ORTHOGONAL FOURIER ANALYSIS ON DOMAINS AND TILING PROBLEMS

Mihalis Kolountzakis

University of Crete

Summer School "Singularities in Science and Engineering"

U. Ghent

August 22-31, 2022

FOURIER ANALYSIS AT ITS SIMPLEST

▶ The Hilbert space $L^2([0,1])$ has

$$e_n(x) = e^{2\pi i n \cdot x}, \quad n \in \mathbb{Z},$$

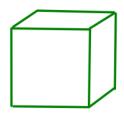
as an orthogonal basis.

- ▶ Inner product is $\langle f, g \rangle = \int_{[0,1]} f(x) \overline{g(x)} dx$
- ▶ The $e_n(x)$ are orthogonal, normalized and complete.
- ▶ Unique expansion: $f(x) = \sum_{n \in \mathbb{Z}} \langle f, e_n \rangle e_n(x)$
- ▶ Here $\langle f, e_n \rangle = \int_{[0,1]} f(x) e^{-2\pi i n x} dx = \widehat{f}(n)$ are the Fourier coefficients of f.

SPECTRA OF DOMAINS

We call the frequencies $\ensuremath{\mathbb{Z}}$ a spectrum of [0,1].

FOURIER ANALYSIS AT ITS SIMPLEST



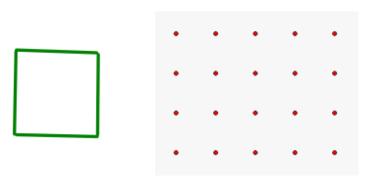
d-dimensional Fourier series:

$$e_n(x) = e^{2\pi i n \cdot x}, \quad n = (n_1, \ldots, n_d) \in \mathbb{Z}^d,$$

is an orthogonal basis of $L^2([0,1]^d)$.

► Here $n \cdot x = n_1 x_1 + n_2 x_2 + \cdots + n_d x_d$.

SPECTRA OF DOMAINS



- ▶ We call \mathbb{Z}^d a spectrum of $[0,1]^d$.
- ▶ **Observation**: In 1d and higher dim the set of frequencies has density equal to the volume of space.

WHICH DOMAINS ARE SPECTRAL?

QUESTION

On which domains can we do Fourier Analysis?

WHICH DOMAINS ARE SPECTRAL?

QUESTION

On which domains can we do Fourier Analysis?

Examples

A MORE INTERESTING EXAMPLE

has as spectrum the set

A MORE INTERESTING EXAMPLE

has as spectrum the set

The spectrum of a domain is not unique.

THE FUGLEDE CONJECTURE (1974)

" Ω is spectral \iff it can tile space by translations"

THE FUGLEDE CONJECTURE (1974)

" Ω is spectral \iff it can tile space by translations"

Def: Ω tiles when translated at the locations T if

$$\sum_{t \in T} \mathbf{1}_{\Omega}(x - t) = 1, \text{ for a.e. } x.$$

Its T translates cover \mathbb{R}^d exactly (except for measure 0).

THE FUGLEDE CONJECTURE (1974)

Was led to this by:

For which $\Omega \subseteq \mathbb{R}^d$ can the commuting operators

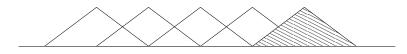
$$-i\frac{\partial}{\partial x_1},\ldots,-i\frac{\partial}{\partial x_d}$$

on $C_c^{\infty}(\Omega)$, extend to a set of <u>commuting</u>, <u>self-adjoint</u> operators

$$H_1, \ldots, H_d$$

on $L^2(\Omega)$?

WHEN DOES A FUNCTION TILE BY TRANSLATIONS?



Let $f \in L^1(\mathbb{R}^d)$, $T \subseteq \mathbb{R}^d$.

Def: We say f tiles by translations with T at level ℓ if

$$\sum_{t\in T} f(x-t) = \ell$$

for almost every $x \in \mathbb{R}^d$ (absolute convergence).

Fourier Transform in \mathbb{R}^d :

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} f(x) \, dx$$

Fourier Transform in \mathbb{R}^d :

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} f(x) \, dx$$

$$\blacktriangleright \ \langle e_{\lambda}, e_{\mu} \rangle = \langle e^{2\pi i \lambda \cdot x}, e^{2\pi i \mu \cdot x} \rangle_{L^{2}(\Omega)} = \widehat{\mathbf{1}_{\Omega}} (\lambda - \mu)$$

Fourier Transform in \mathbb{R}^d :

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} f(x) \, dx$$

- ► So $\lambda \perp \mu$ (i.e. $e^{2\pi i \lambda \cdot x} \perp e^{2\pi i \mu \cdot x}$) \iff

$$\lambda - \mu \in \mathsf{Z}\left(\widehat{\mathbf{1}_{\Omega}}\right) = \left\{\xi \in \mathbb{R}^d: \ \widehat{\mathit{f}}(\xi) = 0\right\}.$$

The zero set $Z(\widehat{\mathbf{1}_{\Omega}})$ is the crucial geometric object!

Take $\Lambda \subseteq \mathbb{R}^d$ a set of frequencies. If orthogonal

▶ Bessel's inequality $\sum_{\lambda \in \Lambda} \left| \langle f, \frac{e^{2\pi i \lambda \cdot x}}{|\Omega|^{1/2}} \rangle \right|^2 \le \|f\|_2^2$.

Take $\Lambda \subseteq \mathbb{R}^d$ a set of frequencies. If orthogonal

- ▶ Bessel's inequality $\sum_{\lambda \in \Lambda} \left| \langle f, \frac{e^{2\pi i \lambda \cdot x}}{|\Omega|^{1/2}} \rangle \right|^2 \le ||f||_2^2$.
- ▶ Plugging in $f(x) = e^{2\pi i t \cdot x}$ we get

$$orall t \in \mathbb{R}^d: \ \sum_{\lambda \in \Lambda} \left| \widehat{\mathbf{1}_{\Omega}}
ight|^2 (t-\lambda) \leq |\Omega|^2 \ ext{(packing condition)}.$$

Take $\Lambda \subseteq \mathbb{R}^d$ a set of frequencies. If orthogonal

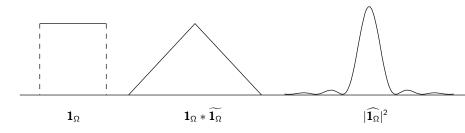
- ▶ Bessel's inequality $\sum_{\lambda \in \Lambda} \left| \langle f, \frac{e^{2\pi i \lambda \cdot x}}{|\Omega|^{1/2}} \rangle \right|^2 \leq \|f\|_2^2$.
- ▶ Plugging in $f(x) = e^{2\pi i t \cdot x}$ we get

$$\forall t \in \mathbb{R}^d: \sum_{\lambda \in \Lambda} \left|\widehat{\mathbf{1}}_{\Omega}\right|^2 (t-\lambda) \leq |\Omega|^2 \ (packing \ condition).$$

▶ By completeness of all exponentials in $L^2(\Omega)$

(tiling condition)

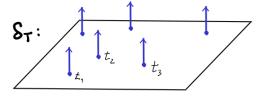
FUGLEDE IN FOURIER SPACE



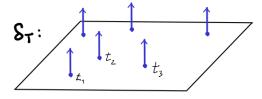
► Fuglede's Conjecture in geometric language:

 Ω tiles at level $1 \Longleftrightarrow \left|\widehat{\mathbf{1}_{\Omega}}\right|^2$ tiles at level $\left|\Omega\right|^2$.

Define the measure $\delta_T = \sum_{t \in T} \delta_t$ (unit point masses at $t \in T$).



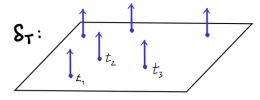
Define the measure $\delta_T = \sum_{t \in T} \delta_t$ (unit point masses at $t \in T$).



- $\triangleright \sum_{t \in T} f(x-t) = \text{const. a.e.}$
- Express tiling via convolution:

$$f*\mu(x) = \int f(x-t) d\mu(t)$$

Define the measure $\delta_T = \sum_{t \in T} \delta_t$ (unit point masses at $t \in T$).



- $\triangleright \sum_{t \in T} f(x-t) = \text{const. a.e.}$
- Express tiling via convolution:

$$f*\mu(x) = \int f(x-t) d\mu(t)$$

Convolution loves and needs the Fourier Transform

$$\widehat{f*\mu}(\xi) = \widehat{f}(\xi) \cdot \widehat{\mu}(\xi)$$

• $f * \delta_T = \text{const.}$

$$\Longleftrightarrow \widehat{f} \cdot \widehat{\delta_T} = \mathsf{const.} \delta_0$$
 (taking Fourier Transform).

• $f * \delta_T = \text{const.}$

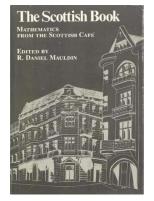
$$\iff \widehat{f} \cdot \widehat{\delta_T} = \text{const.} \delta_0 \text{ (taking Fourier Transform)}.$$

► Almost equivalent to:

$$\operatorname{supp}\widehat{\delta_T}\subseteq\{0\}\cup\left\{\widehat{f}=0\right\}$$



THE SCOTTISH CAFÉ



EXAMPLE: FROM THE SCOTTISH BOOK

(in the sense of H. Steinhaus) for every couple $t_1, t_2(t_1 \neq t_2)$?

