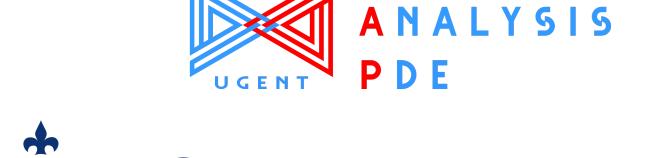
Imperial College London

Book "Pseudo-Differential Operators and Symmetries"

By Michael Ruzhansky^{1,2,3} and Ville Turunen⁴

⁴Aalto University

¹Imperial College London, ²Ghent Analysis & PDE Center, Ghent University, ³Queen Mary University of London,



Description

This monograph is devoted to the development of the theory of pseudodifferential operators on spaces with symmetries. Such spaces are the Euclidean space \mathbb{R}^n , the n torus \mathbb{T}^n , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-differential operators but also to show parallels between different approaches to pseudo-differential operators on different spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the first time.

Content

I Foundations of analysis

- A Sets, topology and metrics
- B Elementary functional analysis
- C Measure theory and integration
- D Algebras

II Commutative symmetries

- Fourier analysis on \mathbb{R}^n
- 2 Pseudo-differential operators on \mathbb{R}^n
- 3 Periodic and discrete analysis
- 4 Pseudo-differential operators on \mathbb{T}^n
- 5 Commutator characterisations

III Representation theory of compact groups

- 6 Groups
- 7 Topological groups
- 8 Linear Lie groups
- 9 Hopf algebras

IV Non-commutative symmetries

- 10 Pseudo-differential operators on compact Lie groups
- 11 Fourier analysis on SU(2)
- 12 Pseudo-differential operators on SU(2)
- 13 Pseudo-differential operators on homogeneous spaces

Quantization of operators

Let σ_A be the symbol of a continuous linear operator $A: C^{\infty}(G) \to C^{\infty}(G)$ Then

$$Af(x) = \sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr} \left(\xi(x) \sigma_{A}(x, \xi) \widehat{f}(\xi) \right),$$

for every $f \in C^{\infty}(G)$ and $x \in G$. Conversely, we have

$$\sigma_A(x,\xi) = \xi(x)^* A \xi(x) \in \mathbb{C}^{d_\xi \times d_\xi}.$$

$$Af(x) = \sum_{\xi \in G} d\xi \operatorname{tr} \left[\xi(x) G(x, \xi) \widehat{f}(\xi) \right]$$

