Ghent Noncommutatiive Conference August 20, 2020

Degenerate Diffusions on Unimodular Lie Groups

Gregory S. Chirikjian

Department of Mechanical Engineering National University of Singapore Johns Hopkins University, USA

Outline of this talk

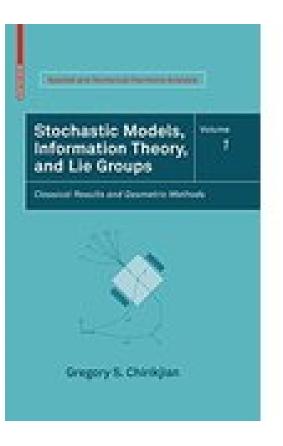
This is <u>not</u> a mathematics talk. Rather, it is a mathematical modeling talk which applies results from Lie theory and noncommutative harmonic analysis to Finance, Robotics, and DNA Statistical Mechanics.

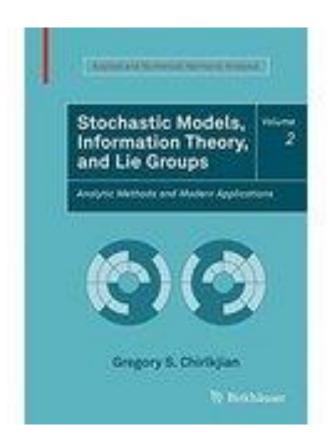
- Background Mathematics and Terminology (Degenerate Diffusions on unimodular Lie groups, and how to describe them with Fourier and Gaussian methods)
- ◆ A Baby Example from Mathematical Finance
- Uncertainty Propagation in Nonholonomic Vehicles
- DNA and Filament Statistical Mechanics
- Mathematical Finance (Revisited)
- Acknowledgements: W. Park,Y. Zhou, A. Okamura, N. Cowan, Y. Wang, A.B. Kyatkin, Amitesh Jayaraman, ...

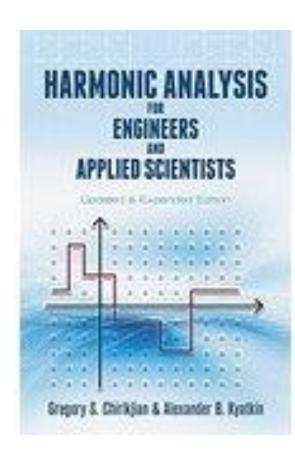
Topic 1:

Background Mathematics

For Notation, See







Diffusion Processes on Unimodular Lie Groups

$$\int_G f(g)dg = \int_G f(g\circ g_0)dg = \int_G f(g_0\circ g)dg = \int_G f(g^{-1})dg$$

$$E_i^R f(g) \doteq \left. \frac{d}{dt} f(g \circ \exp(tE_i)) \right|_{t=0}$$
 and $\left. E_i^L f(g) \doteq \left. \frac{d}{dt} f(\exp(-tE_i) \circ g) \right|_{t=0}$

$$\frac{\partial u}{\partial t} = -\sum_{i=1}^{N} m_i(t) E_i^R u + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} D_{ij}(t) E_i^R E_j^R u$$

$$\begin{split} u(g,t+\delta t) &= u(g,t) * u_f(g,\delta t) \\ &= \int_G u(h,t) u_f(h^{-1} \circ g,\delta t) \ dh, \end{split}$$

By 'degenerate' what is meant is det D = 0

V and Hat Maps

$$(E_i, E_j) = e_i^T e_j$$
 where $E_i^{\vee} = e_i$

$$[Ad(g)] = [(gE_1g^{-1})^{\vee}, \cdots, (gE_Ng^{-1})^{\vee}]$$

Mean, Covariance, Gaussians

$$\int_{G} [\log(\mu(t)^{-1} \circ g)^{\vee}] u(g,t) \, dg = \mathbf{0}.$$

$$\Sigma(t) \doteq \int_{G} [\log(\mu(t)^{-1} \circ g)^{\vee}] [\log(\mu(t)^{-1} \circ g)^{\vee}]^{T} u(g,t) \, dg$$

$$u_f(g,\delta t) = \frac{1}{(2\pi)^{N/2} |\mathrm{det}\,\Sigma(\delta t)|^{1/2}} \exp\left(-\frac{1}{2}[\log(\mu(\delta t)^{-1}\circ g)^\vee]^T \Sigma^{-1}(\delta t) [\log(\mu(\delta t)^{-1}\circ g)^\vee]\right)$$