181

FIND A CONTINUOUS function (or perhaps an analytic one) f(x), positive and such that one has

$$\sum_{n=-\infty}^{\infty} f(x+n) = 1$$

(identically in x in the interval $-\infty < x < +\infty$); examine whether $(1/\sqrt{\pi})e^{-x^2}$ is such a function; or else prove the impossibility; or else prove uniqueness.

Addendum. The function $(1/\sqrt{\pi})e^{-x^2}$ does not have the property — this follows from the sign of the second derivative for x = 0 of the expression

$$\sum_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-(x+n)^2}.$$

H. STEINHAUS

H. Steinhaus:

Is there analytic f > 0 s.t.

 $f + \mathbb{Z} = \mathbb{R}$? (shorthand for: f tiles \mathbb{R} with \mathbb{Z})

Is $f(x) = Ce^{-x^2}$ such a function?

EXAMPLE: FROM THE SCOTTISH BOOK

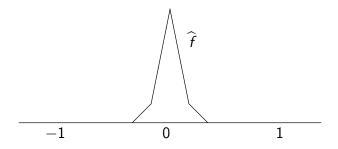
▶ $f + \mathbb{Z} = \mathbb{R} \iff \widehat{f} = 0 \text{ at } \mathbb{Z} \setminus \{0\} \text{ and } \int f = 1.$

But Ce^{-x^2} has no Fourier zeros.

EXAMPLE: FROM THE SCOTTISH BOOK

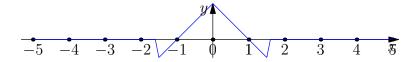
▶ $f + \mathbb{Z} = \mathbb{R} \iff \widehat{f} = 0 \text{ at } \mathbb{Z} \setminus \{0\} \text{ and } \int f = 1.$

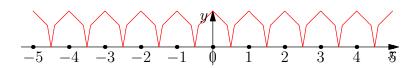
But Ce^{-x^2} has no Fourier zeros.



Solution:

For f > 0 we sum in \hat{f} two triangles with incommensurable bases.





 $ightharpoonup \mathbb{Z}$ -Periodization of $f: \mathbb{R} \to \mathbb{C}$ is $F: \mathbb{T} \to \mathbb{C}$

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$

and

$$\widehat{F}(n) = \widehat{f}(n).$$

• $f + \mathbb{Z} = \mathbb{R}$ is a tiling \iff $F(x) = \sum f(x+n) \text{ is a constant.}$

 $ightharpoonup f + \mathbb{Z} = \mathbb{R}$ is a tiling \iff

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$
 is a constant.

▶ For the periodization $F : \mathbb{T} \to \mathbb{C}$ to be constant

$$\iff \forall n \in \mathbb{Z} \setminus \{0\} : \widehat{F}(n) = 0.$$

▶ $f + \mathbb{Z} = \mathbb{R}$ is a tiling \iff

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$
 is a constant.

▶ For the periodization $F : \mathbb{T} \to \mathbb{C}$ to be constant

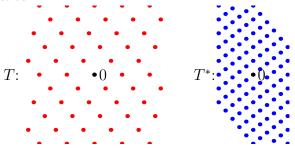
$$\iff \forall n \in \mathbb{Z} \setminus \{0\} : \widehat{F}(n) = 0.$$

Equivalently

$$\iff \forall n \in \mathbb{Z} \setminus \{0\} : \widehat{f}(n) = 0.$$

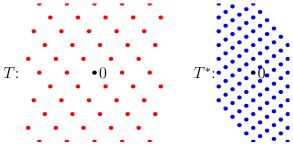
TILING BY A LATTICE

- ▶ Lattice case: $T = A\mathbb{Z}^d$, $A \in GL(n, \mathbb{R})$.
- ▶ Dual lattice: $T^* = A^{-\top} \mathbb{Z}^d$.



TILING BY A LATTICE

- ▶ Lattice case: $T = A\mathbb{Z}^d$, $A \in GL(n, \mathbb{R})$.
- ▶ Dual lattice: $T^* = A^{-\top} \mathbb{Z}^d$.



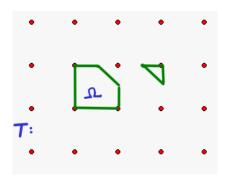
▶ Poisson Summation Formula:

$$\widehat{\delta_T} = \frac{1}{|\det A|} \delta_{T^*}$$
 usually first seen as: $\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)$

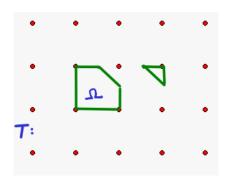
implies

$$f * \delta_T = \text{const.} \iff \widehat{f} \equiv 0 \text{ on } T^* \setminus 0.$$

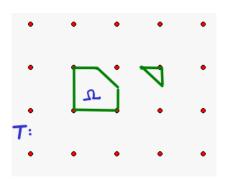
LATTICE FUGLEDE IS TRUE (FUGLEDE 1974)



► Thm: Ω tiles \mathbb{R}^d with a lattice T \iff Ω has spectrum $Λ = T^*$.



- ► Thm: Ω tiles \mathbb{R}^d with a lattice T \iff Ω has spectrum $Λ = T^*$.
- $lackbox{May assume } |\Omega| = \int \left|\widehat{\mathbf{1}_\Omega}\right|^2 = 1.$



- ► Thm: Ω tiles \mathbb{R}^d with a lattice T \iff Ω has spectrum $Λ = T^*$.
- lacksquare May assume $|\Omega|=\int\left|\widehat{\mathbf{1}_{\Omega}}\right|^2=1.$
- ▶ FT of $|\widehat{\mathbf{1}_{\Omega}}|^2$ is $\mathbf{1}_{\Omega} * \mathbf{1}_{-\Omega}$ whose support is $\overline{\Omega \Omega}$.

lacktriangledown Having T^* as spectrum $\iff \left|\widehat{\mathbf{1}_\Omega}\right|^2$ tiles with T^* (spectrality as tiling)

 $\begin{array}{c} \blacktriangleright \text{ Having } T^* \text{ as spectrum} \\ \iff \left| \widehat{\mathbf{1}_{\Omega}} \right|^2 \text{ tiles with } T^* \text{ (spectrality as tiling)} \\ \iff T \setminus \{0\} \subseteq (\Omega - \Omega)^c, \\ \text{ (since } \widehat{\delta_{T^*}} = \delta_T, \ \mathsf{Z} \left(\left| \widehat{\mathbf{1}_{\Omega}} \right|^2 \right) = (\Omega - \Omega)^c) \end{array}$

ightharpoonup Having T^* as spectrum

$$\iff \left|\widehat{\mathbf{1}_{\Omega}}\right|^2 \text{ tiles with } T^* \text{ (spectrality as tiling)}$$

$$\iff T \setminus \{0\} \subseteq (\Omega - \Omega)^c,$$

$$\text{(since } \widehat{\delta_{T^*}} = \delta_T, \ Z\left(\left|\widehat{\mathbf{1}_{\Omega}}\right|^2\right) = (\Omega - \Omega)^c)$$

$$\iff (T - T) \cap (\Omega - \Omega) = \{0\}$$

 \triangleright Having T^* as spectrum

$$\iff \left|\widehat{\mathbf{1}_{\Omega}}\right|^{2} \text{ tiles with } T^{*} \text{ (spectrality as tiling)}$$

$$\iff T \setminus \{0\} \subseteq (\Omega - \Omega)^{c},$$

$$(\text{since } \widehat{\delta_{T^{*}}} = \delta_{T}, \ Z\left(\left|\widehat{\mathbf{1}_{\Omega}}\right|^{2}\right) = (\Omega - \Omega)^{c})$$

$$\iff (T - T) \cap (\Omega - \Omega) = \{0\}$$

$$\iff \Omega + T \text{ is a packing (i.e. no overlaps)}$$

Lattice Fuglede is true (Fuglede 1974)

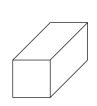
Having T^* as spectrum $\iff \left|\widehat{\mathbf{1}_{\Omega}}\right|^2 \text{ tiles with } T^* \text{ (spectrality as tiling)} \\ \iff T \setminus \{0\} \subseteq (\Omega - \Omega)^c, \\ \text{ (since } \widehat{\delta_{T^*}} = \delta_T, \ Z\left(\left|\widehat{\mathbf{1}_{\Omega}}\right|^2\right) = (\Omega - \Omega)^c) \\ \iff (T - T) \cap (\Omega - \Omega) = \{0\} \\ \iff \Omega + T \text{ is a packing (i.e. no overlaps)} \\ \iff \Omega + T \text{ is a tiling} \\ \text{ (by volume-density matching \& periodicity)}.$

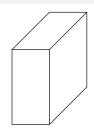
Example: filling a box with 2 kinds of bricks)

Two types of bricks:

$$A = a_1 \times a_2 \times a_3$$
 and

$$B=b_1\times b_2\times b_3.$$





• When can we fill a box Q of dimensions

$$q_1 \times q_2 \times q_3$$

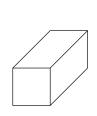
using the bricks A and B? Rotations of the bricks are not allowed.

