# Riesz distributions and the Wallach set in rational Dunkl theory

Margit Rösler (Paderborn)

Noncommutative Conference
August 18-20, 2020
Ghent University, on Zoom

## Classical: Riesz distributions on Hermitian matrix spaces

• Hermitian  $n \times n$  matrices over  $\mathbb{F} = \mathbb{R}, \mathbb{C}$  (or  $\mathbb{H}$ ):

$$H:=H_n(\mathbb{F}):=\{x\in M_n(\mathbb{F}): x=x^*\};\ x^*=\overline{x}^t$$

Euclidean vector space with  $\langle x, y \rangle = \text{Re} \operatorname{tr}(xy)$ .

• Positive definite matrices:

$$\Omega := \Omega_n(\mathbb{F}) := \{ x \in H_n(\mathbb{F}) : x \text{ positive definite} \}$$

#### Riesz measures on H:

Margit Rösler

Let  $\mu \in \mathbb{C}$  with  $\text{Re } \mu > \mu_0 := \frac{d}{2}(n-1), d := \dim_{\mathbb{R}} \mathbb{F} \in \{1, 2, 4\}.$  Define a complex measure  $R_{\mu}$  on H by

$$\langle R_{\mu}, \varphi \rangle = \frac{1}{\Gamma_{\Omega}(\mu)} \int_{\Omega} \det(x)^{\mu - \mu_0 - 1} \varphi(x) dx, \quad \varphi \in C_c(H).$$

$$\Gamma_{\Omega}(\mu) = \int_{\Omega} e^{-\mathsf{tr}\,x} \, det(x)^{\mu-\mu_0-1} dx$$
: Gamma function of  $\Omega$ 

. **Notice:** We may also consider  $R_{\mu}$  as a tempered distribution on H.

Riesz distributions in Dunkl theory August 2020 2 / 18

## Analytic continuation with respect to $\mu$

- $\det(\frac{\partial}{\partial x})R_{\mu} = R_{\mu-1}$  in  $\mathcal{S}'(H)$ .
- Laplace transform:

$$\mathcal{L}R_{\mu}(y) := \int_{\Omega} e^{-\langle x,y \rangle} dR_{\mu}(x) = \det(y)^{-\mu}; \quad y \in \Omega.$$

#### Consequences:

- $\mu \mapsto R_{\mu}$  extends from  $\{\text{Re } \mu > \mu_0\}$  to an analytic mapping on  $\mathbb C$  with values in  $\mathcal{S}'(H)$ , i.e.  $\mu \mapsto \langle R_{\mu}, \varphi \rangle$  is analytic on  $\mathbb{C}$  for all  $\varphi \in \mathcal{S}(H)$ .  $R_{\mu}, \ \mu \in \mathbb{C}$ : Riesz distributions associated with  $\Omega$ .
- The Laplace transform formula extends to all  $\mu \in \mathbb{C}$ . (Important for the study of the  $R_{ii}!$ )

#### **Applications:**

- Multivariate statistics: Wishart distributions
- Representation theory. Important in this context: For which  $\mu$  is  $R_{\mu}$  a positive measure?

August 2020

### Theorem (Gindikin, 1975)

The Riesz distribution  $R_{\mu}$  is a positive measure exactly if  $\mu$  belongs to the Wallach set

$$\left\{0, \frac{d}{2}, \dots, \frac{d}{2}(n-1) = \mu_0\right\} \cup \left\{\mu \in \mathbb{R} : \mu > \mu_0\right\}.$$



**Important:** The discrete points of the Wallach set are poles of  $\Gamma_{\Omega}$  **Observation by A. Sokal (2011):** If  $R_{\mu}$  is a measure on H, then

$$\frac{1}{\Gamma_{\Omega}(\mu)}\det(x)^{\mu-\mu_0-1}\cdot\mathbb{1}_{\Omega}(x)\overset{!}{\in}L^1_{loc}(H)$$

- This implies: Either  $\text{Re } \mu > \mu_0$ , or  $\mu$  is a pole of  $\Gamma_{\Omega}$ .
- But: For the discrete Wallach points,  $R_{\mu}$  is **no longer** given by the above density, but supported in  $\partial\Omega$ !
- Sokal's observation considerably simplifies the proof by Gindikin.

<ロト < 部 > ∢ 重 > ∢ 重 > ・ 重 ・ 釣 Q で

## A bridge to Dunkl theory

Consider the Riesz measures  $R_{\mu}$  with Re  $\mu > \mu_0$  on H.

