

Gabor frames and the Seshadri constant

Noncommutative conference – Ghent joint work with Xu Wang (NTNU)

Franz Luef Department of Mathematical Sciences, NTNU August 20, 2020

Basic notions - Time-frequency analysis

Given $f, g : \mathbb{R}^d \to \mathbb{C}$ and $z = (x, \omega) \in \mathbb{R}^{2d}$.

- translation operator T_x by $T_x g(t) = g(t x)$,
- modulation operator M_{ω} by $M_{\omega}g(t)=e^{2\pi i\omega \cdot t}g(t)$
- time-frequency shifts $\pi(z)$ by $\pi(z) = M_{\omega}T_{x}$

Commutation relations

$$T_X M_\omega = e^{2\pi i x \omega} M_\omega T_X \ \pi(z) \pi(z') = e^{2\pi i \sigma(z,z')} \pi(z') \pi(z),$$

where σ denotes the standard symplectic form on \mathbb{R}^{2d} , $\sigma(z, z') = x' \cdot \omega - x \cdot \omega'$ for $z = (x, \omega)$ and $z' = (x', \omega')$.

2

Gabor systems

Given a lattice $L\mathbb{Z}^{2d}$ for $L\in \mathrm{GL}(2d,\mathbb{R})$, and a $g\in L^2(\mathbb{R}^d)$. A system of the form $\{\pi(Lk)g\}_{k\in\mathbb{Z}^{2d}}$ is called a **Gabor frame** if there exist constants A,B>0 such that

$$\|A\|f\|_2^2 \leq \sum_{k \in \mathbb{Z}^{2d}} |\langle f, \pi(Lk)g \rangle|^2 \leq B\|f\|_2^2$$

for all $f \in L^2(\mathbb{R}^d)$.

Implication:

Existence of a dual atom $h \in L^2(\mathbb{R}^d)$ such that

$$f = \sum_{k \in \mathbb{Z}^{2d}} \langle f, \pi(\mathsf{L}k) g \rangle \pi(\mathsf{L}k) h.$$

for all $h \in L^2(\mathbb{R}^d)$.

Density Theorem

If $\{\pi(Lk)g\}_{k\in\mathbb{Z}^{2d}}$ is a Gabor frame, then $|\det(L)| \leq 1$.

Given a lattice $\Lambda = L\mathbb{Z}^{2d}$. Then we define the **symplectic dual** lattice / adjoint lattice by

$$\Lambda^\circ := \{z \in \mathbb{R}^{2d}: \ e^{2\pi i \sigma(Lk,z)} = 1 \ \text{ for all } \ k \in \mathbb{Z}^{2d}\}.$$

Example

For
$$\Lambda = \alpha \mathbb{Z} \times \beta \mathbb{Z}$$
 we have $\Lambda^{\circ} = \beta^{-1} \mathbb{Z} \times \alpha^{-1} \mathbb{Z}$, where $\Lambda^{\circ} = L^{\circ} \mathbb{Z}^2$ for $L^{\circ} = J^T L^{-T} J$ and $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Duality theorem

 $\{\pi(Lk)g\}_{k\in\mathbb{Z}^{2d}}$ is a Gabor frame for $L^2(\mathbb{R}^d)$ if and only if $\{\pi(L^\circ k)g\}_{k\in\mathbb{Z}^{2d}}$ is a Riesz basic sequence.

Generalized Gaussians

 $g_{\Omega}(t) := e^{\pi i t^T \Omega t}$, where Ω lies in the Siegel upper half-space

$$\mathfrak{H} := \{\Omega \in \mathrm{GL}(2d,\mathbb{C}) : \Omega = \Omega^T, \ \operatorname{Im} \Omega \text{ is positive definite} \}.$$

is the class of Gabor atoms that we are focusing on.

Lyubarskii, Seip-Wallsten

$$\{e^{-\pi t^2}, \alpha \mathbb{Z} \times \beta \mathbb{Z}\}\$$
 is a Gabor frame if and only if $\alpha \beta < 1$.