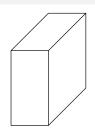
Example: filling a box with 2 kinds of bricks)

Two types of bricks:

$$A = a_1 \times a_2 \times a_3$$
 and

$$B=b_1\times b_2\times b_3.$$





• When can we fill a box Q of dimensions

$$q_1 \times q_2 \times q_3$$

using the bricks A and B? Rotations of the bricks are not allowed.

THEOREM (BOWER AND MICHAEL, 2004)

 \iff can cut the box Q into 2 boxes, filling one with brick A, the other with brick B.

True in all dimensions.

FILLING THE BOX, BEFORE AND AFTER

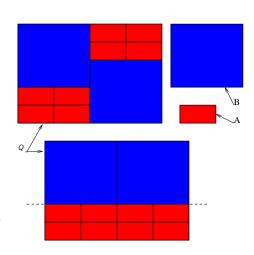
Example:

 $\overline{A: 4 \times 2}$

 $B: 8 \times 7$,

 $Q: 16 \times 11.$

We cut the box horizontally



• Fourier transform of f:

$$\widehat{f}(\xi,\eta) = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i(\xi x + \eta y)} dx dy.$$

• Fourier transform of f:

$$\widehat{f}(\xi,\eta) = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i(\xi x + \eta y)} dx dy.$$

Box

$$\textit{C} = \left(-\frac{\textit{c}_1}{2}, \frac{\textit{c}_1}{2}\right) \times \left(-\frac{\textit{c}_2}{2}, \frac{\textit{c}_2}{2}\right)$$

$$\widehat{\mathbf{1}_C}(\xi,\eta) = \frac{\sin(\pi c_1 \xi)}{\xi} \cdot \frac{\sin(\pi c_2 \eta)}{\eta}.$$

• Fourier transform of f:

$$\widehat{f}(\xi,\eta) = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i(\xi x + \eta y)} dx dy.$$

Box

$$\textit{C} = \left(-\frac{\textit{c}_1}{2}, \frac{\textit{c}_1}{2}\right) \times \left(-\frac{\textit{c}_2}{2}, \frac{\textit{c}_2}{2}\right)$$

$$\widehat{\mathbf{1}_C}(\xi,\eta) = \frac{\sin(\pi c_1 \xi)}{\xi} \cdot \frac{\sin(\pi c_2 \eta)}{\eta}.$$

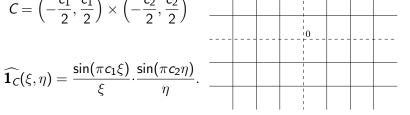
• Where does $\widehat{\mathbf{1}_{\mathcal{C}}}(\xi,\eta)$ vanish?

• Fourier transform of f:

$$\widehat{f}(\xi,\eta) = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i(\xi x + \eta y)} dx dy.$$

Box

$$C = \left(-\frac{c_1}{2}, \frac{c_1}{2}\right) \times \left(-\frac{c_2}{2}, \frac{c_2}{2}\right)$$



- Where does $\widehat{\mathbf{1}_{C}}(\xi, \eta)$ vanish?
- When $(0 \neq \xi$ is a multiple of $\frac{1}{G}$) or $(0 \neq \eta$ is a multiple of $\frac{1}{G}$).

Brick A at locations T, brick B at locations S:

$$\underline{\mathsf{Filling box } Q:} \ \forall x \in \mathbb{R}^2: \ \mathbf{1}_Q(x) = \sum_{t \in T} \mathbf{1}_A(x-t) + \sum_{s \in S} \mathbf{1}_B(x-s).$$

Brick A at locations T, brick B at locations S:

$$\underline{\mathsf{Filling box } Q:} \ \forall x \in \mathbb{R}^2: \ \mathbf{1}_Q(x) = \sum_{t \in T} \mathbf{1}_A(x-t) + \sum_{s \in S} \mathbf{1}_B(x-s).$$

Or:
$$\mathbf{1}_Q = \delta_T * \mathbf{1}_A + \delta_S * \mathbf{1}_B$$
 where

$$\delta_{\mathcal{T}} = \sum_{t \in \mathcal{T}} \delta_t, \quad \delta_{\mathcal{S}} = \sum_{s \in \mathcal{S}} \delta_s \quad \big(\delta_{\textit{a}} = \text{point mass at } \textit{a}\big).$$

Brick A at locations T, brick B at locations S:

$$\underline{\mathsf{Filling box } Q:} \ \forall x \in \mathbb{R}^2: \ \mathbf{1}_Q(x) = \sum_{t \in T} \mathbf{1}_A(x-t) + \sum_{s \in S} \mathbf{1}_B(x-s).$$

Or:
$$\mathbf{1}_Q = \delta_T * \mathbf{1}_A + \delta_S * \mathbf{1}_B$$
 where

$$\delta_{\mathcal{T}} = \sum_{t \in \mathcal{T}} \delta_t, \quad \delta_{\mathcal{S}} = \sum_{s \in \mathcal{S}} \delta_s \quad \big(\delta_{\textit{a}} = \text{point mass at } \textit{a}\big).$$

► Fourier transform of this identity gives:

$$\forall \xi, \eta \in \mathbb{R} : \widehat{\mathbf{1}_{Q}}(\xi, \eta) = \phi_{T}(\xi, \eta)\widehat{\mathbf{1}_{A}}(\xi, \eta) + \phi_{S}(\xi, \eta)\widehat{\mathbf{1}_{B}}(\xi, \eta)$$

Brick A at locations T, brick B at locations S:

$$\underline{\mathsf{Filling box } Q:} \ \forall x \in \mathbb{R}^2: \ \mathbf{1}_Q(x) = \sum_{t \in T} \mathbf{1}_A(x-t) + \sum_{s \in S} \mathbf{1}_B(x-s).$$

Or:
$$\mathbf{1}_Q = \delta_T * \mathbf{1}_A + \delta_S * \mathbf{1}_B$$
 where

$$\delta_{\mathcal{T}} = \sum_{t \in \mathcal{T}} \delta_t, \quad \delta_{\mathcal{S}} = \sum_{s \in \mathcal{S}} \delta_s \quad \big(\delta_{\textit{a}} = \text{point mass at } \textit{a}\big).$$

► Fourier transform of this identity gives:

$$\forall \xi, \eta \in \mathbb{R} : \widehat{\mathbf{1}_{Q}}(\xi, \eta) = \phi_{T}(\xi, \eta)\widehat{\mathbf{1}_{A}}(\xi, \eta) + \phi_{S}(\xi, \eta)\widehat{\mathbf{1}_{B}}(\xi, \eta)$$

 $lackbox{ Common zeros}$ of $\widehat{\mathbf{1}_A}$ and $\widehat{\mathbf{1}_B}$ are also zeros of $\widehat{\mathbf{1}_{Q}}$.

▶ Brick A at locations T, brick B at locations S:

$$\underline{\mathsf{Filling box } Q:} \ \forall x \in \mathbb{R}^2: \ \mathbf{1}_Q(x) = \sum_{t \in T} \mathbf{1}_A(x-t) + \sum_{s \in S} \mathbf{1}_B(x-s).$$

Or: $\mathbf{1}_Q = \delta_T * \mathbf{1}_A + \delta_S * \mathbf{1}_B$ where

$$\delta_{\mathcal{T}} = \sum_{t \in \mathcal{T}} \delta_t, \quad \delta_{\mathcal{S}} = \sum_{s \in \mathcal{S}} \delta_s \quad \big(\delta_{\textit{a}} = \text{point mass at } \textit{a}\big).$$

► Fourier transform of this identity gives:

$$\forall \xi, \eta \in \mathbb{R}: \ \widehat{\mathbf{1}_{Q}}(\xi, \eta) = \phi_{T}(\xi, \eta)\widehat{\mathbf{1}_{A}}(\xi, \eta) + \phi_{S}(\xi, \eta)\widehat{\mathbf{1}_{B}}(\xi, \eta)$$

- $lackbox{ Common zeros of } \widehat{\mathbf{1}_A}$ and $\widehat{\mathbf{1}_B}$ are also zeros of $\widehat{\mathbf{1}_{Q^{\cdot}}}$
- We have $Q = \left(-\frac{1}{2}, \frac{1}{2}\right) \times \left(-\frac{1}{2}, \frac{1}{2}\right)$ hence

$$\widehat{\mathbf{1}_Q}(\xi,\eta) = 0 \Longleftrightarrow [\xi \in \mathbb{Z} \setminus \{0\} \text{ or } \eta \in \mathbb{Z} \setminus \{0\}]$$

Consequences of the common zeros

 $ightharpoonup \widehat{\mathbf{1}_Q}$ vanishes at

$$(1/a_1,1/b_2)\in \left(\left\{rac{1}{a_1}
ight\} imes \mathbb{R}
ight)\cap \left(\mathbb{R} imes \left\{rac{1}{b_2}
ight\}
ight).$$

Similarly at $(1/b_1, 1/a_2)$.

▶ So $\left(\frac{1}{a_1} \in \mathbb{Z} \text{ or } \frac{1}{b_2} \in \mathbb{Z}\right)$ and $\left(\frac{1}{b_1} \in \mathbb{Z} \text{ or } \frac{1}{a_2} \in \mathbb{Z}\right)$.