Propagation of Mean and Covariance Under Convolution on Unimodular Lie Groups

$$\mu(t + \delta t) = \mu(t) \circ \mu(\delta t),$$

$$\Sigma(t + \delta t) = \Sigma(\delta t) + [Ad(\mu(\delta t)^{-1})]\Sigma(t)[Ad(\mu(\delta t)^{-1})]^T$$

$$\mu(t) = \exp\left(\int_0^t m(\tau)^{\wedge} d\tau\right)$$

$$\Sigma(t) = \int_0^t [Ad(\mu(\tau)^{-1})] D(\tau) [Ad(\mu(\tau)^{-1})]^T d\tau$$

Convolution Theorem and the Fourier Transform for Long Time Solutions

$$(f_1 * f_2)(g) = \int_G f_1(h) f_2(h^{-1} \circ g) dh$$

$$F(f_1 * f_2) = F(f_2)F(f_1)$$

Chirikjian, G.S., Kyatkin, A.B., Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, 2001.

Finance

One-Asset Black-Scholes as a Diffusion on $Gl^+(1)$

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 a^2 \frac{\partial^2 V}{\partial a^2} + ra \frac{\partial V}{\partial a} - rV = 0.$$

$$Ef(a) = a \frac{\partial f}{\partial a}$$

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2}E^2V + \left(r - \frac{\sigma^2}{2}\right)EV - rV = 0$$

One-Asset Black-Scholes as a Diffusion on $Gl^+(1)$

$$V(a,t') = u(a,t')e^{-rt'}$$

$$\frac{\partial u}{\partial t'} = \left(r - \frac{\sigma^2}{2}\right) Eu + \frac{\sigma^2}{2} E^2 u$$

$$u_f(a,t') = \frac{1}{\sigma\sqrt{2\pi t'}} \exp\left(-\frac{1}{2\sigma^2 t'} [\log a + \left(r - \frac{\sigma^2}{2}\right)t']^2\right)$$

Mobile Robots

Planar Rigid-Body Motions

Parameterization with Translation in Cartesian Coordinates

$$g(x, y, \theta) = \begin{pmatrix} \cos \theta - \sin \theta \ x \\ \sin \theta \ \cos \theta \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$g(x_1, y_1, \theta_1) \circ g(x_2, y_2, \theta_2) =$$

$$g(x_1 + x_2 \cos \theta_1 - y_2 \sin \theta_1, y_1 + x_2 \sin \theta_1 + y_2 \cos \theta_1, \theta_1 + \theta_2)$$

Translation in Polar Coordinates Coordinates

$g(\phi, r, \theta) = \begin{pmatrix} \cos \phi & -\sin \phi & r \cos \theta \\ \sin \phi & \cos \phi & r \sin \theta \\ 0 & 0 & 1 \end{pmatrix}$

Exponential

$$g(v_1, v_2, \alpha) = \exp(X)$$

$$= \begin{pmatrix} \cos \alpha & -\sin \alpha & t_1 \\ \sin \alpha & \cos \alpha & t_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$t_1 = [v_2(-1 + \cos \alpha) + v_1 \sin \alpha]/\alpha$$

$$t_2 = [v_1(1 - \cos \alpha) + v_2 \sin \alpha]/\alpha.$$

Rigid-Body Motions in Euclidean Space

$$SE(n) = (\mathbb{R}^n, +) \rtimes SO(n)$$

$$g_1 \circ g_2 = (R_1, \mathbf{t}_1) \circ (R_2, \mathbf{t}_2) = (R_1 R_2, R_1 \mathbf{t}_2 + \mathbf{t}_1)$$

