal{T}}\phi_{\pmb{k}}= au_{\pmb{k}}\phi_{\pmb{k}}, \qquad \|\phi_{\pmb{k}}\|=1 \qquad ext{(and } P\phi_{\pmb{k}}=0).$$

Then $\phi = \sum \phi_k$ is a distribution such that $P\phi = 0$. Let $p_0 \in M$, S a piece of a hypersurface through p transversal to \mathcal{T} . If $p \in S$, then

$$\mathfrak{A}_{-t}\phi(\mathfrak{a}_t(p))=e^{i au_kt}\phi(p)$$
. If $\chi\in C^\infty$ has small support near p_0 , then $(\chi(\mathfrak{a}_t(p))\phi)\hat{}(au)=\sum_k\hat{\chi}(au- au_k)\phi_k(p)$

Hypoellipticity implies this is rapidly decreasing a $\tau \to \infty$. Conclude ϕ_k arbitrarily small near p_0 for large k, then arbitrarily small (large k) on M by compactness.