Consequences of the common zeros

 $ightharpoonup \widehat{\mathbf{1}_Q}$ vanishes at

$$(1/a_1,1/b_2)\in \left(\left\{rac{1}{a_1}
ight\} imes \mathbb{R}
ight)\cap \left(\mathbb{R} imes \left\{rac{1}{b_2}
ight\}
ight).$$

Similarly at $(1/b_1, 1/a_2)$.

- ▶ So $\left(\frac{1}{a_1} \in \mathbb{Z} \text{ or } \frac{1}{b_2} \in \mathbb{Z}\right)$ and $\left(\frac{1}{b_1} \in \mathbb{Z} \text{ or } \frac{1}{a_2} \in \mathbb{Z}\right)$.
- ▶ If $\frac{1}{a_1}, \frac{1}{a_2} \in \mathbb{Z}$ then brick A can fill box Q alone. If $\frac{1}{b_1}, \frac{1}{b_2} \in \mathbb{Z}$ then brick B can fill box Q alone.

Consequences of the common zeros

 $ightharpoonup \widehat{\mathbf{1}_Q}$ vanishes at

$$(1/a_1,1/b_2)\in \left(\left\{rac{1}{a_1}
ight\} imes \mathbb{R}
ight)\cap \left(\mathbb{R} imes \left\{rac{1}{b_2}
ight\}
ight).$$

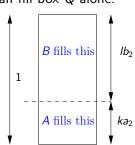
Similarly at $(1/b_1, 1/a_2)$.

- ▶ So $\left(\frac{1}{a_1} \in \mathbb{Z} \text{ or } \frac{1}{b_2} \in \mathbb{Z}\right)$ and $\left(\frac{1}{b_1} \in \mathbb{Z} \text{ or } \frac{1}{a_2} \in \mathbb{Z}\right)$.
- If $\frac{1}{a_1}, \frac{1}{a_2} \in \mathbb{Z}$ then brick A can fill box Q alone. If $\frac{1}{b_1}, \frac{1}{b_2} \in \mathbb{Z}$ then brick B can fill box Q alone.

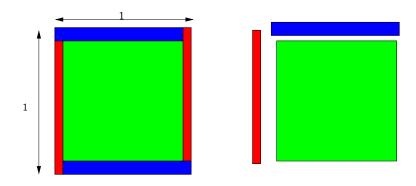
Let $\frac{1}{a_1}, \frac{1}{b_1} \in \mathbb{Z}$. Crossing the box along the *y*-axis:

$$1=ka_2+lb_2,$$

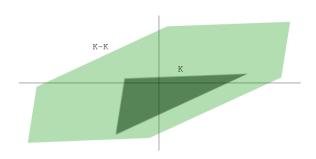
for some $k, l \in \mathbb{Z}$.



THEOREM NOT TRUE FOR 3 BRICKS



Brunn-Minkowski Ineq. for convex bodies



THEOREM

If $K \subseteq \mathbb{R}^d$ is a convex body then

$$|K - K| \ge 2^d |K|,$$

with equality **if and only if** K is symmetric: K = -K.

▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.

- ▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.
- ▶ Packing: $(K K) \cap (\Lambda \Lambda) = \{0\}$

- ▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.
- ▶ Packing: $(K K) \cap (\Lambda \Lambda) = \{0\}$
- $ightharpoonup L := \frac{1}{2}(K K)$ is convex and L L = K K (easy)

- ▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.
- ▶ Packing: $(K K) \cap (\Lambda \Lambda) = \{0\}$
- ▶ $L := \frac{1}{2}(K K)$ is convex and L L = K K (easy)
- ► Then $(L L) \cap (\Lambda \Lambda) = \{0\}$ (packing)

Convex translational tiles are symmetric

- ▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.
- ▶ Packing: $(K K) \cap (\Lambda \Lambda) = \{0\}$
- ▶ $L := \frac{1}{2}(K K)$ is convex and L L = K K (easy)
- ► Then $(L L) \cap (\Lambda \Lambda) = \{0\}$ (packing)
- ▶ Brunn-Minkowski: |L| > |K| if K not symmetric

Convex translational tiles are symmetric

- ▶ Suppose K is convex and $K + \Lambda = \mathbb{R}^d$ is a tiling.
- ▶ Packing: $(K K) \cap (\Lambda \Lambda) = \{0\}$
- L := $\frac{1}{2}(K K)$ is convex and L L = K K (easy)
- ► Then $(L L) \cap (\Lambda \Lambda) = \{0\}$ (packing)
- ▶ Brunn-Minkowski: |L| > |K| if K not symmetric
- ightharpoonup Contradiction: in the packing $L + \Lambda$ we must have

$$|L| \cdot \operatorname{dens} \Lambda \leq 1$$
,

but $|K| \cdot \operatorname{dens} \Lambda = 1$ from the tiling $K + \Lambda$

▶ Suppose K is convex, **not symmetric** and has spectrum Λ . Assume also |K| = 1.

- Suppose K is convex, **not symmetric** and has spectrum Λ . Assume also |K| = 1.
- ▶ The difference body D = K K (convex, symmetric)

- Suppose K is convex, **not symmetric** and has spectrum Λ . Assume also |K|=1.
- ▶ The difference body D = K K (convex, symmetric)
- \triangleright \land being a spectrum of K is equivalent to:

$$\left|\widehat{\mathbf{1}_{\mathcal{K}}}\right|^2 + \Lambda$$
 being a tiling at level $\left|\mathcal{K}\right|^2 = 1$, so $\operatorname{dens} \Lambda = 1$.

- Suppose K is convex, **not symmetric** and has spectrum Λ . Assume also |K|=1.
- ▶ The difference body D = K K (convex, symmetric)
- \triangleright \land being a spectrum of K is equivalent to:

$$\left|\widehat{\mathbf{1}_{K}}\right|^{2}+\Lambda$$
 being a tiling at level $\left|K\right|^{2}=1$, so dens $\Lambda=1$.

▶ Define
$$f = \left|\widehat{\mathbf{1}_K}\right|^2$$
. Then $\widehat{f} = \mathbf{1}_K * \mathbf{1}_{-K}$, so $f + \Lambda$ is a tiling at level 1

- Suppose K is convex, **not symmetric** and has spectrum Λ . Assume also |K|=1.
- ▶ The difference body D = K K (convex, symmetric)
- \blacktriangleright Λ being a spectrum of K is equivalent to:

$$\left|\widehat{\mathbf{1}_{\mathcal{K}}}\right|^2 + \Lambda$$
 being a tiling at level $\left|\mathcal{K}\right|^2 = 1$, so $\operatorname{dens} \Lambda = 1$.

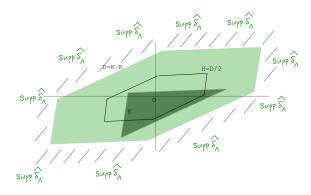
▶ Define $f = \left|\widehat{\mathbf{1}_K}\right|^2$. Then $\widehat{f} = \mathbf{1}_K * \mathbf{1}_{-K}$, so $f + \Lambda$ is a tiling at level 1

► Fourier condition for tiling:

$$\operatorname{supp} \widehat{\delta_{\Lambda}} \subseteq \{0\} \cup \Big\{ \widehat{\mathit{f}} = 0 \Big\}.$$

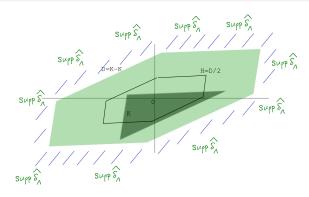
which becomes

$$\operatorname{supp} \widehat{\delta_{\Lambda}} \subseteq \{0\} \cup D^c$$



▶ Let H = D/2, so that |H| > |K| = 1 (Brunn-Minkowski)

Convex spectral sets are symmetric

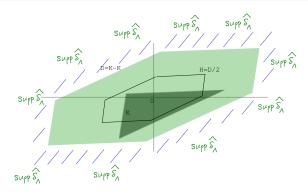


▶ Let
$$H = D/2$$
, so that $|H| > |K| = 1$ (Brunn-Minkowski)

▶ Let
$$\widehat{g} = \mathbf{1}_H * \mathbf{1}_H$$
, so that $g = \left|\widehat{\mathbf{1}_H}\right|^2$, supp $\widehat{g} \subseteq D$ so

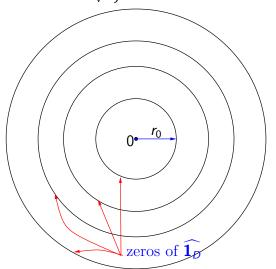
$$g + \Lambda$$
 is a tiling at level $\int g \cdot \operatorname{dens} \Lambda = |H|$

Convex spectral sets are symmetric



- ▶ Let H = D/2, so that |H| > |K| = 1 (Brunn-Minkowski)
- ▶ Let $\widehat{g} = \mathbf{1}_H * \mathbf{1}_H$, so that $g = \left|\widehat{\mathbf{1}}_H\right|^2$, supp $\widehat{g} \subseteq D$ so $g + \Lambda$ is a tiling at level $\int g \cdot \operatorname{dens} \Lambda = |H|$
- ▶ But $g \ge 0$ and $g(0) = |H|^2 > |H|$, contradiction.

