Global theory of subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups.

Duván Cardona
Ghent University

Methusalem Junior Seminar
KU Leuven
6 May 2021

Joint work with Prof. Dr. Michael Ruzhansky.

The setting...

\square Given a compact Lie group G, and the sub-Laplacian \mathcal{L} associated to a system of vector fields $X=\left\{X_{1}, \cdots, X_{k}\right\}$ satisfying the Hörmander condition, in [CR20], we introduce a (subelliptic) pseudo-differential calculus associated to \mathcal{L}, based on the matrix-valued quantisation process developed previously by Michael Ruzhansky and Ville Turunen.

- [CR20]: Cardona, D., Ruzhansky, M. Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups, submitted. arXiv:2008.09651.

Outline

Introduction and Preliminaries

Main results

Duván Cardona

Subelliptic pseudo-differential operators

Fourier Transform, the main tool.

1. Psendo-differential operators.

Tourer transform:

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i(2 \pi k \xi} f(x) d x .
$$

Psendo-differantial operator
(associated to $\sigma \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$,

$$
T_{\sigma} f(x)=\int_{\mathbb{R}^{n}} e^{i 2 \pi x \xi} \sigma(x, \xi) \hat{f}(\xi) d \xi \text {. }
$$

- Algebraic geometry
- Number theory

-

$P(x, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x)$
$P(x, \xi)=$ $\sum_{|\alpha| \leq m} a_{\alpha}(x)(-2 \pi i \xi)^{\alpha} \neq 0, \xi \neq 0$
$\} \Rightarrow U=P^{-1} f+E_{\text {rror }}$,

Motivation

- Algebraic geometry

If $A: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is an elliptic differential operator.

$$
\operatorname{ind}(A)=\int_{T M} \operatorname{ch}\left(\sigma_{p}\right) \sqcup \operatorname{Todd}(T M)
$$

$$
\begin{aligned}
& \text { Again, PDE setting } \\
& \text { Symbol classes }
\end{aligned}
$$

$$
\left[T f(x)=\int_{\mathbb{R}^{n}} e^{i 2 \pi x \xi} \sigma(x, \xi) \hat{f}(\xi) d \xi\right.
$$

$$
\begin{aligned}
& \text { pesevdo-differantial operator, } \\
& T=\text { Cumbol of }
\end{aligned}
$$

$$
\sigma \equiv \text { Symbol of } T
$$

$$
\text { Kohn } \mathcal{A} \text { Nirewberg, }(1965)
$$

$$
\begin{aligned}
& \text { Kohn } x \text { Nirewberg, }(1965) \\
& m \in \mathbb{R}, \sigma \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \Leftrightarrow\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leqslant C_{d \beta}(1+|\xi|)^{m-|\alpha|}
\end{aligned}
$$

Duván Cardona

Again, PDE setting
Symbol classes

$$
T f(x)=\int_{\mathbb{R}^{u}} e^{12 \pi x \xi} \sigma(x, \xi) \hat{f}(\xi) d \xi
$$

ppredo-differcutiol operator,

$$
\sigma \equiv \text { symbol of } T \text {. }
$$

$$
\text { Hörmander, } 1967, \quad(0 \leq 8, p \leq 1)
$$

$$
\begin{aligned}
& \text { Hörmander, } 1967,(0 \leq \delta, 0 \leq 1) \\
& \sigma \in S_{p, \delta}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \Leftrightarrow\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha p}(1+\mid \xi)^{m-p|\alpha| t \delta|\beta|}
\end{aligned}
$$

Duván Cardona

Subelliptic pseudo-differential operators

$$
\begin{gathered}
T=\square, \quad \sigma(x, \xi)=2 \pi i \tau+4 \pi^{2}|\xi|^{2} \in S_{1,0}^{2} \\
{[1+\sigma(x, \xi)]^{-1} \in S_{\frac{1}{2}}^{-1}, 0}
\end{gathered}
$$

Duván Cardona

Outline

1. There is a well-known formulation of pseudo-differential operators on compact manifolds, (and so on compact Lie groups) by using symbols defined by charts ${ }^{1}$.
2. If $U \subset \mathbb{R}^{n}$ is open, the symbol $a: U \times \mathbb{R}^{n} \rightarrow \mathbb{C}$, belongs to the Hörmander class $S_{\rho, \delta}^{m}\left(U \times \mathbb{R}^{n}\right), 0 \leqslant \rho, \delta \leqslant 1$, if for every compact subset $K \subset U$, the symbol inequalities,

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi)\right| \leqslant C_{\alpha, \beta, K}(1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|}
$$

hold true uniformly in $x \in K$ and $\xi \in \mathbb{R}^{n}$.