$$g^{-1} = (R^T, -R^T \mathbf{t})$$
 and $e = (\mathbb{I}, 0)$

Stochastic Vehicle Models

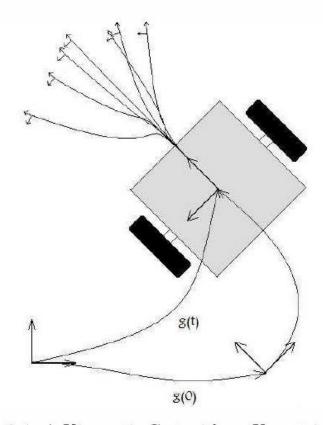
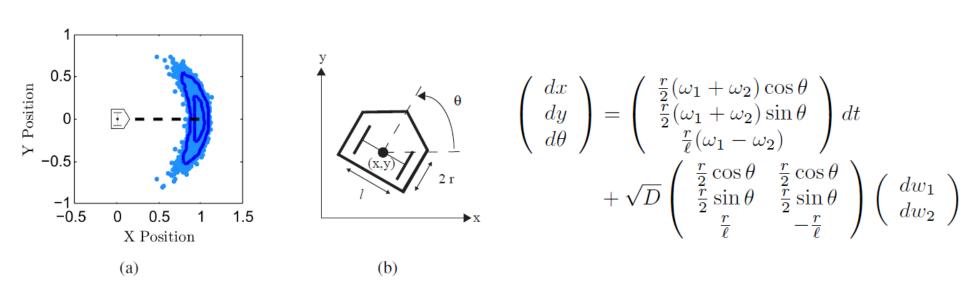


Fig. 0.1. A Kinematic Cart with an Uncertain Future Position and Orientation

$$d\phi_1 = \omega(t)dt + \sqrt{D}dw_1$$
$$d\phi_2 = \omega(t)dt + \sqrt{D}dw_2$$

SDE for the Kinematic Cart

(Zhou and Chirikjian, ICRA 2003)



$$\begin{pmatrix} dx \\ dy \\ d\theta \end{pmatrix} = \begin{pmatrix} r\omega\cos\theta \\ r\omega\sin\theta \\ 0 \end{pmatrix} dt + \sqrt{D} \begin{pmatrix} \frac{r}{2}\cos\theta\frac{r}{2}\cos\theta \\ \frac{r}{2}\sin\theta\frac{r}{2}\sin\theta \\ \frac{r}{L} - \frac{r}{L} \end{pmatrix} \begin{pmatrix} dw_1 \\ dw_2 \end{pmatrix}$$
(0.4)

Corresponding to an SDE is a Fokker-Planck equation

$$\frac{\partial f}{\partial t} = -r\omega\cos\theta\frac{\partial f}{\partial x} - r\omega\sin\theta\frac{\partial f}{\partial y} + \frac{D}{2}\left(\frac{r^2}{2}\cos^2\theta\frac{\partial^2 f}{\partial x^2} + \frac{r^2}{2}\sin^2\theta\frac{\partial^2 f}{\partial x\partial y} + \frac{r^2}{2}\sin^2\theta\frac{\partial^2 f}{\partial y^2} + \frac{2r^2}{L^2}\frac{\partial^2 f}{\partial \theta^2}\right).$$

There is a very clean coordinate-free way of writing these SDEs and FPEs. Namely,

$$\left(g^{-1}\frac{dg}{dt}\right)^{\vee}dt = r\omega\mathbf{e}_1dt + \frac{r\sqrt{D}}{2}\begin{pmatrix}1&1\\0&0\\2/L-2/L\end{pmatrix}d\mathbf{w}$$

Definition of Operators

Let X be an infinitesimal planar rigid-body motion.Then

$$\left(X^R f\right)\left(g\right) = \frac{df\left(ge^{tX}\right)}{dt}\bigg|_{t=0}$$

◆ X^R can be thought of as the right directional derivative of f in the direction X. In particular, infinitesimal rigidbody motions in the plane are all combinations of:

$$X_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad X_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad X_{3} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where \lor is the "vee operator". The coordinate-free version of the Fokker-Planck equation is given below.