 $lackbox{D} = \left\{ x \in \mathbb{R}^2: \ |x| \leq rac{1}{\sqrt{\pi}}
ight\}$ is the unit-area disk in the plane.



▶ If Λ is a spectrum then $\Lambda - \Lambda \subseteq \{0\} \cup Z(\widehat{\mathbf{1}_D})$

- ▶ If Λ is a spectrum then $\Lambda \Lambda \subseteq \{0\} \cup Z(\widehat{\mathbf{1}_D})$
- $ightharpoonup Z(\widehat{\mathbf{1}_D})$ is a collection of 0-centered circles at radii

$$1.08098 = r_0 < r_1 < r_2 < \cdots$$

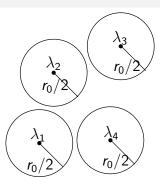
(from the Bessel function $\widehat{\mathbf{1}_D}(\xi) = J_1((2\sqrt{\pi}|\xi|))$

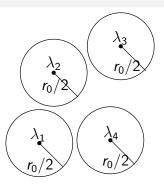
- ▶ If Λ is a spectrum then $Λ Λ ⊆ {0} ∪ Z(\widehat{\mathbf{1}_D})$
- $ightharpoonup Z(\widehat{\mathbf{1}_D})$ is a collection of 0-centered circles at radii

$$1.08098 = r_0 < r_1 < r_2 < \cdots$$

(from the Bessel function $\widehat{\mathbf{1}_D}(\xi) = J_1((2\sqrt{\pi}|\xi|))$

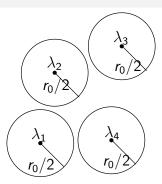
Placing a disk of radius $r_0/2$ around each point of Λ is a packing.





► (Thue) The density of any packing of disks in the plane is at most

$$\pi/\sqrt{12} = 0.90689968211\cdots$$
 .



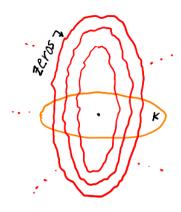
► (Thue) The density of any packing of disks in the plane is at most

$$\pi/\sqrt{12} = 0.90689968211 \cdots$$
 .

Contradiction: dens $\Lambda = 1$ hence this packing has density

$$1 \cdot \pi \frac{r_0^2}{4} = 0.917751703 \cdots,$$

SMOOTH CONVEX BODY FOURIER ZEROS



 $K\subseteq\mathbb{R}^d$ is a smooth convex body, K^o its polar (also smooth). If $\widehat{\mathbf{1}_K}(\xi)=0$ then, as $|\xi|\to\infty$

$$\|\xi\|_{K^o}=\left(rac{\pi}{2}+rac{d\pi}{4}
ight)+k\pi+o(1), \quad k\in\mathbb{Z}.$$

Why smooth convex bodies are not spectral

► A result in *Geometric Ramsey Theory*: Bourgain, 1986, Furstenberg, Katznelson and Weiss, 1990, K., 2004:

If $E\subseteq \mathbb{R}^d$ has positive upper *Lebesgue* density then $E \text{ defines all large-enough } \|\cdot\|_{K^o}\text{-distances}.$

Why smooth convex bodies are not spectral

► A result in *Geometric Ramsey Theory*: Bourgain, 1986, Furstenberg, Katznelson and Weiss, 1990, K., 2004:

If $E\subseteq \mathbb{R}^d$ has positive upper *Lebesgue* density then $E \text{ defines all large-enough } \|\cdot\|_{K^o}\text{-distances}.$

▶ Or, any separated Λ of positive upper counting density defines all large-enough distances up to any $\epsilon > 0$.

Why smooth convex bodies are not spectral

► A result in *Geometric Ramsey Theory*: Bourgain, 1986, Furstenberg, Katznelson and Weiss, 1990, K., 2004:

If $E \subseteq \mathbb{R}^d$ has positive upper *Lebesgue* density then

E defines all large-enough $\|\cdot\|_{K^o}$ -distances.

- ▶ Or, any *separated* Λ of positive upper *counting* density defines all large-enough distances up to any $\epsilon > 0$.
- \blacktriangleright If Λ spectrum of K then this contradicts the asymptotics

$$\|\lambda_1 - \lambda_2\|_{K^o} = \left(\frac{\pi}{2} + \frac{d\pi}{4}\right) + k\pi + o(1).$$

THE DISK: ORTHOGONAL FAMILIES ARE FINITE

▶ losevich, Katz & Pedersen (2001): There is no orthogonal basis of exponentials for the disk.

THE DISK: ORTHOGONAL FAMILIES ARE FINITE

- Iosevich, Katz & Pedersen (2001): There is no orthogonal basis of exponentials for the disk.
- ► Fuglede (2001), losevich & Rudnev (2003): Every orthogonal set of exponentials for the disk is finite.

THE DISK: ORTHOGONAL FAMILIES ARE FINITE

- losevich, Katz & Pedersen (2001): There is no orthogonal basis of exponentials for the disk.
- ► Fuglede (2001), Iosevich & Rudnev (2003): Every orthogonal set of exponentials for the disk is finite.

STILL UNKNOWN

Is there an upper bound for the size of an orthogonal set?

DISK: SIZE AND GROWTH OF ORTHOGONAL FAMILIES

Iosevich & Jaming (2008):
If Λ is orthogonal for the disk then

$$\left|\Lambda\cap[-R,R]^2\right|=O(R).$$

Implied constant does not depend on Λ , R.

DISK: SIZE AND GROWTH OF ORTHOGONAL FAMILIES

losevich & Jaming (2008): If Λ is orthogonal for the disk then

$$\left|\Lambda\cap[-R,R]^2\right|=O(R).$$

Implied constant does not depend on Λ , R.

Iosevich & K. (2011)

If Δ is the smallest distance between two elements of Λ then

$$|\Lambda| = O(\Delta),$$

and also
$$|\Lambda \cap [-R,R]^2| = O(R^{2/3})$$
.

Improve this upper bound. problem

- ► Fourier Transform: $\widehat{f}(\xi) = \int_{\mathbb{R}^2} e^{-2\pi i \xi \cdot x} f(x) dx$.

- ► Fourier Transform: $\widehat{f}(\xi) = \int_{\mathbb{R}^2} e^{-2\pi i \xi \cdot x} f(x) dx$.
- $lack \Lambda$ is orthogonal $\Longleftrightarrow \Lambda \Lambda \subseteq \{0\} \cup \left\{\widehat{\mathbf{1}_D} = 0\right\}$

- ► Fourier Transform: $\widehat{f}(\xi) = \int_{\mathbb{R}^2} e^{-2\pi i \xi \cdot x} f(x) dx$.
- $\blacktriangleright \ \, \Lambda \text{ is orthogonal} \Longleftrightarrow \Lambda \Lambda \subseteq \{0\} \cup \left\{\widehat{\mathbf{1}_D} = 0\right\}$
- For the unit disk D the FT is $\widehat{\mathbf{1}_D}$ is radial.

Zero radii: roots $0 < r_1 < r_2 < \cdots$ of Bessel function $J_1(2\pi r)$.

- ► Fourier Transform: $\widehat{f}(\xi) = \int_{\mathbb{R}^2} e^{-2\pi i \xi \cdot x} f(x) dx$.
- lacksquare Λ is orthogonal $\Longleftrightarrow \Lambda \Lambda \subseteq \{0\} \cup \left\{\widehat{\mathbf{1}_D} = 0\right\}$
- For the unit disk D the FT is $\widehat{\mathbf{1}}_D$ is radial.

Zero radii: roots $0 < r_1 < r_2 < \cdots$ of Bessel function $J_1(2\pi r)$.

► Known asymptotic estimates:

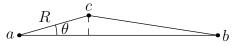
$$r_n = \frac{1}{2}n + \frac{1}{8} + O\left(\frac{1}{n}\right)$$

 $r_m - r_n = \frac{1}{2}(m-n) + O\left(\frac{K}{n^2}\right), \quad (m > n).$

Asymptotics $\implies r_m - r_n$ far from other r_k 's.

- Asymptotics $\implies r_m r_n$ far from other r_k 's.
- ▶ Hence no three (far) orthogonal points are on a line.

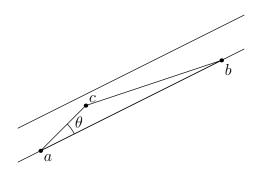
- Asymptotics $\implies r_m r_n$ far from other r_k 's.
- ▶ Hence no three (far) orthogonal points are on a line.
- ► We quantify this:



- Asymptotics $\implies r_m r_n$ far from other r_k 's.
- ▶ Hence no three (far) orthogonal points are on a line.
- ► We quantify this:

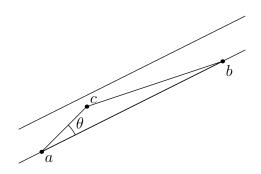
- $a, b, c \in \mathbb{R}^2$ are orthogonal exponentials.
 - $|a-b|, |b-c|, |c-a| \ge R$, root asymptotics \implies all angles but one are $\ge \frac{C}{\sqrt{R}}$.