[^0]
Outline

3. Then, a continuous linear operator $A: C_{0}^{\infty}(U) \rightarrow C^{\infty}(U)$ is a pseudo-differential operator of order m, of (ρ, δ)-type, if there exists a function $a \in S_{\rho, \delta}^{m}\left(U \times \mathbb{R}^{n}\right)$, satisfying

$$
A f(x)=\int_{\mathbb{R}^{n}} e^{2 \pi i x \cdot \xi} a(x, \xi)\left(\mathscr{F}_{\mathbb{R}^{n}} f\right)(\xi) d \xi
$$

for all $f \in C_{0}^{\infty}(U)$, where

$$
\left(\mathscr{F}_{\mathbb{R}^{n}} f\right)(\xi):=\int_{U} e^{-i 2 \pi x \cdot \xi} f(x) d x
$$

is the Euclidean Fourier transform of f at $\xi \in \mathbb{R}^{n}$.

Let M be a closed manifold.

4. The class $S_{\rho, \delta}^{m}\left(U \times \mathbb{R}^{n}\right)$ on the phase space $U \times \mathbb{R}^{n}$, is invariant under coordinate changes only if $\rho \geqslant 1-\delta$, while a symbolic calculus (closed for products, adjoints, parametrices, etc.) is only possible for $\delta<\rho$ and $\rho \geqslant 1-\delta$.
5. $A: C_{0}^{\infty}(M) \rightarrow C^{\infty}(M)$ is a pseudo-differential operator of order m, of (ρ, δ)-type, $\rho \geqslant 1-\delta$, if for every local coordinate patch $\omega: M_{\omega} \subset M \rightarrow U \subset \mathbb{R}^{n}$, and for every $\phi, \psi \in C_{0}^{\infty}(U)$, the operator

$$
T u:=\psi\left(\omega^{-1}\right)^{*} A \omega^{*}(\phi u), u \in C^{\infty}(U),{ }^{2}
$$

is a pseudo-differential operator with symbol in $S_{\rho, \delta}^{m}\left(U \times \mathbb{R}^{n}\right)$.

[^1]
Conclusion:

6. In this case we write that $A \in \Psi_{\rho, \delta}^{m}(M$, loc $), \delta<\rho, \rho \geqslant 1-\delta$.
7. To $A \in \Psi_{\rho, \delta}^{m}(M ;$ loc $)$ one associates a (principal) symbol $a \in S_{\rho, \delta}^{m}\left(T^{*} M\right),{ }^{3}$ which is uniquely determined, only as an element of the quotient algebra $S_{\rho, \delta}^{m}\left(T^{*} M\right) / S_{\rho, \delta}^{m-1}\left(T^{*} M\right)$.
(Q): When, is it possible to define a notion of a global symbol (without using local coordinate systems) allowing a global quantisation formula for the Hörmander class $\Psi_{\rho, \delta}^{m}(M$; loc $)$?
${ }^{3}$ which is a section of the cotangent bundle $T^{*} M$

Let $M=G$ be a compact Lie group. (Ex: $G=\mathrm{SU}(2)$).

- Let \widehat{G} be the family of all equivalence classes of continuous and irreducible unitary representations of G.

There is a global definition of symbols on the phase space $G \times \widehat{G}$, that provides global Hörmander classes of symbols $S_{\rho, \delta}^{m}(G \times \widehat{G})$,
$0 \leqslant \rho, \delta \leqslant 1$, such that: ${ }^{4}$
$\square \Psi_{\rho, \delta}^{m}(G \times \widehat{G}):=\operatorname{Op}\left(S_{\rho, \delta}^{m}(G \times \widehat{G})\right)=\Psi_{\rho, \delta}^{m}(G$; loc $)$, for $\delta<\rho$, and $\rho \geqslant 1-\delta$, (this implies that $\rho>\frac{1}{2}$).