Calculus on Euclidean Groups

Analogs of the usual partial derivatives in \mathbb{R}^n can be defined in the Liegroup setting as

$$\tilde{X}_i f = \left[\frac{d}{dt} f \left(g \circ e^{tX_i} \right) \right] \Big|_{t=0}, \ i = 1, 2, 3.$$
 (0.5)

These are called Lie derivatives. The Fokker-Planck equation above can be written compactly in terms of these Lie derivatives as

$$\frac{\partial f}{\partial t} = -r\omega \tilde{X}_1 f + \frac{r^2 D}{4} (\tilde{X}_1)^2 f + \frac{r^2 D}{L^2} (\tilde{X}_3)^2 f. \tag{0.6}$$

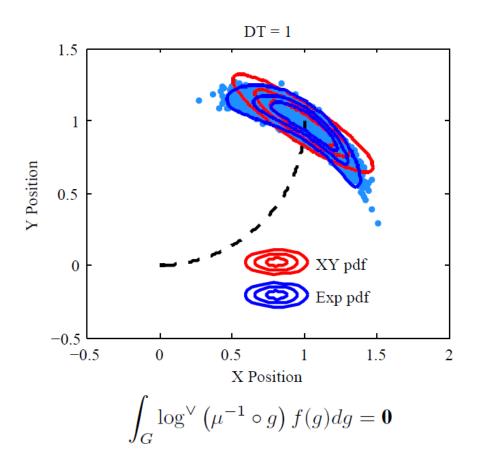
Exponential Coordinates for SE(2)

$$g(v_1, v_2, \alpha) = \exp(X)$$

$$= \begin{pmatrix} \cos \alpha & -\sin \alpha & t_1 \\ \sin \alpha & \cos \alpha & t_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$t_1 = [v_2(-1 + \cos \alpha) + v_1 \sin \alpha]/\alpha$$

$$t_2 = [v_1(1 - \cos \alpha) + v_2 \sin \alpha]/\alpha.$$



$$f(g; \mu, \Sigma) = \frac{1}{c(\Sigma)} \exp \left[-\frac{1}{2} \mathbf{y}^T \Sigma^{-1} \mathbf{y} \right]$$

A. Long, K. Wolfe, M. Mashner, G. Chirikjian, ``The Banana Distribution is Gaussian" RSS 2012

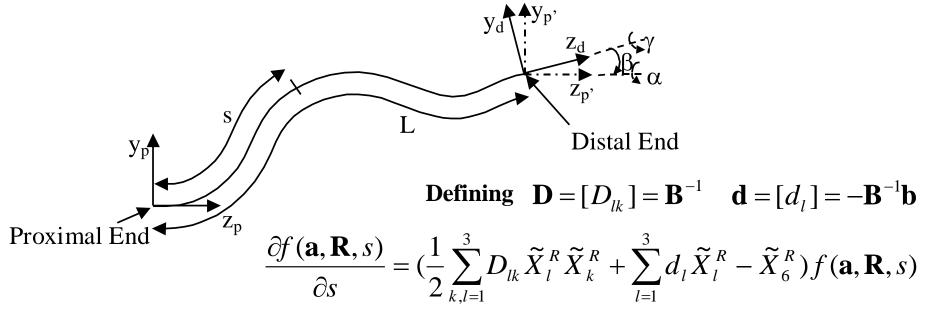
$$\Sigma = \int_{G} \log^{\vee}(\mu^{-1} \circ g) [\log^{\vee}(\mu^{-1} \circ g)]^{T} f(g) dg$$

$$\mathbf{y} = \log(\mu^{-1} \circ g)^{\vee}$$

DNA Statistical Mechanics

A General Semiflexible Polymer Model

A diffusion equation describing the PDF of relative pose between the frame of reference at arc length s and that at the proximal end of the chain



Initial condition: $f(a,R,0) = \delta(a) \delta(R)$

Fourier Analysis of Motion

Fourier transform of a function of motion, f(g)

$$F(f) = \hat{f}(p) = \int_{G} f(g)U(g^{-1}, p)dg$$

Inverse Fourier transform of a function of motion

$$F^{-1}(\hat{f}) = f(g) = \int trace(\hat{f}(p)U(g,p)) p^{N-1} dp$$

where $g \in SE(N)$, p is a frequency parameter, U(g,p) is a matrix representation of SE(N), and dg is a volume element at g.