ORTHOGONAL EXPONENTIALS IN A STRIP



Any strip of width \sqrt{L} cannot contain more than two orthogonal points of distance $\gtrsim L$.

ORTHOGONAL EXPONENTIALS IN A STRIP



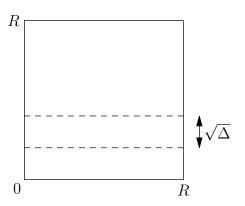
- Any strip of width \sqrt{L} cannot contain more than two orthogonal points of distance $\gtrsim L$.
- ▶ If $\Delta = \min_{\lambda \neq \mu \in \Lambda} |\lambda \mu|$ then in a strip of width $\Delta^{1/2}$ there are at most 2 points of Λ.

Previous bound on Λ (Strip Covering)



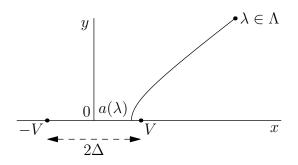
▶ Cover $[0, R]^2$ by $O\left(\frac{R}{\Delta^{1/2}}\right)$ strips of width $\Delta^{1/2}$.

Previous bound on Λ (strip covering)



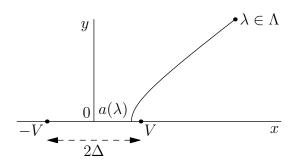
- ► Cover $[0, R]^2$ by $O\left(\frac{R}{\Delta^{1/2}}\right)$ strips of width $\Delta^{1/2}$.
- ightharpoonup Each of them has at most two points of Λ.
- lacksquare Total is $O\left(rac{R}{\Delta^{1/2}}
 ight)=O(R)$ as $\Delta\gtrsim 1$ (losevich & Jaming).

Location of λ with respect to 2 fixed points



- $ightharpoonup V = (\Delta, 0)$ and $-V = (-\Delta, 0)$ are in Λ .
- \triangleright 2 Δ is the smallest distance in Λ .

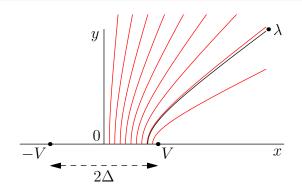
Location of λ with respect to 2 fixed points



- $V = (\Delta, 0)$ and $V = (-\Delta, 0)$ are in Λ .
- \triangleright 2 Δ is the smallest distance in Λ .
- ▶ Consider the hyperbola with foci at $\pm V$, through λ .
- ▶ By the root asymptotics

$$2a(\lambda) = |\lambda + V| - |\lambda - V| = \frac{k}{2} + O(\Delta|\lambda|^{-2}).$$

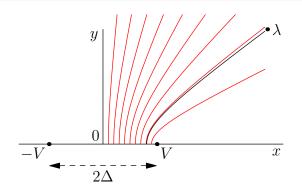
The hyperbolas with foci at $\pm V$



ightharpoonup Hyperbola H_k is the locus:

$$|p+V|-|p-V|=rac{k}{2},\quad k=0,1,\ldots,\lfloor 4\Delta \rfloor.$$

The hyperbolas with foci at $\pm V$



 \blacktriangleright Hyperbola H_k is the locus:

$$|p+V|-|p-V|=\frac{k}{2}, \quad k=0,1,\ldots,\lfloor 4\Delta \rfloor.$$

- ▶ Have $O(\Delta)$ of them.
- ▶ Each λ is "near" some H_k .

 $|\Lambda| = O(\Delta)$. Covering by hyperbolas.

$|\Lambda| = O(\Delta)$. Covering by hyperbolas.

In region $|\lambda| > \Delta^{3/2}$ each λ is $\Delta^{1/2}$ near some asymptote to H_k .

$|\Lambda| = O(\Delta)$. Covering by hyperbolas.

- ▶ In region $|\lambda| > \Delta^{3/2}$ each λ is $\Delta^{1/2}$ near some asymptote to H_k .
- ▶ A $\Delta^{1/2}$ -strip around the asymptote contains at most 2 λ 's.

$|\Lambda| = O(\Delta)$. Covering by hyperbolas.

- ▶ In region $|\lambda| > \Delta^{3/2}$ each λ is $\Delta^{1/2}$ near some asymptote to H_k .
- A $\Delta^{1/2}$ -strip around the asymptote contains at most 2 λ 's.
- ▶ $O(\Delta)$ number of strips $\Longrightarrow O(\Delta)$ λ 's.

$|\Lambda| = O(\Delta)$. Covering by hyperbolas.

- ▶ In region $|\lambda| > \Delta^{3/2}$ each λ is $\Delta^{1/2}$ near some asymptote to H_k .
- A $\Delta^{1/2}$ -strip around the asymptote contains at most 2 λ 's.
- ▶ $O(\Delta)$ number of strips $\Longrightarrow O(\Delta)$ λ 's.
- ▶ In disk of radius $\Delta^{3/2}$ apply previous

$$O(R\Delta^{-1/2})$$

bound to get $O(\Delta)$ points.

$$\left|\Lambda\cap[-R,R]^2\right|=O(R^{2/3}).$$

▶ Bound 1, from strip covering:

$$\left|\Lambda\cap[-R,R]^2\right|=O\left(\frac{R}{\Delta^{1/2}}\right).$$

Bound 2, from covering by hyperbolas:

$$|\Lambda| = O(\Delta).$$

▶ Minimum of two bounds is

$$\left|\Lambda\cap[-R,R]^2\right|=O(R^{2/3}).$$

➤ Convex tiles are lattice tiles (Venkov, 1954, and McMullen, 1980)

► Convex tiles are lattice tiles (Venkov, 1954, and McMullen, 1980)

Convex spectral bodies must be symmetric (K., 2000). Same true for convex tiles (Minkowski).

► Convex tiles are lattice tiles (Venkov, 1954, and McMullen, 1980)

- Convex spectral bodies must be symmetric (K., 2000). Same true for convex tiles (Minkowski).
- "Curved" convex bodies are not spectral (losevich, Katz and Tao, 2001).

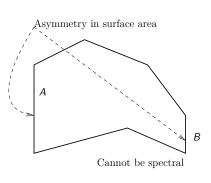
► Convex tiles are lattice tiles (Venkov, 1954, and McMullen, 1980)

- Convex spectral bodies must be symmetric (K., 2000). Same true for convex tiles (Minkowski).
- "Curved" convex bodies are not spectral (losevich, Katz and Tao, 2001).
- ▶ Conjecture true for convex bodies in \mathbb{R}^2 (losevich, Katz and Tao, 2003).
 - \implies only parellelograms and symmetric hexagons are spectral among planar convex sets.

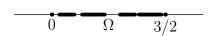
For each normal direction of a spectral polytope the same area measure looks forward and backward.

(K. and Papadimitrakis, 2002)

Same is obviously true for polytopes that are tiles.

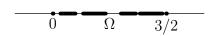


▶ If $\Omega \subseteq (0, \frac{3}{2} - \epsilon)$ and $|\Omega| = 1$



 \implies conjecture true for Ω (K. and Łaba, 2001).

▶ If $\Omega \subseteq (0, \frac{3}{2} - \epsilon)$ and $|\Omega| = 1$



 \implies conjecture true for Ω (K. and Łaba, 2001).

- ▶ Conjecture true for unions of 2 intervals in \mathbb{R} (Łaba, 2001).
- ► "Tiling ⇒ Spectral" for 3 intervals (Bose, Kumar, Krishnan and Madan, 2010)
- ► "Spectral ⇒ Tiling" for 3 intervals not known.

DISASTER: FAILURE FOR "SPECTRAL ⇒ TILE"

▶ Fails in direction "spectral \implies tile" for $d \ge 5$ (Tao, 2003).

DISASTER: FAILURE FOR "SPECTRAL ⇒ TILE"

- ▶ Fails in direction "spectral \implies tile" for $d \ge 5$ (Tao, 2003).
- First constructed counterexamples in finite groups: example in $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_d}$ lifts to \mathbb{Z}^d , then \mathbb{R}^d .

Disaster: Failure for "spectral \Longrightarrow tile"

- ▶ Fails in direction "spectral \Longrightarrow tile" for $d \ge 5$ (Tao, 2003).
- First constructed counterexamples in finite groups: example in $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_d}$ lifts to \mathbb{Z}^d , then \mathbb{R}^d .
- ▶ In the group \mathbb{Z}_2^n orthogonal exponentials (characters) on

$$\Omega = \{e_1, e_2, \dots, e_n\}, \ (\{e_j\} \text{ a "standard basis"}),$$

are given by a $n \times n$ Hadamard matrix.

Disaster: Failure for "spectral \Longrightarrow tile"

- ▶ Fails in direction "spectral \implies tile" for $d \ge 5$ (Tao, 2003).
- First constructed counterexamples in finite groups: example in $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_d}$ lifts to \mathbb{Z}^d , then \mathbb{R}^d .
- ▶ In the group \mathbb{Z}_2^n orthogonal exponentials (characters) on

$$\Omega = \{e_1, e_2, \dots, e_n\}, (\{e_j\} \text{ a "standard basis"}),$$

are given by a $n \times n$ Hadamard matrix.

► For example:

 12×12 Hadamard matrix \rightarrow spectral set of size 12 in $\mathbb{Z}_2^{12}.$

Not a tile as 12 does not divide 2^{12} .