#### Observation:

Let  $y \in \Omega$  with eigenvalues  $\eta_1, \dots, \eta_n \in ]0, \infty[=:\mathbb{R}_+$  . Then

$$\mathcal{L}R_{\mu}(y) = \frac{1}{\Gamma_{\Omega}(\mu)} \int_{\Omega} e^{-\langle x, y \rangle} \det(x)^{\mu - \mu_0 - 1} dx$$

$$= const \cdot \int_{\mathbb{R}^n_+} J_{d/2}(-\xi, \eta) \Delta(\xi)^{\mu - \mu_0 - 1} \prod_{1 \le i < j \le n} |\xi_i - \xi_j|^d d\xi$$

with 
$$\eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^n_+$$
.

- $\Delta(\xi) = \prod_{i=1}^n \xi_i$
- $J_k$ : **Dunkl-type Bessel function** associated with root system  $A_{n-1}$  and multiplicity parameter  $k \ge 0$ .

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

### Dunkl theory

- generalizes important aspects of harmonic analysis on Riemannian symmetric spaces
- fundamental ingredient: Dunkl operators = differential reflection operators associated with root systems
- Here: "rational" theory (Dunkl 1989): the Dunkl operators have rational coefficients

### Setting:

- ullet  $R\subset\mathbb{R}^n$  a (not necessarily crystallographic) root system
- $W = \langle \sigma_{\alpha} : \alpha \in R \rangle$  associated finite reflection group (Weyl group)
- $k: R \to [0, \infty[\,, \alpha \mapsto k_{\alpha} \,\,$  a W-invariant multiplicity function

**Example:** 
$$R = A_{n-1} = \{ \pm (e_i - e_j) : 1 \le i < j \le n \} \subset \mathbb{R}^n$$

- $W = S_n$  (acts by permutation of the coordinates),
- 1 multiplicity parameter  $k \in [0, \infty[$ .



Dunkl operators  $T_{\xi} = T_{\xi}(k)$  associated with R and k:

$$T_{\xi}f(x) = \partial_{\xi}f(x) + \frac{1}{2} \sum_{\alpha \in R} k_{\alpha} \langle \alpha, \xi \rangle \frac{f(x) - f(\sigma_{\alpha}x)}{\langle \alpha, x \rangle} \quad (\xi \in \mathbb{R}^n)$$

- The  $T_{\xi}$ ,  $\xi \in \mathbb{R}^n$  commute! (Dunkl 89)
- Nice mapping properties. In particular:  $T_{\xi}$  acts continuously on the Schwartz space  $\mathcal{S}(\mathbb{R}^n)$  and on  $\mathcal{S}'(\mathbb{R}^n)$  via  $\langle T_{\xi}u, \varphi \rangle := -\langle u, T_{\xi}\varphi \rangle$ .

### Commutative algebra of Dunkl operators:

$$\{p(T): p \in \mathbb{C}[\mathbb{R}^n]\}$$
 (replace  $x_i$  by  $T_{e_i}$ )

### Theorem (Dunkl, Opdam)

There is a unique analytic function  $E = E_k$  on  $\mathbb{C}^n \times \mathbb{C}^n$  (the Dunkl kernel) with

$$T_{\xi}E(.,y) = \langle y, \xi \rangle E(.,y), \ E(0,y) = 1 \quad \forall y \in \mathbb{C}^n, \ \xi \in \mathbb{R}^n.$$

Case 
$$k = 0$$
:  $E(x, y) = e^{\langle x, y \rangle}$   $(\langle ., . \rangle \text{ bilinear})$ 

4□▶ 4□▶ 4□▶ 4□▶ ■ 900

### Basic properties:

- $\bullet \ E(x,y) = E(y,x)$
- $E(\lambda x, y) = E(x, \lambda y), \ E(wx, wy) = E(x, y) \ \forall \lambda \in \mathbb{C}, w \in W$

#### Bessel function associated with R and k:

$$J(x,y) = \frac{1}{|W|!} \sum_{w \in W} E(wx,y) \quad (W\text{-invariant in } x,y)$$

For crystallographic R and special values of k, the J(.,y) can be identified with the spherical functions of flat symmetric spaces.

#### **Examples:**

- rank-one case:  $R = \{\pm 1\} \subseteq \mathbb{R}$ ;  $W = \{id, \sigma\}, \ \sigma(x) = -x$ 
  - $J(x,y) = j_{k-1/2}(ixy)$  (normalized 1-variable Bessel function)
- $R = A_{n-1}$ : J has an explicit expansion in terms of Jack polynomials, which depend on k and generalize the Schur polynomials (k = 1).

◆□▶◆□▶◆豆▶◆豆▶ 豆 りゅう

### The Dunkl transform

Weight function:  $\omega(x) := \prod_{\alpha \in R} |\langle \alpha, x \rangle|^{k_{\alpha}}$ 

• For  $f \in L^1(\mathbb{R}^n, \omega)$ ,

$$\widehat{f}(y) := \int_{\mathbb{R}^n} f(x) E(x, -iy) \omega(x) dx, \quad y \in \mathbb{R}^n$$

(known:  $|E(x, iy)| \le 1$  for all  $x, y \in \mathbb{R}^n$ )

Rich harmonic analysis, close to classical Fourier analysis!