Operational Properties of SE(n) Fourier Transform

$$F(\widetilde{X}_{i}^{R}f) = \int_{G} \frac{d}{dt} \left(f(g \circ \exp(t\widetilde{X}_{i})) \right)_{t=0} U(g^{-1}, p) d(g)$$

$$\downarrow^{h=g \circ \exp(t\widetilde{X}_{i})}$$

$$= \int_{G} f(h) \frac{d}{dt} U\left(\exp(t\widetilde{X}_{i}) \circ h^{-1}, p \right)_{t=0} d(h)$$

$$\downarrow^{U(g_{1} \circ g_{2}, p) = U(g_{1}, p) U(g_{2}, p)}$$

$$= \left(\frac{d}{dt} U\left(\exp(t\widetilde{X}_{i}), p \right)_{t=0} \right) \left(\int_{G} f(h) U(h^{-1}, p) d(h) \right)$$

$$= \eta(\widetilde{X}_{i}, p) \hat{f}(p)$$

Entries of η (X_i , p) **for** i=1,2,3

$$\eta(\widetilde{X}_i, p) = \left(\frac{d}{dt}U(\exp(t\widetilde{X}_i), p)\right)\Big|_{t=0}$$

$$u_{l',m';l,m}^{s}(g,p) = \sum_{k=-l}^{l} [l',m'|p,s|l,m](\vec{a})U_{km}^{l}(A)$$

$$\begin{split} & \eta_{l',m';l,m}(\widetilde{X}_{1},p) = \frac{1}{2}c_{-m}^{l}\delta_{l,l'}\delta_{m'+1,m} - \frac{1}{2}c_{m}^{l}\delta_{l,l'}\delta_{m'-1,m} \\ & \eta_{l',m';l,m}(\widetilde{X}_{2},p) = \frac{j}{2}c_{-m}^{l}\delta_{l,l'}\delta_{m'+1,m} + \frac{j}{2}c_{m}^{l}\delta_{l,l'}\delta_{m'-1,m} \\ & \eta_{l',m';l,m}(\widetilde{X}_{3},p) = -jm\delta_{l,l'}\delta_{m',m} \end{split}$$

Entries of $\eta(X_i, p)$ for I = 4,5,6

$$\begin{split} \eta_{l',m';l,m}(\widetilde{X}_{4},p) &= -\frac{jp}{2} \gamma_{l',-m'}^{s} \mathcal{S}_{m',m+1} \mathcal{S}_{l'-1,l} + \frac{jp}{2} \lambda_{l,m}^{s} \mathcal{S}_{m',m+1} \mathcal{S}_{l',l} + \frac{jp}{2} \gamma_{l,m}^{s} \mathcal{S}_{m',m+1} \mathcal{S}_{l'+1,l} \\ &+ \frac{jp}{2} \gamma_{l',m'}^{s} \mathcal{S}_{m',m-1} \mathcal{S}_{l'-1,l} + \frac{jp}{2} \lambda_{l,-m}^{s} \mathcal{S}_{m',m-1} \mathcal{S}_{l',l} - \frac{jp}{2} \gamma_{l,-m}^{s} \mathcal{S}_{m',m-1} \mathcal{S}_{l'+1,l} \end{split}$$

$$\begin{split} \eta_{l^{'},m^{'};l,m}(\widetilde{X}_{5},p) &= -\frac{p}{2} \gamma_{l^{i},-m^{'}}^{s} \delta_{m^{'},m+1} \delta_{l^{'}-1,l} + \frac{p}{2} \lambda_{l,m}^{s} \delta_{m^{'},m+1} \delta_{l^{'},l} + \frac{p}{2} \gamma_{l,m}^{s} \delta_{m^{'},m+1} \delta_{l^{'}+1,l} \\ &- \frac{p}{2} \gamma_{l^{i},m^{'}}^{s} \delta_{m^{'},m-1} \delta_{l^{'}-1,l} - \frac{p}{2} \lambda_{l,-m}^{s} \delta_{m^{'},m-1} \delta_{l^{'},l} + \frac{p}{2} \gamma_{l,-m}^{s} \delta_{m^{'},m-1} \delta_{l^{'}+1,l} \end{split}$$

$$\eta_{l^{'},m^{'};l,m}(\widetilde{X}_{6},p) = jp\kappa_{l^{'},m^{'}}^{s}\delta_{m^{'},m}\delta_{l^{'}-1,l} + jp\frac{sm}{l(l+1)}\delta_{m^{'},m}\delta_{l^{'},l} + jp\kappa_{l,m}^{s}\delta_{m^{'},m}\delta_{l^{'}+1,l}$$