- New classes for $\delta \leq \rho$, allowing to study the borderline case $\rho=\delta$.

[^2]
Representations on a compact Lie Group.

\square Unitary Representation: A unitary representation is a continuous mapping

$$
\xi \in \operatorname{HOM}\left(G, U\left(H_{\xi}\right)\right), \xi(x) \xi(y)=\xi(x y), \xi(x)^{*}=\xi(x)^{-1}
$$

for some (finite-dimensional) vector space $H=H_{\xi}$. We define by $d_{\xi}=\operatorname{dim}\left(H_{\xi}\right)$ the dimension of ξ.

Representations on a compact Lie Group.

\square Unitary Representation: A unitary representation is a continuous mapping

$$
\xi \in \operatorname{HOM}\left(G, U\left(H_{\xi}\right)\right), \xi(x) \xi(y)=\xi(x y), \xi(x)^{*}=\xi(x)^{-1}
$$

for some (finite-dimensional) vector space $H=H_{\xi}$. We define by $d_{\xi}=\operatorname{dim}\left(H_{\xi}\right)$ the dimension of ξ.

- Equivalent Representations: Two representations

$$
\xi \in \operatorname{HOM}\left(G, U\left(H_{\xi}\right)\right), \eta \in \operatorname{HOM}\left(G, U\left(H_{\eta}\right)\right)
$$

are equivalent, if there exist a linear bijection $\phi: H_{\xi} \rightarrow H_{\eta}$, such that $\forall x \in G, \xi(x)=\phi^{-1} \eta(x) \phi$.

Representations on a compact Lie Group.

\square Unitary Representation: A unitary representation is a continuous mapping

$$
\xi \in \operatorname{HOM}\left(G, U\left(H_{\xi}\right)\right), \xi(x) \xi(y)=\xi(x y), \xi(x)^{*}=\xi(x)^{-1}
$$

for some (finite-dimensional) vector space $H=H_{\xi}$. We define by $d_{\xi}=\operatorname{dim}\left(H_{\xi}\right)$ the dimension of ξ.
■ Equivalent Representations: Two representations

$$
\xi \in \operatorname{HOM}\left(G, U\left(H_{\xi}\right)\right), \eta \in \operatorname{HOM}\left(G, U\left(H_{\eta}\right)\right)
$$

are equivalent, if there exist a linear bijection $\phi: H_{\xi} \rightarrow H_{\eta}$, such that $\forall x \in G, \xi(x)=\phi^{-1} \eta(x) \phi$.

- \widehat{G} consists of all equivalence classes of continuous irreducible unitary representations of G.

Fourier Analysis on a compact Lie group G. Peter-Weyl

 Theorem, 1927.Let us consider a compact Lie group G with discrete unitary dual \widehat{G} that is, the set of equivalence classes of all continuous irreducible unitary representations of G. We identify $H_{\xi} \cong \mathbb{C}^{d_{\xi}}$, and $\operatorname{Hom}\left(H_{\xi}\right) \cong \mathbb{C}^{d_{\xi} \times d_{\xi}}$.

- Fourier transform of $f \in C^{\infty}(G)$,

$$
\begin{equation*}
(\mathscr{F} f)(\xi) \equiv \widehat{f}(\xi):=\int_{G} f(x) \xi(x)^{*} d x \in \mathbb{C}^{d_{\xi} \times d_{\xi}}, \quad[\xi] \in \widehat{G} \tag{1.1}
\end{equation*}
$$

- Fourier inversion formula,

$$
\begin{equation*}
f(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \widehat{f}(\xi)) \tag{1.2}
\end{equation*}
$$

Fourier Analysis on a compact Lie group G. Peter-Weyl Theorem, 1927.