Compact Lie Groups

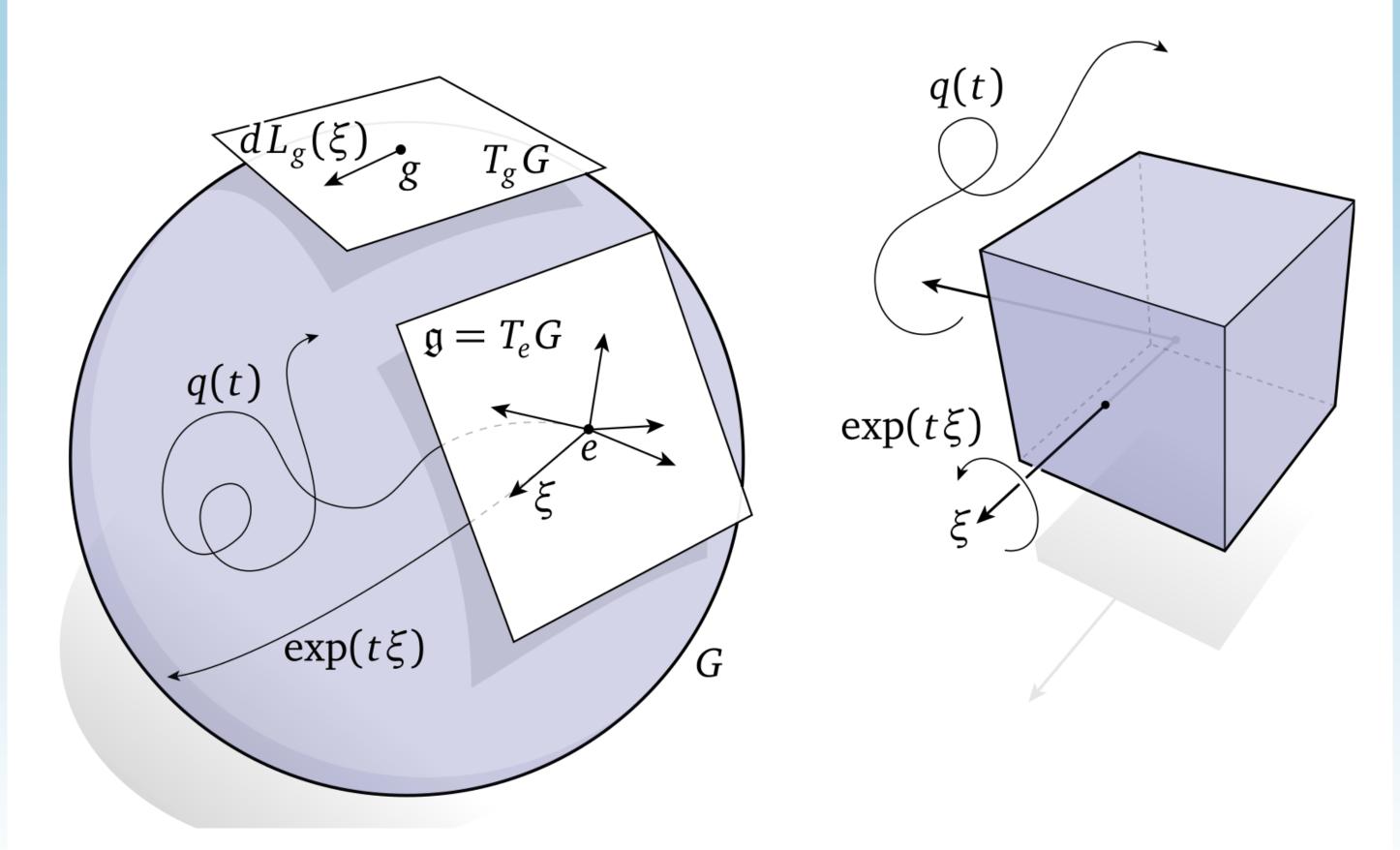


Illustration from keenan.is

Fourier Series on compact Lie groups

If $\xi: G \to U(d_{\xi})$ is a unitary matrix representation of a compact Lie group G, then

$$\widehat{f}(\xi) = \int_{G} f(x)\xi(x)^* dx \in \mathbb{C}^{d_{\xi} \times d_{\xi}}$$

has matrix elements

$$\widehat{f}(\xi)_{mn} = \int_G f(x) \overline{\xi(x)_{nm}} dx \in \mathbb{C}, \ 1 \le m, n \le d_{\xi}.$$