Solving for the evolving PDF Using the SE(3) FT

$$\frac{\partial f(\mathbf{a}, \mathbf{R}, s)}{\partial s} = (\frac{1}{2} \sum_{k,l=1}^{3} D_{lk} \widetilde{X}_{l}^{R} \widetilde{X}_{k}^{R} + \sum_{l=1}^{3} d_{l} \widetilde{X}_{l}^{R} - \widetilde{X}_{6}^{R}) f(\mathbf{a}, \mathbf{R}, s)$$

$$\mathbf{Applying SE(3) Fourier transform}$$

$$\frac{d\widehat{\mathbf{f}}^{r}}{ds} = \mathbf{B}^{r} \widehat{\mathbf{f}}^{r} \quad \text{where B is a constant matrix.}$$

$$\mathbf{Solving ODE}$$

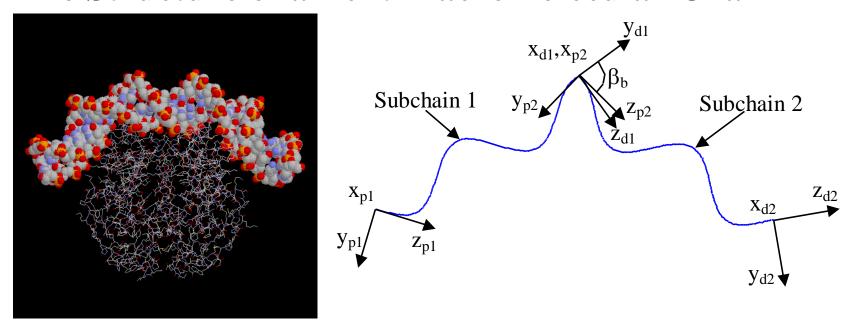
$$\widehat{\mathbf{f}}^{r}(p, s) = e^{s\mathbf{B}^{r}}$$

$$\mathbf{Applying inverse transform}$$

$$f(\mathbf{a}, \mathbf{R}, s) = \frac{1}{2\pi^{2}} \sum_{r=-\infty l'=|r|}^{\infty} \sum_{l=|r|}^{\infty} \sum_{m'=-l'}^{\infty} \sum_{m=-l}^{l} \int_{0}^{\infty} \widehat{f}_{l,m;l',m'}^{r}(p) U_{l',m';l,m}^{r}(\mathbf{a}, \mathbf{R}; p) p^{2} dp$$

A General Algorithm for Bent or Twisted Macromolecular Chains

The Structure of a Bent Macromolecular Chain



- 1) A bent macromolecular chain consists of two intrinsically straight segments.
- 2) A bend or twist is a rotation at the separating point between the two segments with no translation.

A General Algorithm for Bent or Twisted Macromolecular Chains

The PDF of the End-to-End Pose for a Bent Chain

1) A convolution of 3 PDFs

$$f(\mathbf{a}, \mathbf{R}) = (f_1 * f_2 * f_3)(\mathbf{a}, \mathbf{R})$$

- • $f_1(a,R)$ and $f_3(a,R)$ are obtained by solving the differential equation for nonbent polymer.
- • $f_2(a,R) = \delta(a)\delta(R_b^{-1}R)$, where R_b is the rotation made at the bend.
- rotation made at the bend. 2) The convolution on SE(3)

$$(f_i * f_j)(\mathbf{g}) = \int_{SE(3)} f_i(\mathbf{h}) f_j(\mathbf{h}^{-1} \circ \mathbf{g}) d(\mathbf{h})$$