Let $\sigma:=\mathscr{F}(k)$, for some distribution $k \in \mathscr{D}^{\prime}(G)$. We denote $\mathscr{D}^{\prime}(\widehat{G}):=\mathscr{F}\left(\mathscr{D}^{\prime}(G)\right)$.
■ The Inverse Fourier transform of σ, at $x \in \widehat{G}$, is defined via

$$
\begin{equation*}
\left(\mathscr{F}^{-1} \sigma\right)(x):=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \sigma(\xi)) \tag{1.3}
\end{equation*}
$$

Continuous Linear operators on G and the Fourier

 Transform. We write $\xi(x)=\left[\xi_{i j}(x)\right]_{i, j=1}^{d_{\xi}} \in \mathbb{C}^{d_{\xi} \times d_{\xi}}$.Theorem
Let $A: C^{\infty}(G) \rightarrow C^{\infty}(G)$ be a continuous linear operator. Then:

$$
A f(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}[\xi(x) \sigma(x, \xi)(\mathscr{F} f)(\xi)] f \in C^{\infty}(G)
$$

where

$$
\sigma(x, \xi):=\xi(x)^{*} A \xi(x):=\xi(x)^{*}\left[A \xi_{i j}(x)\right]_{i, j=1}^{d_{\xi}},
$$

Global Pseudo-differential operators on G

■ A global pseudo-differential operator T_{σ} associated to a function/distribution $\sigma \in C^{\infty}\left((G \times \widehat{G}), \cup_{[\xi] \in \widehat{G}} \mathbb{C}^{d} \times d_{\xi}\right)^{5}$ is formally defined by

$$
\begin{equation*}
T_{\sigma} f(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \sigma(x, \xi) \widehat{f}(\xi)), \quad x \in G \tag{1.4}
\end{equation*}
$$

${ }^{5}$ Observe that for every $(x,[\xi]) \in G \times \widehat{G}, \sigma(x, \xi): H_{\xi} \rightarrow H_{\xi}, H_{\xi} \cong \mathbb{E}^{d_{\xi}}$.

Global Pseudo-differential operators on G

- A global pseudo-differential operator T_{σ} associated to a function/distribution $\sigma \in C^{\infty}\left((G \times \widehat{G}), \cup_{[\xi] \in \widehat{G}} \mathbb{C}^{d_{\xi} \times d_{\xi}}\right)^{5}$ is formally defined by

$$
\begin{equation*}
T_{\sigma} f(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \sigma(x, \xi) \widehat{f}(\xi)), \quad x \in G \tag{1.4}
\end{equation*}
$$

- The function σ is called the global symbol of the pseudo-differential operator T_{σ}.

[^3]
The global symbol of the Laplacian

■ (Eigenvalues of the Laplacian on compact Lie groups) There exists a non-negative real number $\lambda_{[\xi]}$ depending only on the equivalence class $[\xi] \in \hat{G}$, but not on the representation ξ, such that

The global symbol of the Laplacian

- (Eigenvalues of the Laplacian on compact Lie groups) There exists a non-negative real number $\lambda_{[\xi]}$ depending only on the equivalence class $[\xi] \in \hat{G}$, but not on the representation ξ, such that

$$
\mathcal{L}_{G} \xi(x)=\lambda_{[\xi]} \xi(x)
$$

where \mathcal{L}_{G} is the positive Laplacian on the group G. We define

The global symbol of the Laplacian

\square (Eigenvalues of the Laplacian on compact Lie groups) There exists a non-negative real number $\lambda_{[\xi]}$ depending only on the equivalence class $[\xi] \in \hat{G}$, but not on the representation ξ, such that

$$
\mathcal{L}_{G} \xi(x)=\lambda_{[\xi]} \xi(x)
$$

where \mathcal{L}_{G} is the positive Laplacian on the group G. We define

$$
\langle\xi\rangle=\left(1+\lambda_{[\xi]}\right)^{\frac{1}{2}} .
$$

The global symbol of the Laplacian. $H_{\xi} \cong \mathbb{C}^{d_{\xi}}$.

$$
\mathcal{L}_{G} \xi(x)=\lambda_{[\xi]} \xi(x)
$$

where \mathcal{L}_{G} is the positive Laplacian on the group G. The symbol of the positive Laplacian is given by

The global symbol of the Laplacian. $H_{\xi} \cong \mathbb{C}^{d_{\xi}}$.