Gaussian Gabor frames have received a lot of attention over the years, see for example contributions by Berndtsson, Ortega-Cerdà, Gröchenig, Lyubarskii, Lindholm,....

Structure of Gabor systems

For $L=(\ell_1|\ell_2|\cdots|\ell_{2d})$ consider the commutation relations between the unitaries $\{\pi(\ell_j)|j=1,...,2d\}$:

$$\pi(\ell_j)\pi(\ell_i)=e^{2\pi i\sigma(\ell_i,\ell_j)}\pi(\ell_i)\pi(\ell_j).$$

Note that $\Theta := (\sigma(\ell_i, \ell_j))_{i,j}$ is skew-symmetric and depends on d(2d-1) parameters.

Hence for d=1 we have one parameter θ , and for d=2 there are 6 parameters: $\theta_{12}, \theta_{13}, \theta_{14}, \theta_{23}, \theta_{24}, \theta_{34}$.

For Gabor frames $\{\pi(Lk)g\}_{k\in\mathbb{Z}^2}$ there is just one parameter $\theta = \det L$ capturing the commutativity relations.

For Gabor frames $\{\pi(Lk)g\}_{k\in\mathbb{Z}^4}$ there is six parameters, none of them is det L.

$$\begin{bmatrix} 0 & \theta_{12} & \theta_{13} & \theta_{14} \\ -\theta_{12} & 0 & \theta_{23} & \theta_{24} \\ -\theta_{13} & -\theta_{23} & 0 & \theta_{34} \\ -\theta_{14} & -\theta_{23} & -\theta_{34} & 0 \end{bmatrix}$$

Observe that the **Pfaffian** of Θ ,

$$Pf(\Theta) = \theta_{12}\theta_{34} - \theta_{13}\theta_{24} + \theta_{14}\theta_{23} = \det L,$$

since $\Theta = L^T J L$. Equivalently,

$$\det L = \sigma(\ell_1, \ell_2)\sigma(\ell_3, \ell_4) - \sigma(\ell_1, \ell_3)\sigma(\ell_2, \ell_4) + \sigma(\ell_1, \ell_4)\sigma(\ell_2, \ell_3).$$

In other words, the covolume of L is solely expressed in parameters encoding the commutation relations of the lattice, which allows us to get an idea of the frame set for multi-variate Gabor frames

$$\{L \in \mathrm{GL}(2d,\mathbb{R}): \ \pi(Lk)g\}_{k \in \mathbb{Z}^{2d}} \ \text{is a frame.} \}$$

.

Shift of perspective

 Θ -matrices encode the structure of Gabor lattices and not the generating matrices.

Observation

For n = 2d we have that there exists an invertible $2d \times 2d$ -matrix L such that $\Theta = L^T J L$ (symplectic Gramian of L), i.e. there is a lattice $L\mathbb{Z}^{2d}$ associated to a non-singular Θ .

We associate to Θ the skew-symmetric form $\sigma_{\Theta}(z, z') := \langle \Theta z, z' \rangle$.

Frame set

The frame set of a Gabor system $\{\pi(Lk)g\}_{k\in\mathbb{Z}^{2d}}\}$ is a subset of

$$\{(\theta_{ij})\subseteq\mathbb{R}^{d(2d-1)}_{>0}|\operatorname{Pf}(\Theta)\leq 1\}.$$

Theorem

Let Λ be a lattice in \mathbb{R}^2 . Put

$$\Gamma := \{ z \in \mathbb{C} : z = \eta + iy, \ (\eta, y) \in \Lambda^{\circ} \}, \ C := \frac{\pi}{4} \cdot \inf_{0 \neq \lambda \in \Gamma} |\lambda|^2.$$

Then $|\Gamma| = |\Lambda|^{-1} \ge C$ and we have the following estimate.