References

- 1) G. S. Chirikjian, "Modeling Loop Entropy," Methods in Enzymology, 487, 2011
- 1) Y. Zhou, G. S. Chirikjian, ``Conformational Statistics of Semi flexible Macromolecular Chains with Internal Joints,"

 Macromolecules. 39:1950-1960. 2006
- 1) Zhou, Y., Chirikjian, G.S., "Conformational Statistics of Bent Semi-flexible Polymers", Journal of Chemical Physics, vol.119, no.9, pp.4962-4970, 2003.
- 2) G. S. Chirikjian, Y. Wang, "Conformational Statistics of Stiff Macromolecules as Solutions to PDEs on the Rotation and Motion Groups," Physical Review E. 62(1):880-892. 2000

Finance (Revisited)

The `ax+b' Group $Aff^+(1) = GL^+(1) \ltimes \mathbb{R}$

$$g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \qquad E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$[Ad(g)] = \begin{pmatrix} 1 & 0 \\ -b & a \end{pmatrix}$$

$$\begin{pmatrix} E_1^L f \\ E_2^L f \end{pmatrix} = \begin{pmatrix} a \ \partial \tilde{f} / \partial a + b \ \partial \tilde{f} / \partial b \\ \partial \tilde{f} / \partial b \end{pmatrix} \text{ and } \begin{pmatrix} E_1^R f \\ E_2^R f \end{pmatrix} = \begin{pmatrix} a \ \partial \tilde{f} / \partial a \\ a \ \partial \tilde{f} / \partial b \end{pmatrix}$$

Promising to Write 2DOF Lagging Asset Equation as a diffusion

$$\frac{\partial V}{\partial t} + ra\frac{\partial V}{\partial a} + \left[\left(\frac{\mu_2}{\mu_1} - \frac{\sigma_2}{\sigma_1} \right) \mu_1 + \frac{\sigma_2}{\sigma_1} r \right] a \frac{\partial V}{\partial b} + \frac{\sigma_1^2}{2} a^2 \frac{\partial^2 V}{\partial a^2} + \sigma_1 \sigma_2 a^2 \frac{\partial^2 V}{\partial a \partial b} + \frac{\sigma_2^2}{2} a^2 \frac{\partial^2 V}{\partial b^2} - rV = 0$$

Only problem is that `ax_b' group is not unimodular. What to do?

Bump Up to Tangent and Cotangent Bundle Groups

$$(g_1, X_1) \square (g_2, X_2) = (g_1 \circ g_2, Ad(g_1)X_2 + X_1)$$

$$G \ltimes \mathcal{G} \doteq \left\{ \begin{pmatrix} [Ad(g)] & x \\ \mathbf{0}^T & 1 \end{pmatrix} \middle| g \in G \text{ and } x \in \mathcal{G}^{\vee} \right\}$$

$$(g_1, Y_1) \blacksquare (g_2, Y_2) = (g_1 \circ g_2, Ad(g_1)^{-T} Y_2 + Y_1)$$

$$G \ltimes \mathcal{G}^* \doteq \left\{ \begin{pmatrix} [Ad(g)]^{-T} & y \\ \mathbf{0}^T & 1 \end{pmatrix} \middle| g \in G \text{ and } y \in (\mathcal{G}^*)^{\vee} \right\}$$

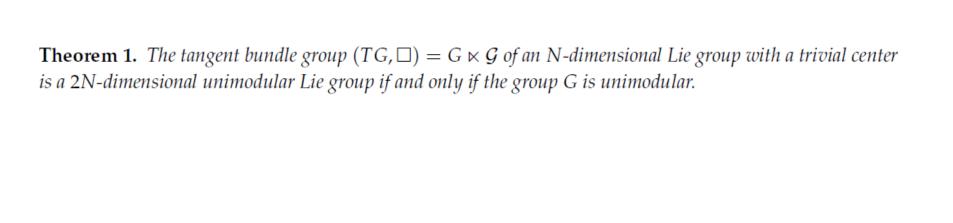
Lie Algebras for these Groups

$$\tilde{E}_i = \left\{ \begin{pmatrix} [ad(E_i)] & \mathbf{0} \\ \mathbf{0}^T & 0 \end{pmatrix} \text{ for } i = 1, \cdots, N \text{ and } \begin{pmatrix} \mathbb{O} & e_{i-N} \\ \mathbf{0}^T & 0 \end{pmatrix} \text{ for } i = N+1, \cdots, 2N \right\}$$