### Laplace transform?

**Problem:** in general, no nice decay properties available for  $x \mapsto E(-x, y)$  as  $x \to \infty$  within some convex cone  $C \subset \mathbb{R}^n$  (and  $y \in C$ ).

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

## Laplace transform in the type A Dunkl setting

- Always:  $R = A_{n-1}$  in  $\mathbb{R}^n$ , multiplicity  $k \geq 0$ .
- weight function:  $\omega(x) = \prod_{1 \le i \le j \le n} |x_i x_j|^{2k}$
- Consider the cone  $\mathbb{R}^n_+$ ,  $\mathbb{R}_+ = ]0, \infty[$ .

### E has good decay properties (R., 2020):

Let  $z \in \mathbb{C}^n$  with  $\operatorname{Re} z \geq \mathbf{s} = (s, \dots, s) \in \mathbb{R}^n$  (componentwise). Then

$$|E(-x,z)| \le e^{-\langle x,s\rangle} \quad \forall x \in \mathbb{R}^n_+.$$

# Laplace transform of functions: For $f \in L^1_{loc}(\mathbb{R}^n_+)$ ,

$$\mathcal{L}f(z) := \int_{\mathbb{R}^n_+} E(-x, z) f(x) \omega(x) dx, \ z \in \mathbb{C}^n \quad (\text{if convergent})$$

- If  $|f(x)| \le Ce^{\langle x, \mathbf{s} \rangle}$ , then  $\mathcal{L}f$  is holomorphic on  $\{z \in \mathbb{C}^n : \operatorname{Re} z > \mathbf{s} \}$ .
- ullet Cauchy-type inversion theorem, standard injectivity results

4 D > 4 B > 4 E > 4 E > E 990

#### History

- first introduced by I.G. Macdonald (unpublished manuscript 1987/88; arXiv:1309.4568), but only formally, and with the Bessel function *J* (before Dunkl theory!)
- used by several further authors (e.g. Baker/Forrester 1998: Calogero-Moser models) But: must results not rigorous

### Laplace transform of tempered distributions:

The Laplace transform can be extended to tempered distributions on  $\mathbb{R}^n$  which are supported in  $\overline{\mathbb{R}^n_+}$ . It is also injective.

## Riesz distributions in the type A Dunkl setting

**Always:**  $R = A_{n-1}$ , multiplicity k > 0,  $\mu_0 := k(n-1)$ 

Riesz measures on  $\mathbb{R}^n$ : For  $\mu \in \mathbb{C}$  with  $\operatorname{Re} \mu > \mu_0$ ,

$$\langle R_{\mu}, \varphi \rangle := \frac{1}{\Gamma_{M}(\mu)} \int_{\mathbb{R}^{n}_{+}} \varphi(x) \Delta(x)^{\mu-\mu_{0}-1} \omega(x) dx; \quad \varphi \in \mathcal{S}(\mathbb{R}^{n})$$

- $\Delta(x) = x_1 \cdot \ldots \cdot x_n$
- $\Gamma_M(z) = c \cdot \prod_{j=1}^{"} \Gamma(z k(j-1))$  (Macdonald gamma function)

### Theorem (Y. Liu 2016, unpublished PhD thesis)

The mapping  $\mu \mapsto R_{\mu}$  extends to an analytic function on  $\mathbb{C}$  with values in  $\mathcal{S}'(\mathbb{R}^n)$ , satisfying

$$\Delta(T)R_{\mu}=R_{\mu-1}.$$



## Further Properties of the Riesz distributions (M.R., 2020)

#### Theorem 1

- (1)  $R_{\mu} \in \mathcal{S}'(\mathbb{R}^n)$  is  $S_n$ -invariant and supported in  $\overline{\mathbb{R}^n_+}$ .
- (2) Laplace transform:

$$\mathcal{L}R_{\mu}(y) = \Delta(y)^{-\mu} \quad \forall \, y \in \mathbb{R}^{n}_{+}$$

(3)  $R_0 = \delta_0$  (because  $\mathcal{L}R_0 = 1 = \mathcal{L}\delta_0$ ).

**Proof of (2):** based on hypergeometric expansion of the Bessel function J in terms of Jack polynomials and integral formulas of Macdonald.

Question: Which of the  $R_{\mu}$  are positive measures?