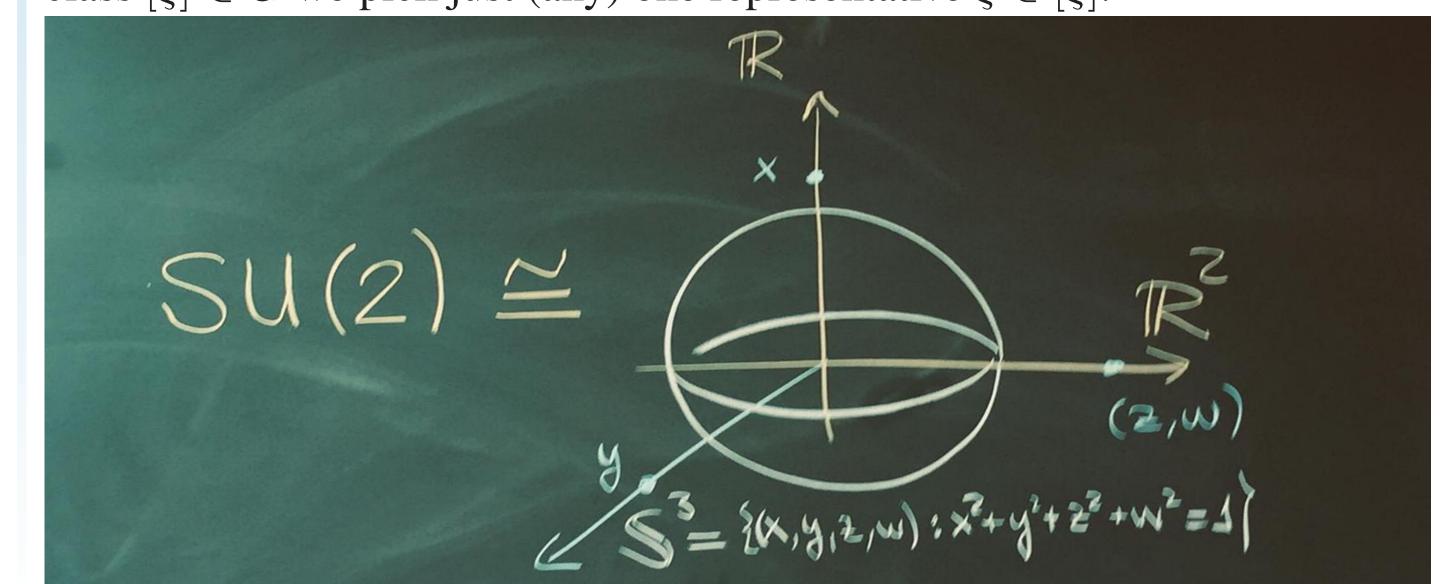
If $f \in L^2(G)$ then

$$\widehat{f}(\xi)_{mn} = (f, \xi_{nm})_{L^2(G)},$$

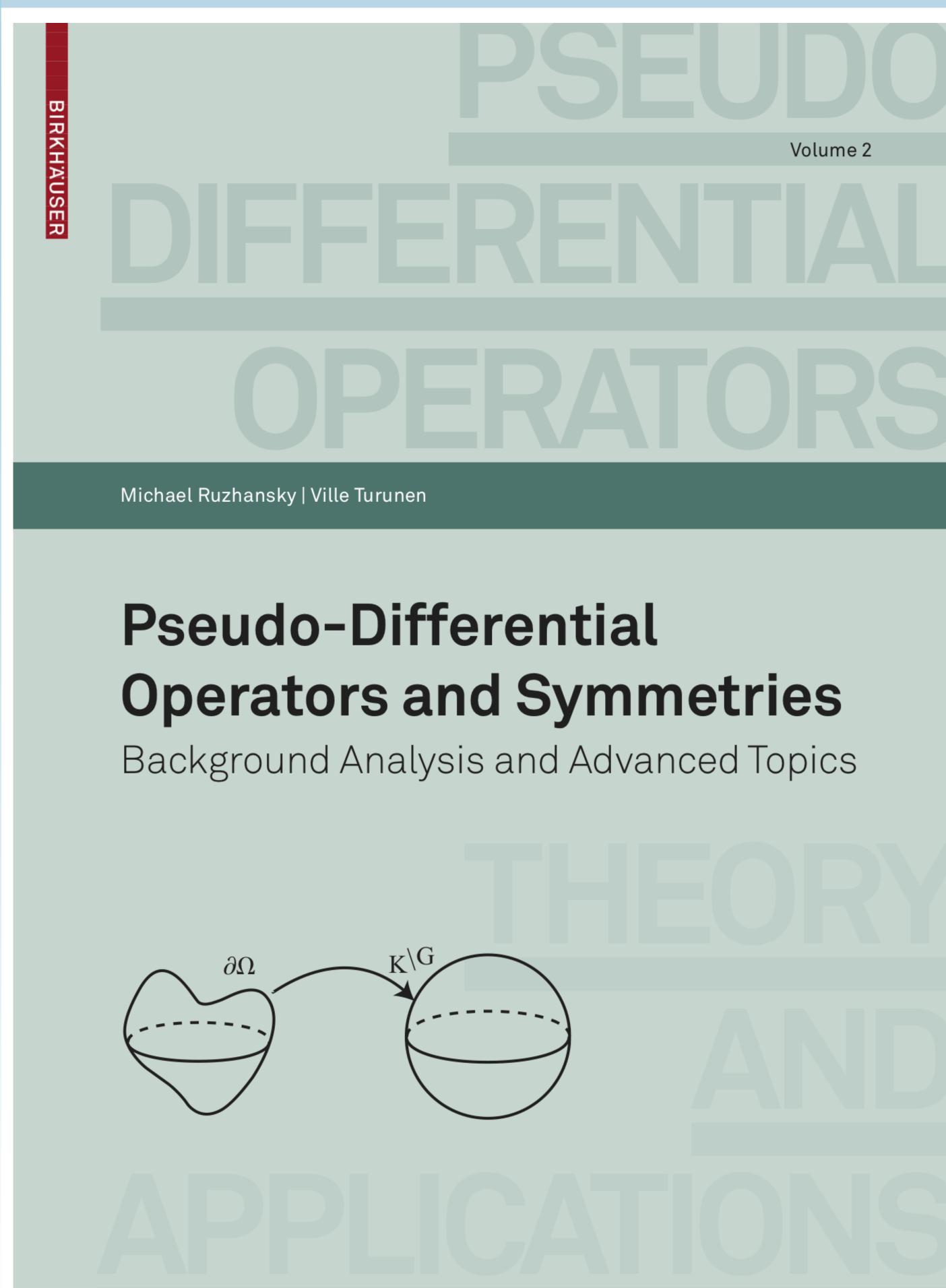
and by the Peter–Weyl Theorem we have

$$f(x) = \sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr} \left(\xi(x) \widehat{f}(\xi) \right),$$

for almost every $x \in G$, where the summation is understood so that for each class $[\xi] \in \widehat{G}$ we pick just (any) one representative $\xi \in [\xi]$.



Book Cover



Information

QR code for downloading the book michael.ruzhansky@ugent.be ville.turunen@aalto.fi Please visit: ruzhansky.org and analysis-pde.org