$$
\mathcal{L}_{G} \xi(x)=\lambda_{[\xi]} \xi(x)
$$

where \mathcal{L}_{G} is the positive Laplacian on the group G. The symbol of the positive Laplacian is given by

$$
\sigma_{\mathcal{L}_{G}}(x, \xi)=\lambda_{[\xi]} I_{H_{\xi}} .
$$

- Definition: (Scalar-valued elliptic weight)

$$
\langle\xi\rangle:=\left(1+\lambda_{[\xi]}\right)^{\frac{1}{2}} .
$$

\square For every $z \in \mathbb{C}, B_{z}:=\left(1+\mathcal{L}_{G}\right)^{\frac{z}{2}} \in \Psi_{1,0}^{\operatorname{Re}(z)}(G$, loc $)$, and its matrix-valued symbol is given by

$$
\sigma_{\left(1+\mathcal{L}_{G}\right)^{\frac{z}{2}}}(x, \xi)=\langle\xi\rangle^{z} I_{H_{\xi}} .
$$

The global symbol of a sub-Laplacians on a compact Lie group.

Let $\mathbb{X}=\left\{X_{1}, \cdots, X_{n}\right\}$ be an o.n.b. of the Lie algebra $\mathfrak{g} \cong T_{e} G$.

■ Laplacian: $\mathcal{L}_{G}=-X_{1}^{2}-\cdots-X_{n}^{2}$.
■ sub-Laplacian: $\mathcal{L}_{X}=-X_{1}^{2}-\cdots-X_{k}^{2}$, where $X=\left\{X_{1}, \cdots, X_{k}\right\}$ satisfies the Hörmander condition at step κ.

The global symbol of the sub-Laplacian

- The matrix-valued function

$$
\widehat{\mathcal{L}}(\xi)=\left[\mathcal{L}\left(\xi_{i j}\right)\right]_{i, j=1}^{d_{\xi}}
$$

is the global symbol of the sub-Laplacian \mathcal{L}.

- Definition: (Matrix-valued subelliptic weight)

$$
\mathcal{M}(\xi):=(1+\widehat{\mathcal{L}}(\xi))^{\frac{1}{2}}
$$

How to define the class $S_{\rho, \delta}^{m}(G \times \widehat{G})$? of global symbols on $G \times \widehat{G}$? We use difference operators.

If $\left[\xi_{0}\right] \in \widehat{G}$, consider the matrix

$$
\begin{equation*}
\xi_{0}(g)-I_{d_{\xi_{0}}}=\left[\xi_{0}(g)_{i j}-\delta_{i j}\right]_{i, j=1}^{d_{\xi}}, \quad g \in G . \tag{1.5}
\end{equation*}
$$

Then, we associated to the function $q_{i j}(g):=\xi_{0}(g)_{i j}-\delta_{i j}, \quad g \in G$, a difference operator via

$$
\begin{equation*}
\mathbb{D}_{\xi_{0}, i, j}:=\mathscr{F}\left(\xi_{0}(g)_{i j}-\delta_{i j}\right) \mathscr{F}^{-1}: \mathscr{D}^{\prime}(\widehat{G}) \rightarrow \mathscr{D}^{\prime}(\widehat{G}) . \tag{1.6}
\end{equation*}
$$

From a sequence $\mathbb{D}_{1}=\mathbb{D}_{\xi_{0}, j_{1}, i_{1}}, \cdots, \mathbb{D}_{n}=\mathbb{D}_{\xi_{0}, j_{n}, i_{n}}$ of operators of this type we define $\mathbb{D}^{\alpha}=\mathbb{D}_{1}^{\alpha_{1}} \cdots \mathbb{D}_{n}^{\alpha_{n}}$, where $\alpha \in \mathbb{N}^{n}$.

Elliptic and subelliptic pseudo-differential operators on

 compact Lie groups. (Recall that $\left.\mathcal{M}(\xi):=(1+\widehat{\mathcal{L}(\xi)})^{\frac{1}{2}}\right)$.- Elliptic Hörmander classes: $\sigma \in S_{\rho, \delta}^{m}(G \times \widehat{G})$, if

$$
\begin{equation*}
\left\|\partial_{X}^{(\beta)} \mathbb{D}_{\xi}^{\alpha} \sigma(x, \xi)\right\|_{\mathrm{op}} \leqslant C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\gamma|+\delta|\beta|} \tag{1.7}
\end{equation*}
$$