## The analogue of Gindikin's result

#### **Generalized Wallach set:**

$$W = W_k := \{0, k, \dots, k(n-1) = \mu_0\} \cup \{\mu \in \mathbb{R} : \mu > \mu_0\}.$$

#### Theorem 2

- (1) For j = 0..., n-1, the Riesz distributions  $R_{kj}$  on  $\mathbb{R}^n$  are positive measures. They can be written down explicitly by recursion.
- (2)  $supp(R_{kj}) = \{x \in \partial(\mathbb{R}^n_+) : \text{ exactly } j \text{ components of } x \text{ are } \neq 0\}.$
- (3)  $R_{\mu}$  is a positive measure  $\iff \mu \in W$

**Proof:** (1) + (2): Guess the candidate for  $R_{kj}$  and show by calculation that its Dunkl-Laplace transform coincides with that of  $R_{kj}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ りへ○

- (3)  $R_{\mu}$  is positive measure  $\Longrightarrow \mu \in W$ :
  - $\mu \geq 0$  by growth of  $\mathcal{L}R_{\mu}$ .
  - **Sokal's method** gives: If  $R_{\mu}$  is a measure, then either  $\mu > \mu_0$ , or  $\mu \in \{0, k, \dots, k(n-1)\} \mathbb{N}_0$  (poles of  $\Gamma_M$ ).
  - Exclude  $\mu \in ]k(j-1), kj[, 1 \le j \le n-1$ :

Suppose  $R_{\mu}$  is a positive measure. Then for each polynomial p with  $p \geq 0$  on  $\mathbb{R}^n_+$ ,

$$(*) \ p(-T)(\mathcal{L}R_{\mu})(y) = \int_{\overline{\mathbb{R}^n_+}} p(x) \underbrace{E(-x,y)}_{>0} dR_{\mu}(x) \ge 0 \ \forall y \in \mathbb{R}^n_+.$$

(Variant of the Shanbhag principle).

Take  $p = e_{j+1}$  (elementary symmetric polynomial). Then (\*) is not satisfied.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

## Further relevance of the generalized Wallach set

**Dunkl's intertwining operator:** For each root system  $R \subset \mathbb{R}^n$  and multiplicity  $k \geq 0$ , there exists a unique linear isomorphism  $V_k$  of  $\mathbb{C}[\mathbb{R}^n]$  which preserves the degree of homogeneity and satisfies

$$V_k(1)=1, \quad T_\xi(k)V_k=V_k\partial_\xi \quad \text{for all } \xi\in\mathbb{R}^n.$$

Known (M.R. 1999):  $V_k$  is positive, i.e.  $V_k p \ge 0$  if  $p \ge 0$ .

For multiplicities k, k' on R,  $T_{\xi}(k')(V_{k'} \circ V_k^{-1}) = (V_{k'} \circ V_k^{-1})T_{\xi}(k)$ .

Old conjecture (P): If  $k' \geq k$ , then  $V_{k'} \circ V_k^{-1}$  is positive.

**Equivalent:** There exist compactly supported probability measures  $\mu_X^{k,k'}$  on  $\mathbb{R}^n$  such that

$$E_{k'}(x,z) = \int_{\mathbb{R}^n} E_k(\xi,z) d\mu_x^{k,k'}(\xi) \quad \forall z \in \mathbb{C}^n$$
 (Sonine formula)

(P) is true in rank 1 (Y. Xu 2003)

## Results on conjecture (P) (with M. Voit, 2020)

#### Here:

- root system  $R = B_n = \{ \pm e_i, \pm e_i \pm e_j, 1 \le i < j \le n \} \subset \mathbb{R}^n$
- $k = (k_1, k_2)$  with  $k_1 \ge 0$  (on  $\pm e_i$ ),  $k_2 > 0$  (on  $\pm e_i \pm e_j$ ),
- $k' := (k_1 + h, k_2)$  with  $h \ge 0$ .

#### **Theorem**

- (1) Necessary condition: If  $V_{k'} \circ V_k^{-1}$  is positive, then either  $h > k_2(n-1)$  or  $h \in \{0, k_2, \dots, k_2(n-1)\} \mathbb{N}_0$ .
- (2) Sufficient condition: If h belongs to the generalized Wallach set

$$W_{k_2} = \{0, k_2, \dots, k_2(n-1)\} \cup ]k_2(n-1), \infty[,$$

then  $V_{k'} \circ V_k^{-1}$  is positive on  $B_n$ -invariant polynomials.

#### References:

- M. Rösler, Riesz distributions and Laplace transform in the Dunkl setting of type A. To appear in J. Funct. Anal.; arXiv:1905.09493
- M. Rösler, M. Voit, Sonine formulas and intertwining operators in Dunkl theory. To appear in IMRN; arXiv:1902.02821.
- M. Rösler, M. Voit: Positive intertwiners for Bessel functions of type
   B. To appear in Proc. AMS; ArXiv:1912.12711.

Thank you for your attention!