DISASTER: FAILURE FOR "SPECTRAL \Longrightarrow TILE"

- ▶ Fails in direction "spectral \Longrightarrow tile" for $d \ge 5$ (Tao, 2003).
- First constructed counterexamples in finite groups: example in $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_d}$ lifts to \mathbb{Z}^d , then \mathbb{R}^d .
- ▶ In the group \mathbb{Z}_2^n orthogonal exponentials (characters) on

$$\Omega = \{e_1, e_2, \dots, e_n\}, (\{e_j\} \text{ a "standard basis"}),$$

are given by a $n \times n$ Hadamard matrix.

For example:

 12×12 Hadamard matrix \rightarrow spectral set of size 12 in \mathbb{Z}_2^{12} .

Not a tile as 12 does not divide 2^{12} .

Also for d = 3, 4 (Matolcsi, 2004, K. and Matolcsi, 2004).

More disaster: Failure for "Tile ⇒ spectral"

- ► Also in finite groups first.
- ► Harder than other direction:

no divisibility criterion for non-spectrality.

More disaster: Failure for "Tile ⇒ spectral"

- ► Also in finite groups first.
- ► Harder than other direction:

no divisibility criterion for non-spectrality.

Conjecture fails in "tile ⇒ spectral" direction for d = 5 (K. and Matolcsi, 2004).

More disaster: Failure for "tile \Longrightarrow spectral"

- ► Also in finite groups first.
- ► Harder than other direction:

no divisibility criterion for non-spectrality.

- Conjecture fails in "tile \Longrightarrow spectral" direction for d=5 (K. and Matolcsi, 2004).
- ▶ Also for d = 4 (Farkas and Révész, 2004).
- ▶ Also for d = 3 (Farkas, Matolcsi and Mora, 2005).

More disaster: Failure for "tile ⇒ spectral"

- Also in finite groups first.
- Harder than other direction:

no divisibility criterion for non-spectrality.

- ▶ Conjecture fails in "tile \Longrightarrow spectral "direction for d=5(K. and Matolcsi, 2004).
- Also for d = 4 (Farkas and Révész, 2004).
- Also for d = 3 (Farkas, Matolcsi and Mora, 2005).
- Conjecture still open in both directions for d = 1, 2.

Varying the group: the easy case of \mathbb{Z}_p

- ▶ Only trivial tiles: \mathbb{Z}_p or single points. Obviously spectral.
- ▶ Are there any other spectral sets $E \subseteq \mathbb{Z}_p$?

Varying the group: the easy case of \mathbb{Z}_p

- ▶ Only trivial tiles: \mathbb{Z}_p or single points. Obviously spectral.
- ▶ Are there any other spectral sets $E \subseteq \mathbb{Z}_p$?
- ► Suppose *E* has two or more points. Then

$$\widehat{\mathbf{1}_E}(
u) = \sum_{j \in E} \mathrm{e}^{2\pi i j
u/p} = \sum_{j \in E} \zeta_
u^j$$

where $\zeta_{\nu}=e^{2\pi i \nu/p}$ is a *p*-th root of unity $(\nu \neq 0)$.

Varying the group: the easy case of \mathbb{Z}_p

- ▶ Only trivial tiles: \mathbb{Z}_p or single points. Obviously spectral.
- ▶ Are there any other spectral sets $E \subseteq \mathbb{Z}_p$?
- ► Suppose *E* has two or more points. Then

$$\widehat{\mathbf{1}_E}(
u) = \sum_{j \in E} e^{2\pi i j
u/p} = \sum_{j \in E} \zeta_{
u}^j$$

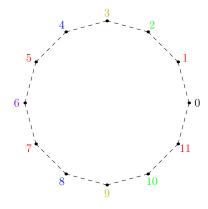
where $\zeta_{\nu}=e^{2\pi i\nu/p}$ is a *p*-th root of unity $(\nu\neq 0)$.

Minimal polynomial of ζ_{ν} is $\Phi_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$, so

$$\Phi_p(x) \mid \sum_{j \in E} x^j.$$

ightharpoonup So $E = \mathbb{Z}_p$.

THE NAME OF THE GAME: ALGEBRAIC CONJUGATES



Roots	{1,5,7,11}	{2, 10}	{3,9}	{4,8}	{6}	{0}
Polynomial	Φ_{12}	Φ_6	Φ_4	Φ3	Φ_2	Φ_1

Integer polynomials vanish on whole algebraic conjugacy classes.

VARYING THE GROUP: WHAT'S KNOWN

- Fuglede true in \mathbb{Z}_{p^m} (Łaba, 2002)
- "tile \implies spectral" OK in $\mathbb{Z}_{p^mq^n}$ (Łaba, 2002)
- ▶ Fuglede true in $\mathbb{Z}_p \times \mathbb{Z}_p$ (losevich, Mayeli, Pakianathan, 2015)
- ► Fuglede true in $\mathbb{Z}_p \times \mathbb{Z}_{p^2}$ (Shi, 2019)
- "tile \implies spectral" OK in \mathbb{Z}_p^3 (K., 2015 and Aten et al, 2015)
- ► Fuglede Conj. FAILS in \mathbb{Z}_p^4 for prime $p \ge 3$ (Ferguson and Sothanaphan, 2019)
- ► Fuglede true in \mathbb{Z}_{p^nq} (Malikiosis and K., 2016)
- ▶ Fuglede true in \mathbb{Z}_{pqr} (Shi, 2018) and \mathbb{Z}_{p^2qr} (Vizer, 2019)
- ▶ Fuglede true in $\mathbb{Z}_{p^nq^2}$ (Kiss, Malikiosis, Somlai and Vizer, 2018)
- ▶ p-adics: Fuglede true in \mathbb{Q}_p (Fan, Fan, Liao and Shi, 2015)
- "spectral \implies tile" in $\mathbb{Z}_{p^mq^n}$ (Malikiosis, 2020) but if $(p < q \text{ and } m \le 9 \text{ or } n \le 6)$ or $p^{m-2} < q^4$.
- "tile \implies spectral" in $\mathbb{Z}_{p_1^n p_2 \cdots p_k}$ (Malikiosis, 2020)

► *Minkowski*: If a convex polytope tiles space then it is symmetric with symmetric facets.

Minkowski: If a convex polytope tiles space then it is symmetric with symmetric facets.

Greenfeld and Lev, 2016: Spectral convex polytopes have symmetric facets.

► *Minkowski*: If a convex polytope tiles space then it is symmetric with symmetric facets.

Greenfeld and Lev, 2016: Spectral convex polytopes have symmetric facets.

▶ Greenfeld and Lev, 2016: Spectral convex polytopes in d = 3 are tiles.

Minkowski: If a convex polytope tiles space then it is symmetric with symmetric facets.

Greenfeld and Lev, 2016: Spectral convex polytopes have symmetric facets.

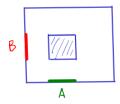
- ▶ Greenfeld and Lev, 2016: Spectral convex polytopes in d = 3 are tiles.
- ► Lev and Liu, 2019: Spectral convex polytopes are equidecomposable to cubes with finitely many translations.

► *Minkowski*: If a convex polytope tiles space then it is symmetric with symmetric facets.

Greenfeld and Lev, 2016: Spectral convex polytopes have symmetric facets.

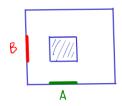
- ▶ Greenfeld and Lev, 2016: Spectral convex polytopes in d = 3 are tiles.
- ► Lev and Liu, 2019: Spectral convex polytopes are equidecomposable to cubes with finitely many translations.
- ► Lev and Matolcsi, 2019: Conjecture true for all convex polytopes, in all dimensions.

THE PRODUCT QUESTION



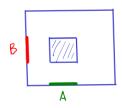
▶ A product set $A \times B \subseteq G_1 \times G_2$ tiles \iff A tiles G_1 and B tiles G_2 .

THE PRODUCT QUESTION



- ▶ A product set $A \times B \subseteq G_1 \times G_2$ tiles \iff A tiles G_1 and B tiles G_2 .
- ► Easy to see: A has spectrum Λ_1 and B has spectrum Λ_2 \Longrightarrow $A \times B$ has spectrum $\Lambda_1 \times \Lambda_2$.
- ▶ **Unknown:** If $A \times B$ is spectral must A and B also be?

THE PRODUCT QUESTION



- ▶ A product set $A \times B \subseteq G_1 \times G_2$ tiles \iff A tiles G_1 and B tiles G_2 .
- Easy to see: A has spectrum Λ_1 and B has spectrum $\Lambda_2 \implies A \times B$ has spectrum $\Lambda_1 \times \Lambda_2$.
- ▶ Unknown: If $A \times B$ is spectral must A and B also be?
- ▶ Greenfeld and Lev, 2016: Yes, if $A \subseteq \mathbb{R}$ is an interval.
- ▶ K., 2016: Yes, if $A \subseteq \mathbb{R}$ is a union of 2 intervals.
- ▶ Greenfeld and Lev, 2018: Yes, if $A \subseteq \mathbb{R}^2$ is a convex polygon.

Periodicity of spectra in d=1

▶ In d = 1 all tilings f + T are periodic if f is of compact support. (Leptin and Müller, 1991, K. and Lagarias, 1996).