[^4] Background Analysis and Advanced Topics Birkhäuser-Verlag, Basel, 2010

Elliptic and subelliptic pseudo-differential operators on

 compact Lie groups. (Recall that $\left.\mathcal{M}(\xi):=(1+\widehat{\mathcal{L}(\xi)})^{\frac{1}{2}}\right)$.- Elliptic Hörmander classes: $\sigma \in S_{\rho, \delta}^{m}(G \times \widehat{G})$, if

$$
\begin{equation*}
\left\|\partial_{X}^{(\beta)} \mathbb{D}_{\xi}^{\alpha} \sigma(x, \xi)\right\|_{\text {op }} \leqslant C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\gamma|+\delta|\beta|} \tag{1.7}
\end{equation*}
$$

- Solution for $(\mathrm{Q})^{6}$

$$
\mathrm{Op}\left(S_{\rho, \delta}^{m}(G \times \widehat{G})\right)=\Psi_{\rho, \delta}^{m}(G, \text { loc }), \quad 0 \leqslant \delta<\rho \leqslant 1, \rho \geqslant 1-\delta
$$

[^5] Background Analysis and Advanced Topics Birkhäuser-Verlag, Basel, 2010

Elliptic and subelliptic pseudo-differential operators on

 compact Lie groups. (Recall that $\left.\mathcal{M}(\xi):=(1+\widehat{\mathcal{L}(\xi)})^{\frac{1}{2}}\right)$.- Elliptic Hörmander classes: $\sigma \in S_{\rho, \delta}^{m}(G \times \widehat{G})$, if

$$
\begin{equation*}
\left\|\partial_{X}^{(\beta)} \mathbb{D}_{\xi}^{\alpha} \sigma(x, \xi)\right\|_{\mathrm{op}} \leqslant C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\gamma|+\delta|\beta|} \tag{1.7}
\end{equation*}
$$

- Solution for $(\mathrm{Q})^{6}$

$$
\operatorname{Op}\left(S_{\rho, \delta}^{m}(G \times \widehat{G})\right)=\Psi_{\rho, \delta}^{m}(G, \text { loc }), \quad 0 \leqslant \delta<\rho \leqslant 1, \rho \geqslant 1-\delta
$$

- Subelliptic Hörmander classes: $\sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$, if,

$$
\left\|\widehat{\mathcal{M}}(\xi)^{(\rho|\alpha|-\delta|\beta|-m)} \partial_{X}^{(\beta)} \mathbb{D}_{\xi}^{\alpha} a(x, \xi)\right\|_{\text {op }} \leq C_{\alpha, \beta} .
$$

[^6] Background Analysis and Advanced Topics Birkhäuser-Verlag, Basel, 2010

Example: Powers of the subelliptic Bessel potential.

Let us denote

$$
\Psi_{\rho, \delta}^{m}(G \times \widehat{G}):=\operatorname{Op}\left(S_{\rho, \delta}^{m}(G \times \widehat{G})\right), m \in \mathbb{R}
$$

\square For every $s \in \mathbb{R}, \mathcal{B}_{s}:=(1+\mathcal{L})^{\frac{s}{2}} \in \Psi_{1,0}^{s}(G \times \widehat{G})$, if $s>0$, and $\mathcal{B}_{-s}:=(1+\mathcal{L})^{-\frac{s}{2}} \in \Psi_{1 / \kappa, 0}^{-s / \kappa}(G \times \widehat{G})$. Here, κ is the step of the Hörmander system $X=\left\{X_{1}, \cdots, X_{k}\right\}$, and $\mathcal{L}=-\sum_{j=1}^{k} X_{k}^{2}$.
\square For every $z \in \mathbb{C}, \mathcal{B}_{z}:=(1+\mathcal{L})^{\frac{z}{2}} \in \Psi_{1,0}^{s, \mathcal{L}}(G \times \widehat{G}), s=\mathfrak{R e}(z)$.

Outline

Introduction and Preliminaries

Main results

Duván Cardona

Subelliptic pseudo-differential operators

The subelliptic pseudo-differential calculus on G.

- Define $\Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G}):=\left\{T_{\sigma}: \sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})\right\}$, for $0 \leq \delta \leq \rho \leq 1$. Then:

The subelliptic pseudo-differential calculus on G.

