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Introduction.

Hardy inequality.

Let 1 < p < +∞ and let α > 0. Then

∫ α

0

|u′(t)|pdt ≥
(p − 1

p

)p ∫ α

0

|u|p

tp
dt , for all u ∈ C∞c (0, α)

I The power tp is optimal

I The constant
(
p−1
p

)p
is optimal.

I There is no minimizer in W 1,p
0 (0, α)

These remain true if (0, α) is replaced by (0,+∞).

For p = 2 the inequality reads∫ α

0

u′2dt ≥ 1

4

∫ α

0

u2

t2
dt , u ∈ C∞c (0, α)



Proof of the Hardy inequality:

Given u ∈ C∞c (0, α) we have

0 ≤
∫ α

0

(
u′ − 1

2t
u
)2

dt

=

∫ α

0

u′2dt +
1

4

∫ α

0

u2

t2
dt − 1

2

∫ α

0

(u2)′

t
dt

=

∫ α

0

u′2dt +
1

4

∫ α

0

u2

t2
dt − 1

2

∫ α

0

u2

t2
dt

and therefore ∫ α

0

u′2dt ≥ 1

4

∫ α

0

u2

t2
dt .

Equality holds if and only if u(t) = ct1/2, which does not belong in H1
0 (0, α).

To prove the optimality of the exponent and the constant use the sequence

uε(t) = t
1
2

+εφ(t) , ε > 0,

where φ(t) is a smooth function with φ(t) = 1 near t = 0 and φ(t) = 0 near
t = α.



Higher dimensional analogues.

There are two main generalizations of the Hardy inequality in higher
dimensions.

A. Hardy inequalities involving distance to a point: let Ω ⊂ Rn be a domain
containing the origin and assume that p < n. There holds∫

Ω

|∇u|pdx ≥
(n − p

p

)p ∫
Ω

|u|p

|x |p dx , u ∈ C∞c (Ω)

In case p > n the same inequality remains true, the constant now being
∣∣∣ n−p

p

∣∣∣p.

But in this case the inequality is valid for u ∈ C∞c (Ω \ {0}).

In both cases the constant
∣∣∣ n−p

p

∣∣∣p is sharp. This is seen using the sequence

uε(x) = |x |
p−n
p

+ε
φ(x) , ε > 0,

where φ is a function in C∞c (Ω) with φ(x) = 1 near the origin.



B. Hardy inequalities involving distance to the boundary: let Ω ⊂ Rn be a
domain and d(x) = dist(x , ∂Ω).

We say that the (geometric) Hardy inequality is valid for the domain Ω if there
exists c > 0 such that∫

Ω

|∇u|pdx ≥ c

∫
Ω

|u|p

dp
dx , u ∈ C∞c (Ω)

This inequality is not always valid: the geometry of Ω plays a role.

We shall restrict attention to the case p = 2. We define

H(Ω) = inf
u∈C∞c (Ω)

∫
Ω

|∇u|2dx∫
Ω

u2

d2
dx

,

the Hardy constant of the domain Ω.



It is easy to see that

• The Hardy constant is invariant under dilations, that is H(Ω) = H(λΩ),
λ > 0

• There is no domain monotonicity for the Hardy constant

Q: When is the Hardy inequality valid? What can we say about H(Ω)?

In some sense H(Ω) is more rigid than the first Dirichlet eigenvalue.



Motivation.

G.H. Hardy

”I have never done anything ‘useful’. No discovery of mine has made, or is
likely to make, directly or indirectly, for good or ill, the least difference to the
amenity of the world.”



Heat equation in Rn {
ut = ∆u, t > 0, x ∈ Rn,

u = u0, t = 0, x ∈ Rn.

Solution

u(x , t) =
1

(4πt)n/2

∫
Rn

e
|x−y|2

4t u0(y)dy .

The function

h(t, x , y) =
1

(4πt)n/2
e
|x−y|2

4t

is the heat kernel (fundamental solution).