Periodicity of spectra in d=1

- ▶ In d = 1 all tilings f + T are periodic if f is of compact support. (Leptin and Müller, 1991, K. and Lagarias, 1996).
- $lackbox{}\Omega\subseteq\mathbb{R}$ spectral means $\left|\widehat{\mathbf{1}_{\Omega}}
 ight|^2$ tiles $\mathbb{R}.$
- \blacktriangleright But $\left|\widehat{\mathbf{1}_{\Omega}}\right|^2$ is not of compact support.
- And there are *translational* tilings by unbounded tiles which are not periodic (K. and Lev, 2016).

Periodicity of spectra in d=1

- ▶ In d = 1 all tilings f + T are periodic if f is of compact support. (Leptin and Müller, 1991, K. and Lagarias, 1996).
- $lackbox{}\Omega\subseteq\mathbb{R}$ spectral means $\left|\widehat{\mathbf{1}_{\Omega}}
 ight|^2$ tiles $\mathbb{R}.$
- \blacktriangleright But $\left|\widehat{\mathbf{1}_{\Omega}}\right|^2$ is not of compact support.
- And there are *translational* tilings by unbounded tiles which are not periodic (K. and Lev, 2016).
- ▶ Still, all spectra for bounded $\Omega \subseteq \mathbb{R}$ are periodic Bose and Madan, 2010, K., 2011: for finite unions of intervals, and losevich and K., 2011: for general bounded sets.

The weak-tiling of Lev and Matolcsi (2019)

If Ω is spectral then Ω can weakly-tile its complement Ω^c : i.e. there exists a nonnegative measure μ such that

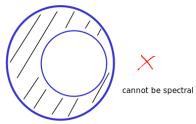
$$\mathbf{1}_{\Omega^c} = \mathbf{1}_{\Omega} * \mu.$$

The weak-tiling of Lev and Matolcsi (2019)

▶ If Ω is spectral then Ω can weakly-tile its complement Ω^c: i.e. there exists a nonnegative measure µ such that

$$\mathbf{1}_{\Omega^c} = \mathbf{1}_{\Omega} * \mu.$$

▶ Some immediate topological obstructions to spectrality:



• $\left(\Omega\subseteq G \text{ has spectrum }\Lambda\subseteq \widehat{G}\right)$ equivalent to: matrix $M_{\omega,\lambda}=\lambda(\omega)$ has orthogonal columns .

- $\left(\Omega\subseteq G \text{ has spectrum }\Lambda\subseteq \widehat{G}\right)$ equivalent to: matrix $M_{\omega,\lambda}=\lambda(\omega)$ has orthogonal columns .
- ▶ But then M has orthogonal rows as well so $\Omega \text{ has spectrum } \Lambda \Longleftrightarrow \Lambda \text{ has spectrum } \Omega.$

- $\left(\Omega\subseteq G \text{ has spectrum }\Lambda\subseteq \widehat{G}\right) \text{ equivalent to:}$ $\operatorname{matrix}\ M_{\omega,\lambda}=\lambda(\omega) \text{ has orthogonal columns }.$
- ▶ But then M has orthogonal rows as well so Ω has spectrum $\Lambda \longleftrightarrow \Lambda$ has spectrum Ω .
- ► In this case

$$\left|\widehat{\mathbf{1}_{\Omega}}\right|^2 + \Lambda = |\Omega|^2 = |\Lambda|^2 = \left|\widehat{\mathbf{1}_{\Lambda}}\right|^2 + \Omega \text{ are tilings}.$$

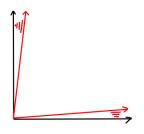
- $\left(\Omega\subseteq G \text{ has spectrum }\Lambda\subseteq \widehat{G}\right)$ equivalent to: matrix $M_{\omega,\lambda}=\lambda(\omega)$ has orthogonal columns .
- lackbox But then M has orthogonal rows as well so Ω has spectrum $\Lambda \Longleftrightarrow \Lambda$ has spectrum $\Omega.$
- ► In this case

$$\left|\widehat{\mathbf{1}_{\Omega}}\right|^2 + \Lambda = |\Omega|^2 = |\Lambda|^2 = \left|\widehat{\mathbf{1}_{\Lambda}}\right|^2 + \Omega \text{ are tilings}.$$

▶ But $\left|\widehat{\mathbf{1}}_{\Lambda}\right|^2(0) = |\Lambda|^2$ so Ω weak-tiles its complement with

$$\mu = \left|\widehat{\mathbf{1}}_{\Lambda}\right|^2 - |\Lambda|^2 \delta_0.$$

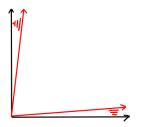
Relaxing orthogonality: Riesz bases



What if we do not insist on orthogonality? **Riesz basis** of exponentials: Must have

$$\sum_{\lambda} |a_{\lambda}|^2 pprox \left\| \sum_{\lambda} a_{\lambda} e^{2\pi i \lambda x} \right\|_2^2, \quad orall a_{\lambda}.$$

Relaxing orthogonality: Riesz bases



What if we do not insist on orthogonality? **Riesz basis** of exponentials: Must have

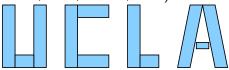
$$\sum_{\lambda} |a_{\lambda}|^2 \approx \left\| \sum_{\lambda} a_{\lambda} e^{2\pi i \lambda x} \right\|_2^2, \quad \forall a_{\lambda}.$$

- ▶ Main Question: Which domains $\Omega \subseteq \mathbb{R}^d$ admit a Riesz basis of exponentials?
- Major differences from spectrality. E.g., any RB can be perturbed.

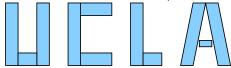
Finite unions of aligned rectangles in \mathbb{R}^d have RBs (Kozma and Nitzan, 2015 and 2016).

- Finite unions of aligned rectangles in \mathbb{R}^d have RBs (Kozma and Nitzan, 2015 and 2016).
- Any domain that tiles multiply by translations has a RB (Grepstad and Lev, 2012, and K., 2013).

- Finite unions of aligned rectangles in \mathbb{R}^d have RBs (Kozma and Nitzan, 2015 and 2016).
- Any domain that tiles multiply by translations has a RB (Grepstad and Lev, 2012, and K., 2013).



- Finite unions of aligned rectangles in \mathbb{R}^d have RBs (Kozma and Nitzan, 2015 and 2016).
- ► Any domain that tiles multiply by translations has a RB (Grepstad and Lev, 2012, and K., 2013).



All zonotopes in \mathbb{R}^d have a RB (Debernardi and Lev, 2019, based on an approach of Walnut).

Polytopes: centrally sym., with all faces also centrally sym.

WINDOWED WAVES (GABOR BASES)

▶ Seeking orthogonal bases of *time-frequency translates*

$$g^{(a,b)}(x) = g(x-a)e^{2\pi ib\cdot x}, \quad (a,b) \in \Lambda \subseteq \mathbb{R}^d \times \mathbb{R}^d.$$

WINDOWED WAVES (GABOR BASES)

Seeking orthogonal bases of time-frequency translates

$$g^{(a,b)}(x) = g(x-a)e^{2\pi ib\cdot x}, \quad (a,b) \in \Lambda \subseteq \mathbb{R}^d \times \mathbb{R}^d.$$

Short-time Fourier Transform:

$$V_g(f)(x,\nu) = \langle f, g^{(x,\nu)} \rangle = \int f(t) \overline{g(t-x)} e^{-2\pi i \nu \cdot x} dt$$

Orthogonality for Λ:

$$\Lambda - \Lambda \subseteq \{0\} \cup \mathcal{Z}(V_g g)$$

Orthogonality and completeness for Λ:

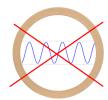
$$|V_g g|^2 + \Lambda$$
 is a tiling at level $||g||^4$

▶ A lot of work done for $\Lambda = K \times L$, with $K, L \subseteq \mathbb{R}^d$ lattices. Much less known for general $\Lambda \subseteq \mathbb{R}^{2d}$.

- ▶ A lot of work done for $\Lambda = K \times L$, with $K, L \subseteq \mathbb{R}^d$ lattices. Much less known for general $\Lambda \subseteq \mathbb{R}^{2d}$.
- The window cannot be the indicator function of a non-symmetric polytope (Chung and Lai, 2017).

- ▶ A lot of work done for $\Lambda = K \times L$, with $K, L \subseteq \mathbb{R}^d$ lattices. Much less known for general $\Lambda \subseteq \mathbb{R}^{2d}$.
- The window cannot be the indicator function of a non-symmetric polytope (Chung and Lai, 2017).
- The window cannot be the ball in $d \neq 1 \mod 4$ (losevich and Mayeli, 2017).

- ▶ A lot of work done for $\Lambda = K \times L$, with $K, L \subseteq \mathbb{R}^d$ lattices. Much less known for general $\Lambda \subseteq \mathbb{R}^{2d}$.
- The window cannot be the indicator function of a non-symmetric polytope (Chung and Lai, 2017).
- The window cannot be the ball in $d \neq 1 \mod 4$ (losevich and Mayeli, 2017).
- Characterize window indicator functions. Must they tile? Be spectral?



Thank you