- Define $\Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G}):=\left\{T_{\sigma}: \sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})\right\}$, for $0 \leq \delta \leq \rho \leq 1$. Then:
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}}, \mathcal{L}(G \times \widehat{G})$ and $T_{\tau} \in \Psi_{\rho, \delta}^{m_{2}, \mathcal{L}}(G \times \widehat{G})$, then, $T_{\sigma} \circ T_{\tau} \in T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}+m_{2}, \mathcal{L}}(G \times \widehat{G})$,

The subelliptic pseudo-differential calculus on G.

- Define $\Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G}):=\left\{T_{\sigma}: \sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})\right\}$, for $0 \leq \delta \leq \rho \leq 1$. Then:
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}, \mathcal{L}}(G \times \widehat{G})$ and $T_{\tau} \in \Psi_{\rho, \delta}^{m_{2}, \mathcal{L}}(G \times \widehat{G})$, then, $T_{\sigma} \circ T_{\tau} \in T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}+m_{2}, \mathcal{L}}(G \times \widehat{G})$,
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$ then $T_{\sigma}^{*} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$.

The subelliptic pseudo-differential calculus on G.

- Define $\Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G}):=\left\{T_{\sigma}: \sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})\right\}$, for $0 \leq \delta \leq \rho \leq 1$. Then:
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}}, \mathcal{L}(G \times \widehat{G})$ and $T_{\tau} \in \Psi_{\rho, \delta}^{m_{2}, \mathcal{L}}(G \times \widehat{G})$, then, $T_{\sigma} \circ T_{\tau} \in T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}+m_{2}, \mathcal{L}}(G \times \widehat{G})$,
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$ then $T_{\sigma}^{*} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$.
- (Calderón-Vaillancourt Theorem). $T_{\sigma}: L^{2}(G) \rightarrow L^{2}(G)$ is bounded if $m=0$ and $1 \leq \delta \leq \rho \leq 1, \delta<1 / \kappa$.

The subelliptic pseudo-differential calculus on G.

■ Define $\Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G}):=\left\{T_{\sigma}: \sigma \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})\right\}$, for $0 \leq \delta \leq \rho \leq 1$. Then:

- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m 1, \mathcal{L}}(G \times \widehat{G})$ and $T_{\tau} \in \Psi_{\rho, \delta}^{m 2, \mathcal{L}}(G \times \widehat{G})$, then, $T_{\sigma} \circ T_{\tau} \in T_{\sigma} \in \Psi_{\rho, \delta}^{m_{1}+m_{2}, \mathcal{L}}(G \times \widehat{G})$,
- If $T_{\sigma} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$ then $T_{\sigma}^{*} \in \Psi_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$.
- (Calderón-Vaillancourt Theorem). $T_{\sigma}: L^{2}(G) \rightarrow L^{2}(G)$ is bounded if $m=0$ and $1 \leq \delta \leq \rho \leq 1, \delta<1 / \kappa$.
- (Fefferman L^{p}-Theorem). Let $1 \leq \delta<\rho \leq 1$, and let $1<p<\infty . T_{\sigma}: L^{p}(G) \rightarrow L^{p}(G)$ is bounded, for all $\left.T_{\sigma} \in S_{\rho, \delta}^{-m, \mathcal{L}}(G \times \widehat{G})\right\}$, if $m \geq Q(1-\rho)\left|\frac{1}{p}-\frac{1}{2}\right|$.

The subelliptic functional calculus on G.

\square The subelliptic calculus is stable under the spectral functional calculus of the sub-Laplacian:

- Let $f \in S^{\frac{m}{2}}\left(\mathbb{R}_{0}^{+}\right), m \in \mathbb{R}$. Then, for all $t>0$, $f(t \mathcal{L}) \in S_{1,0}^{m, \mathcal{L}}(G \times \widehat{G})$.
- The subelliptic calculus is stable under the action of the complex functional calculus.

$$
\begin{equation*}
F(A):=-\frac{1}{2 \pi i} \oint_{\partial \Lambda_{\varepsilon}} F(z)(A-z I)^{-1} d z \tag{2.1}
\end{equation*}
$$

- Let $m>0$, and let $0 \leqslant \delta<\rho \leqslant 1$. Let $a \in S_{\rho, \delta}^{m, \mathcal{L}}(G \times \widehat{G})$ be a parameter \mathcal{L}-elliptic symbol with respect to Λ. Let us assume that F satisfies the estimate $|F(\lambda)| \leqslant C|\lambda|^{s}$ uniformly in λ, for some $s \in \mathbb{R}$. Then $\sigma_{F(A)} \in S_{\rho, \delta}^{m s, \mathcal{L}}(G \times \widehat{G})$, for F satisfying some suitable conditions.