$$\begin{pmatrix} [ad(X)] & y \\ \mathbf{0}^T & 0 \end{pmatrix}^{\vee} = \begin{pmatrix} X^{\vee} \\ y \end{pmatrix}$$

$$\tilde{E}_i = \left\{ \begin{pmatrix} -[ad(E_i)]^T & \mathbf{0} \\ \mathbf{0}^T & 0 \end{pmatrix} \text{ for } i = 1, \cdots, N \text{ and } \begin{pmatrix} \mathbb{O} & e_{i-N}^* \\ \mathbf{0}^T & 0 \end{pmatrix} \text{ for } i = N+1, \cdots, 2N \right\}$$

$$\begin{pmatrix} -[ad(X)]^T & y \\ \mathbf{0}^T & 0 \end{pmatrix}^{\vee} = \begin{pmatrix} X^{\vee} \\ y \end{pmatrix}$$



Theorem 2. The cotangent bundle group $(TG^*, \blacksquare) = G \ltimes \mathcal{G}^*$ of an N-dimensional Lie group with a trivial

center is always a 2N-dimensional unimodular Lie group independent of the unimodularity of G.

$$Ad(Aff^+(1))^{-T} \ltimes \mathbb{R}^2$$

$$h = \begin{pmatrix} 1 & b/a & x \\ 0 & 1/a & y \\ \hline 0 & 0 & 1 \end{pmatrix}$$

$$\tilde{E}_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} , \ \tilde{E}_{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} , \ \tilde{E}_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \text{ and } \tilde{E}_{4} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ \hline 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \tilde{E}_{1}^{L}f \\ \tilde{E}_{2}^{L}f \\ \tilde{E}_{3}^{L}f \\ \tilde{E}_{4}^{L}f \end{pmatrix} = \begin{pmatrix} a \ \partial \tilde{f}/\partial a + b \ \partial \tilde{f}/\partial b - y \ \partial \tilde{f}/\partial x \\ \partial \tilde{f}/\partial b + y \ \partial \tilde{f}/\partial x \\ \partial \tilde{f}/\partial y \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \tilde{E}_{1}^{R}f \\ \tilde{E}_{2}^{R}f \\ \tilde{E}_{3}^{R}f \\ \tilde{E}_{4}^{R}f \end{pmatrix} = \begin{pmatrix} a \ \partial \tilde{f}/\partial a \\ a \ \partial \tilde{f}/\partial b \\ \partial \tilde{f}/\partial x \\ (b/a) \ \partial \tilde{f}/\partial x + (1/a) \ \partial \tilde{f}/\partial y \end{pmatrix}$$

$$\frac{\partial u}{\partial t'} = \left(r - \frac{\sigma_1^2}{2}\right) \tilde{E}_1^R u + \left[\left(\frac{\mu_2}{\mu_1} - \frac{\sigma_2}{\sigma_1}\right) \mu_1 + \frac{\sigma_2}{\sigma_1} r - \frac{\sigma_1 \sigma_2}{2}\right] \tilde{E}_2^R u + \frac{1}{2} \left(\sigma_1^2 (\tilde{E}_1^R)^2 + \sigma_1 \sigma_2 (\tilde{E}_2^R \tilde{E}_1^R + \tilde{E}_1^R \tilde{E}_2^R) + \sigma_2^2 (\tilde{E}_2^R)^2\right) u$$

For more on this, see

Jayaraman, A.S., Campolo, D. and Chirikjian, G.S., Black-Scholes Theory and Diffusion Processes on the Cotangent Bundle of the Affine Group. *Entropy*, *22*(4), p.455, 2020

Conclusions

Using a combination of Gaussian and Fourier solutions, we can solve a number of PDEs in Finance, Robotics, and Molecular Statistical Mechanics