(1) If $C \ge 2$ then for all $f \in L^2(\mathbb{R})$ with ||f|| = 1, we have

$$rac{oldsymbol{e}}{4|\Lambda|} \leq \sqrt{2} \cdot \sum_{\lambda \in \Lambda} |(f,\pi_\lambda e^{-\pi t^2})|^2 \leq rac{1}{(1-e^{-C})|\Lambda|};$$

(2) If 1 < C < 2 then for all $f \in L^2(\mathbb{R})$ with $||f||_2 = 1$, we have

$$\frac{(C-1)e}{C^2|\Lambda|} \leq \sqrt{2} \cdot \sum_{\lambda \in \Lambda} |(f,\pi_\lambda e^{-\pi t^2})|^2 \leq \frac{1}{(1-e^{-C})|\Lambda|}.$$

9

Theorem-cont.

Assume further that $\Gamma = \operatorname{Span}_{\mathbb{Z}}\{1, \tau\}$ with $\operatorname{Im} \tau > 1$, then $C = \pi/4$ and for all $f \in L^2(\mathbb{R})$ with $||f||_2 = 1$, we have

$$\frac{4\pi(\operatorname{Im}\tau-1)|\eta(\tau)|^6}{\left(\sum_{n\in\mathbb{Z}}e^{-\pi n^2\operatorname{Im}\tau}\right)^2}\leq \sqrt{2}\cdot\sum_{\lambda\in\Lambda}|(f,\pi_{\lambda}e^{-\pi t^2})|^2\leq \frac{\operatorname{Im}\tau}{1-e^{-\pi/4}},\quad(1)$$

where $\eta(\tau) := e^{\pi i \tau/12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau})$ is the Dedekind eta function.

Remarks

- The bounds in Eq. (1) are optimal and follow from the Ohsawa–Takegoshi extension theorem and Falting's work in Arakelov geometry.
- Since |η(τ)| > 0 for all Im τ > 1 and |Γ| = Im τ, one may view
 (1) as an effective version of the behavior of frame bounds near critical density due to Borichev-Gröchenig-Lyubarskii.

General lattices

For general Γ , since $e^{-\pi|z|^2}$ is rotation invariant, one may assume that $\Gamma = \operatorname{Span}_{\mathbb{Z}}\{a,\tau\}$ with a>0. But then the constant C will depend on a and τ and will not give the best frame bound.

Bergman kernel of the fundamental domain

$$D_{\Gamma} := \{ ta + s\tau : -1/2 < t, s < 1/2 \} \text{ of } \Gamma$$

$$B_{D_{\Gamma}}(0) := \sup\{|f(0)|^2 : f \text{ is holom. on } D_{\Gamma} \text{ and } \int_{D_{\Gamma}} |f(z)|^2 e^{-\pi|z|^2} = 1\}.$$

Theorem

Let Λ be a lattice in \mathbb{R}^2 . Assume that its symplectic dual lattice Γ in \mathbb{C} is generated by $\{a,\tau\}$ with a>0 and $a\operatorname{Im}\tau>1$. Then for all $f\in L^2(\mathbb{R})$ with $\|f\|_2=1$, we have

$$\frac{4\pi(a\operatorname{Im}\tau-1)|\eta(\tau/a)|^6}{\left(\sum_{n\in\mathbb{Z}}e^{-\pi n^2\operatorname{Im}\tau/a}\right)^2}\leq \sqrt{2}\cdot\sum_{\lambda\in\Lambda}|(f,\pi_\lambda e^{-\pi t^2})|^2\leq a\operatorname{Im}\tau\,B_{D_\Gamma}(0).$$

Key observation

Our starting point is a generalization of the sufficient part of Lyubarskii–Seip–Wallsten's result by Berndtsson–Ortega Cerdà based on the Hörmander L^2 -estimate with singular weight for the $\overline{\partial}$ -operator.