Suitable conditions mean:

(CI). $\Lambda_{\varepsilon}:=\Lambda \cup\{z:|z| \leqslant \varepsilon\}, \varepsilon>0$, and $\Gamma=\partial \Lambda_{\varepsilon} \subset \operatorname{Resolv}(A)$ is a positively oriented curve in the complex plane \mathbb{C}.
(CII). F is an holomorphic function in $\mathbb{C} \backslash \Lambda_{\varepsilon}$, and continuous on its closure.
(CIII). We will assume decay of F along $\partial \Lambda_{\varepsilon}$ in order that the operator (2.1) will be densely defined on $C^{\infty}(G)$ in the strong sense of the topology on $L^{2}(G)$.

Fefferman L^{p}-theorem on G.

- (Elliptic Fefferman L^{p}-Theorem: Delgado and Ruzhansky).

Let $1 \leq \delta<\rho \leq 1$, and let $1<p<\infty . T_{\sigma}: L^{p}(G) \rightarrow L^{p}(G)$ is bounded, for all $\left.T_{\sigma} \in S_{\rho, \delta}^{-m}(G \times \widehat{G})\right\}$, if and only if,

$$
m \geq n(1-\rho)\left|\frac{1}{p}-\frac{1}{2}\right|
$$

- (Subelliptic Fefferman L^{p}-Theorem). Let $1 \leq \delta<\rho \leq 1$, and let $1<p<\infty . T_{\sigma}: L^{p}(G) \rightarrow L^{p}(G)$ is bounded, for all $\left.T_{\sigma} \in S_{\rho, \delta}^{-m, \mathcal{L}}(G \times \widehat{G})\right\}$, if,

$$
m \geq Q(1-\rho)\left|\frac{1}{p}-\frac{1}{2}\right|
$$

Applications:

- (subelliptic Garding Inequality).

$$
\operatorname{Re}(a(x, D) u, u) \geqslant C_{1}\|u\|_{L_{\frac{m_{2}^{2}}{2}}^{2, \mathcal{L}}(G)}-C_{2}\|u\|_{L^{2}(G)}^{2} .
$$

- Well-posedness for the Cauchy problem

$$
(\mathrm{PVI}):\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=K(t, x, D) v+f \tag{2.2}\\
v(0)=u_{0}, v \in \mathscr{D}^{\prime}((0, T) \times G)
\end{array}\right.
$$

- Asymptotic expansions in spectral geometry

$$
\operatorname{Tr}(A \psi(t E))=t^{-\frac{Q+m}{q}}\left(\sum_{k=0}^{\infty} a_{k} t^{k}\right)+\frac{c_{Q}}{q} \int_{0}^{\infty} \psi(s) \times \frac{d s}{s}
$$

- Classification in Dixmier ideals, Sharp- L^{p}-estimates for oscillatory Fourier multipliers.

固 Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics Birkhaüser-Verlag Basel, (2010).
Rörmander, L. The Analysis of the linear partial differential operators Vol. III. Springer-Verlag, (1985)

嗇 Cardona, D. Ruzhansky, M. Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups, arXiv:2008.09651.

[^0]: ${ }^{1}$ Hörmander, L. The Analysis of the linear partial differential operators Vol.
 III. Springer-Verlag, (1985).

[^1]: ${ }^{2}$ As usually, ω^{*} and $\left(\omega^{-1}\right)^{*}$ are the pullbacks induced by the maps ω and ω^{-1}, respectively.

[^2]: ${ }^{4}$ Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics Birkhäuser-Verlag, Basel, 2010

[^3]: ${ }^{5}$ Observe that for every $(x,[\xi]) \in G \times \widehat{G}, \sigma(x, \xi): H_{\xi} \rightarrow H_{\xi}, H_{\xi} \cong \mathbb{E}^{d_{\xi}}$.

[^4]: ${ }^{6}$ Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries:

[^5]: ${ }^{6}$ Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries:

[^6]: ${ }^{6}$ Ruzhansky, M., Turunen, V. Pseudo-differential Operators and Symmetries:

