Classification problems in operator algebras

Noncommutative conference

Ghent Analysis & PDE Center

18 - 20 August 2020

Stefaan Vaes

Operator algebras

We consider *-subalgebras $M \subset B(H)$, where the *-operation is the Hermitian adjoint.

Operator norm:

for
$$T \in B(H)$$
, we put $||T|| = \sup\{||T\xi|| \mid \xi \in H, ||\xi|| \le 1\}$.

 C^* -algebras: norm closed *-subalgebras of B(H).

Weak topology:

$$T_i \to T$$
 if and only if $\langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$ for all $\xi, \eta \in H$.

Von Neumann algebras: weakly closed *-subalgebras of B(H).

Intimate connections to group theory, dynamical systems, quantum information theory, representation theory, ...

Commutative operator algebras

- ▶ Unital commutative C*-algebras are of the form C(X) where X is compact Hausdorff.
 - algebraic topology, K-theory, continuous dynamics, geometric group theory
- ► Commutative von Neumann algebras are of the form $L^{\infty}(X, \mu)$ where (X, μ) is a standard probability space.
 - ergodic theory, measurable dynamics, measurable group theory

Discrete groups and operator algebras

Let G be a countable (discrete) group.

- ▶ Left regular unitary representation $\lambda : G \to \mathcal{U}(\ell^2(G)) : \lambda_g \delta_h = \delta_{gh}$.
- ▶ span $\{\lambda_g \mid g \in G\}$ is the **group algebra** $\mathbb{C}[G]$.
- ▶ Take the norm closure: (reduced) **group C*-algebra** $C_r^*(G)$.
- ▶ Take the weak closure: **group von Neumann algebra** L(G).

We have $G \subset \mathbb{C}[G] \subset C_r^*(G) \subset L(G)$.

At each inclusion, information gets lost \rightarrow natural rigidity questions.

Open problems

- Kaplansky's conjectures for torsion-free groups G.
 - Unit conjecture: the only invertibles in $\mathbb{C}[G]$ are multiples of group elements λ_g .
 - Idempotent conjecture: 0 and 1 are the only idempotents in $\mathbb{C}[G]$.
 - Kadison-Kaplansky: 0 and 1 are the only idempotents in $C_r^*(G)$.
- ▶ Free group factor problem: is $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ if $n \neq m$?
- ► Connes' rigidity conjecture: $L(\mathsf{PSL}(n,\mathbb{Z})) \not\cong L(\mathsf{PSL}(m,\mathbb{Z}))$ if $3 \leq n < m$.
- ▶ Stronger form: if G has property (T) and $\pi: L(G) \to L(\Gamma)$ is a *-isomorphism, then $G \cong \Gamma$ and π is essentially given by such an isomorphism.
- Structure and classification of operator algebras is highly nontrivial.

Operator algebras and group actions

Let G be a countable group.

Continuous dynamics and C*-algebras

An action $G \curvearrowright X$ of G by homeomorphisms of a compact Hausdorff space X gives rise to the C*-algebra $C(X) \rtimes_r G$.

Measurable dynamics and von Neumann algebras

An action $G \curvearrowright (X, \mu)$ of G by measure class preserving transformations of (X, μ) gives rise to a von Neumann algebra $L^{\infty}(X) \rtimes G$.

- ▶ These operator algebras contain C(X), resp. $L^{\infty}(X)$, as subalgebras.
- ▶ They contain G as unitary elements $(u_g)_{g \in G}$.
- ► They encode the group action: $u_g F u_g^* = \alpha_g(F)$ where $(\alpha_g(F))(x) = F(g^{-1} \cdot x)$.

Amenable von Neumann algebras: full classification

Definition (von Neumann)

A countable group G is amenable if there exists a finitely additive probability measure m on the subsets of G such that $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in G$ and $\mathcal{U} \subset G$.

- ► Amenable groups : finite groups, abelian groups, stable under extensions, subgroups, direct limits, ...
- Nonamenable groups: free groups \mathbb{F}_n , groups containing \mathbb{F}_2 , ...
- ► Corollary of Connes' 1976 theorem: all *L*(*G*) with *G* amenable and icc are isomorphic!

Amenable von Neumann algebras: full classification

Factor: a von Neumann algebra M with trivial center, i.e. $M \not\cong M_1 \oplus M_2$.

 \sim L(G) is a factor if and only if G is icc.

Type II₁ **factor:** admitting a faithful normal trace $\tau: M \to \mathbb{C}$.

Trace property: $\tau(xy) = \tau(yx)$.

- \sim L(G) always has a trace, while $L^{\infty}(X) \rtimes G$ has a trace iff $G \curvearrowright X$ admits an invariant probability measure.
- Modular theory of Tomita-Takesaki and Connes: reduction of arbitrary factors to II₁ factors.

Theorem (Connes, 1976)

All amenable II₁ factors are isomorphic, with the hyperfinite II₁ factor R defined by $M_2(\mathbb{C}) \subset M_4(\mathbb{C}) \subset M_8(\mathbb{C}) \subset \cdots \subset R$.

Beyond amenability: Popa's deformation/rigidity theory

Consider one of the most well studied group actions:

Bernoulli action
$$G \curvearrowright (X, \mu) = \prod_{g \in G} (X_0, \mu_0) : (g \cdot x)_h = x_{g^{-1}h}$$
.

- $M = L^{\infty}(X) \rtimes G$ is a II_1 factor.
- ▶ Whenever G is amenable, we have $M \cong R$.

Superrigidity theorem (Popa, Ioana, V)

If G has property (T), e.g. $G = SL(n, \mathbb{Z})$ for $n \geq 3$,

or if $G = G_1 \times G_2$ is a non-amenable direct product group,

then $L^{\infty}(X) \times G$ remembers the group G and its action $G \cap (X, \mu)$.

More precisely: if $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for any other free, ergodic, probability measure preserving (pmp) group action $\Gamma \curvearrowright (Y, \eta)$, then $G \cong \Gamma$ and the actions are conjugate (isomorphic).

Free groups

Theorem (Popa - V)

Whenever $n \neq m$, we have that $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$, for arbitrary free, ergodic, pmp actions of the free groups.

▶ If $L^{\infty}(X) \rtimes \mathbb{F}_n \cong L^{\infty}(Y) \rtimes \mathbb{F}_m$, there also exists an isomorphism π such that $\pi(L^{\infty}(X)) = L^{\infty}(Y)$.

This is thanks to uniqueness of the Cartan subalgebra.

- ▶ Such a π induces an **orbit equivalence:** a measurable bijection $\Delta: X \to Y$ such that $\Delta(\mathbb{F}_n \cdot x) = \mathbb{F}_m \cdot \Delta(x)$ for a.e. $x \in X$.
- ▶ (Gaboriau) The L^2 -Betti numbers of a group are invariant under orbit equivalence.

We have
$$\beta_1^{(2)}(\mathbb{F}_n) = n-1$$
.

L²-Betti numbers of groups

- Let G be a countable group. View $\ell^2(G)$ as a left G-module (by left translation) and a right L(G)-module (by right translation).
- ▶ Atiyah, Cheeger-Gromov, Lück: $\beta_n^{(2)}(G) = \dim_{L(G)} H^n(G, \ell^2(G))$.
- ► Gaboriau: invariant under orbit equivalence.

Conjecture (Popa, Ioana, Peterson)

If $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for some free, ergodic, pmp actions, then $\beta_n^{(2)}(G) = \beta_n^{(2)}(\Gamma)$ for all $n \geq 0$.

 \sim (Popa-V) True if G is (among others) a hyperbolic group.

Big dream (many authors)

Define L^2 -Betti numbers for II₁ factors. Prove $\beta_1^{(2)}(L(\mathbb{F}_n)) = n - 1$.

Key properties from harmonic analysis

- ▶ Amenability: there exist finite rank maps $\varphi_n : M \to M$ that are completely positive and that converge pointwise to the identity.
- ▶ Weak amenability: there exist finite rank maps $\varphi_n : M \to M$ that converge pointwise to the identity and satisfy $\sup_n \|\varphi_n\|_{cb} < +\infty$.
- Group von Neumann algebras of free groups (and of hyperbolic groups) are weakly amenable.

These are **deformation** (of the identity) properties.

- Tension with a **rigidity** property like non-amenability, or even Kazhdan's property (T).
 - ▶ **Property (T):** any sequence of completely positive maps $\varphi_n: M \to M$ converging pointwise to the identity must converge uniformly on the unit ball of M.