Our main contribution is that the Berndtsson–Ortega Cerdà approach also applies to the **higher-dimensional** case if one further introduces the notion of **Seshadri constant** into the picture.

Key step in Berndtsson-Ortega Cerdà

Another proof of the "sufficiency" part of the Lyubarskii–Seip–Wallsten theorem is based on the Hörmander $\overline{\partial}$ theory and implies the following identity:

$$|\Gamma|=\sup\{\gamma\geq 0: ext{ there exists a subharmonic function } \psi ext{ on } \mathbb{C}$$
 with isolated order γ log poles at Γ and bounded (2) from above by $\pi|z|^2\},$

where " ψ has isolated order γ log poles at Γ " means that ψ is smooth outside Γ and there exist constants r, C > 0 such that

$$\sup_{|z-\lambda| < r} |\gamma \log |z-\lambda|^2 - \psi(z)| < C, \qquad \forall \ \lambda \in \Gamma.$$

Main contribution

Our starting point is another proof of (2) by observing that the right hand side is precisely the **Seshadri constant** $\epsilon(\omega, X; 0)$ of the Euclidean Kähler metric $\omega := \frac{i}{2} \sum_{j=1}^{n} dz_j \wedge d\bar{z}_j$ at the identity element, say 0, of the torus X in the one dimensional case.

For general algebraic varieties, Demailly gave several equivalent definition of the **Seshadri constant**. The one suitable for the compact Kähler case is

 $\epsilon(\omega, X; 0) := \sup\{\gamma \geq 0 : \text{there exists a } 2\pi\omega \text{ plurisubharmonic function on } X \text{ with isolated order } \gamma \text{ log poles at } 0\},$

where a function ψ is said to be $2\pi\omega$ **plurisubharmonic** on X if ψ is upper semi-continuous and $i\partial \overline{\partial} \psi + 2\pi\omega \geq 0$ on X.

cont.

In the one dimensional case, the Hodge decomposition directly gives

$$\epsilon(\omega, X; 0) = |\Gamma|,$$

which gives another proof of the key step in Berndtsson-Ortega Cerda, (2).

Kähler geometry in a nutshell

For $z_1 = x_1 + i\omega_1$ and $z_2 = x_2 + i\omega_2$ we have

$$z_1\overline{z_2} = x_1\omega_1 + x_2\omega_2 + i(x_2\omega_1 - x_1\omega_2)$$

replace the standard Euclidean product by a Riemannian metric... .

Link to complex analysis

Bargman connection

Ω-Bargman transform

$$\mathcal{B}_{\Omega}f(z) := \int_{\mathbb{R}^n} f(t)e^{\pi i t^{\mathsf{T}}\Omega t}e^{-2\pi i z^{\mathsf{T}}t}dt_1\cdots dt_n$$

and **Bargman-Fock space** for $z = \xi + \Omega x$ and n = 2d.

$$\mathcal{F}_{\Omega}^2:=\{F\in\mathcal{O}(\mathbb{C}^n):\int_{\mathbb{C}^n}|F(z)|^2e^{-2\pi|\mathrm{Im}\Omega z|^2}\,d\xi_1\cdots d\xi_ndx_1\cdots dx_n<\infty\}$$

Sets of interpolation

Suppose we have a set $\Lambda = \{\lambda_j\}_{j \in J}$ such that for every $(a_j)_{j \in J} \in \ell^2$ there exist a constant C > 0 $f \in \mathcal{F}^2_{\Omega}$ such that $f(\lambda_j) = a_j$ and $\|f\|_{\mathcal{F}^2_{\Omega}} \leq C$ for $\sum_{j \in J} |a_j|^2 e^{-2\pi |(\operatorname{Im}\Omega)\lambda_j|^2} = 1$. Then Λ is said to be a **set of interpolation** (with bound C).

Equivalence

 $\{\pi(Lk)g_{\Omega}\}_{k\in\mathbb{Z}^{2d}}$ is a Gabor frame for $L^2(\mathbb{R}^d)$ if and only if $\Gamma:=\{\xi+\Omega x\in\mathbb{C}^n:(\xi,x)\in\Lambda^\circ\}$ is a set of interpolation for \mathcal{F}^2_{Ω} if and only if

$$\Gamma_{\Omega,\Lambda^{\circ}} := \{ (\operatorname{Im} \Omega)^{-1/2} z \in \mathbb{C}^n : z = \eta + \Omega y, \ (\eta, y) \in \Lambda^{\circ} \}$$

is a set of interpolation for the Bargmann–Fock space \mathcal{F}^2 , where $(\operatorname{Im}\Omega)^{-1/2}$ denotes the unique positive definite matrix whose square equals to $(\operatorname{Im}\Omega)^{-1}$.

Theorem

The following are equivalent:

(1) $\Gamma_{\Omega,\Lambda^{\circ}}$ is a set of interpolation for \mathcal{F}^2 and for all $F\in\mathcal{F}^2$, $\sum_{\gamma\in\Gamma_{\Omega,\Lambda^{\circ}}}|F(\gamma)|^2e^{-\pi|\gamma|^2}=1$,

$$A \leq \inf_{F' \in \mathcal{F}^2, \ F' = F \ \text{on} \ \Gamma_{\Omega, \Lambda^\circ}} ||F'||^2 \leq B;$$

(2) (Λ, g_{Ω}) defines a frame in $L^2(\mathbb{R}^d)$ and for all $f \in L^2(\mathbb{R}^d)$, ||f|| = 1,

$$\frac{(B\cdot |\Lambda|)^{-1}}{\sqrt{2^n\det(\operatorname{Im}\Omega)^3}} \leq \sum_{\lambda\in\Lambda} |(f,\pi_\lambda g_\Omega)|^2 \leq \frac{(A\cdot |\Lambda|)^{-1}}{\sqrt{2^n\det(\operatorname{Im}\Omega)^3}}.$$

Theorem A

If $\epsilon(\omega, X; 0) > n$, then Γ is a set of interpolation for \mathcal{F}^2 .

Theorem B

If $\inf_{0 \neq \lambda \in \Gamma} |\lambda|^2 > \frac{4n}{\pi}$, then Γ is a set of interpolation for \mathcal{F}^2 . Assume further that

$$\inf_{0\neq \lambda\in\Gamma}|\lambda|^2\geq \frac{4(n+1)}{\pi},$$

with constant $C = (n+1)^{n+1}e^{-n}/n!$.

Theorem C

Let $\Gamma = \operatorname{Span}_{\mathbb{Z}}\{1, \tau\}$ be a lattice in \mathbb{C} . Then $\epsilon(\omega, X; 0) = |\Gamma| = \operatorname{Im} \tau$. Assume further that $\operatorname{Im} \tau > 1$. Then Γ is a set of interpolation for

 \mathcal{F}^2 with an interpolation bound

$$C = \frac{\operatorname{Im} \tau}{\operatorname{Im} \tau - 1} \cdot \frac{\left(\sum_{n \in \mathbb{Z}} e^{-\pi n^2 \operatorname{Im} \tau}\right)^2}{4\pi \cdot |\eta(\tau)|^6},$$

By Tosatti's formula for the Sehsadri constant we have that if the only positive dimensional irreducible analytic subvariety of X is X itself then $\epsilon(\omega,X;0)^n/n!=|\Gamma|$.

Theorem D

- (1) If Γ is a set of interpolation for \mathcal{F}^2 and all irreducible analytic subvarieties of X are translates of complex tori, then $\epsilon(\omega, X; 0) > 1$;
- (2) If Γ is a set of interpolation for \mathcal{F}^2 and the only positive dimensional irreducible analytic subvariety of X is X itself then $\epsilon(\omega,X;0)^n/n!=|\Gamma|>1$.

Example

There exists a lattice (constructed in a recent paper by Gröchenig-Lyubarskii) in \mathbb{C}^2 whose Seshadri constant is bigger than one but it is not a set of interpolation for \mathcal{F}^2 .

Let Γ be a lattice in \mathbb{C}^n . We call $m(\Gamma) := \inf_{0 \neq \mu \in \Gamma} |\mu|^2$ the **Buser–Sarnak invariant** of Γ .

Lazarsfeld's Theorem

$$\epsilon(\omega, X; 0) \geq \frac{\pi}{4} m(\Gamma)$$

A lattice Γ is called a **complex lattice** if $i\Gamma = \Gamma$.

Characterization

For a lattice Γ in \mathbb{C}^n , the followings are equivalent

- (1) Γ is a complex lattice;
- (2) $\Gamma = A\mathbb{Z}[i]^n$ for some $A \in GL(n, \mathbb{C})$;
- (4) $X := \mathbb{C}^n/\Gamma$ is biholomorphic to $\mathbb{C}^n/\mathbb{Z}[i]^n$.

Estimate

Assume that $\Gamma = A\mathbb{Z}[i]^n$ is a complex lattice. Then

$$m(\Gamma) \ge \epsilon(\omega, X; 0) \ge \max\left\{\frac{\pi}{4}m(\Gamma), e_{min}(A)\right\},$$

where

$$e_{min}(A) := \inf_{z \in \mathbb{C}^n, |z|=1} |Az|^2.$$

Example

In case

$$\Gamma = a_1 \mathbb{Z}[i] \times \cdots \times a_n \mathbb{Z}[i], \ a_i > 0,$$

we have

$$e_{min}(A) = m(\Gamma) = \min\{a_1^2, \cdots, a_n^2\},\$$

thus the above theorem gives

$$\epsilon(\omega, X; 0) = \min\{a_1^2, \cdots, a_n^2\}.$$

Sehsadri admissibility

Let

$$\{0\} = X_0 \subset X_1 \cdots \subset X_k = X := \mathbb{C}^n/\Gamma, \ n_k := \dim_{\mathbb{C}} X_k, \ k \ge 1,$$

be an increasing sequence of complex Lie subgroups of X. We shall introduce the Seshadri constant ϵ_j , $1 \leq j \leq k$, for extension from X_{j-1} to X_j . Let $\pi_j: E_j \to X_j$ be the covering map, where E_j is an n_j dimensional complex subspace of \mathbb{C}^n . Let $E_j = E_{j-1} \oplus F_j$, be the orthogonal decomposition with respect to the Euclidean metric ω . Then $\Gamma_j:=F_j\cap\pi_j^{-1}(X_{j-1})$ defines a lattice in F_j . Put $X_{j-1}^\perp:=F_j/\Gamma_j$, (in general, X_{j-1}^\perp is not a subtorus of X_j). Denote by

$$\epsilon_j := \epsilon(\omega, X_{j-1}^{\perp}; 0)$$

the **Seshadri constant** at the origin of X_{i-1}^{\perp} with respect to ω .

Sehsadri admissibility-continued

We call (23) an admissible sequence of X if

$$\epsilon_j > n_j - n_{j-1}, \ \forall \ 1 \leq j \leq n.$$

X is said to be **Seshadri admissible** if it possesses an admissible sequence.

Theorem

Assume that X is Seshadri admissible, then Γ is a set of interpolation in \mathcal{F}^2 .

Complex lattices-Gröchenig

Let $\Gamma_{\Omega,\Lambda^{\circ}}$ be a complex lattice. With the notation above, assume that $\lambda_j > 1$ for all $1 \leq j \leq n$. Then $\Gamma_{\Omega,\Lambda^{\circ}}$ is set of interpolation for \mathcal{F}^2 (and equivalently $\{\pi(\lambda)g_{\Omega}\}_{\lambda\in\Lambda}$ defines a frame in $L^2(\mathbb{R}^d)$).