Consider know the heat equation on a bounded domain Ω ⊂ Rn:
ut = ∆u, t > 0, x ∈ Rn,
u = u0, t = 0, x ∈ Rn,
u = 0, t > 0, x ∈ ∂Ω.

The solution is again represented as

u(x , t) =

∫
Ω

h(t, x , y)u0(y)dy .

The heat kernel h(t, x , y) cannot be written explicitly. Given a subdomain
V ⊂⊂ Ω and T > 0 there exist C > 0 such that

C−1t−
n
2 e−C

|x−y|2
t < h(t, x , y) < Ct−

n
2 e−C−1 |x−y|2

t

for all 0 < t < T and x , y ∈ V .



Assume now the additional presence of a potential V (x), x ∈ Ω.
ut = ∆u + V (x), t > 0, x ∈ Ω,
u = u0, t = 0, x ∈ Ω,
u = 0, t > 0, x ∈ ∂Ω.

If V is bounded then the same estimate as above is valid. But what is V is
unbounded? In particular we are interest in the case where supΩ V (x) = +∞.

Assume for simplicity that

V (x) ≥ 0 , x ∈ Ω.

The behaviour of the heat kernel depends on ‘how bad’ the potential V (x) is.

Consider potentials of the specific form

V (x) = λ
1

|x |β

where Ω contains the origin and β, λ > 0.



Then the following is true:

I If 0 < β < 2 then the same estimate as above is valid:

C−1t−
n
2 e−C

|x−y|2
t < h(t, x , y) < Ct−

n
2 e−C−1 |x−y|2

t

for all 0 < t < T and x , y ∈ V .

I For β > 2 the problem is ill-posed.

In this sense the potential

V (x) = λ
1

|x |2

is a critical potential.



Let V (x) = λ 1
|x|2 . Then for 0 < t < T and x , y ∈ V we have:

I If 0 < λ ≤ ( n−2
2

)2 then

C−1t−
n
2 |x |−α|y |−αe−C

|x−y|2
t < h(t, x , y) < Ct−

n
2 |x |−α|y |−αe−C−1 |x−y|2

t

where α > 0 is the smallest solution of the equation α(n − 2− α) = λ.

I If λ > ( n−2
2

)2 then the problem is ill-posed.

The above are intrically related to the Hardy inequality∫
Ω

|∇u|2dx ≥
(n − 2

2

)2
∫

Ω

u2

|x |2 dx , u ∈ C∞c (Ω)

and its critical nature. Analogous results are valid for the geometric Hardy
inequality (distance to the boundary).



I. The Hardy inequality in Rn.

∫
Ω

|∇u|2dx ≥ c

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω)

Sufficient conditions for the Hardy inequality.

Boundary regularity.

If ∂Ω is bounded, then some boundary regularity is enough.

Let Ω ⊂ Rn be bounded. Assume that for each y ∈ ∂Ω there exists an open
neighbourhood Vy of y and cy > 0 such that∫

Vy

|∇u|2dx ≥ cy

∫
Vy

u2

d2
dx , u ∈ C∞c (Vy ).

Then the Hardy inequality is valid in Ω.

This is the case, in particular, if Ω has a Lipschitz boundary.



Davies’s mean distance function method.

Let Ω ⊂ Rn. For ω ∈ Sn−1 and x ∈ Ω denote

Lω(x) = Ω ∩ {x + sω : s ∈ R}

and
dω(x) = min{s > 0 : x + sω 6∈ Ω or x − sω 6∈ Ω}

Let u ∈ C∞c (Ω). By the Hardy inequality in one dimension we have

∫
Lω

(∇u · ω)2ds ≥ 1

4

∫
Lω

u2

d2
ω

ds.

Intagrating over all directions perpendicular to ω we obtain∫
Ω

(∇u · ω)2dx ≥ 1

4

∫
Ω

u2

d2
ω

dx .



[REP]

∫
Ω

(∇u · ω)2dx ≥ 1

4

∫
Ω

u2

d2
ω

dx .

Now average over all ω ∈ Sn−1. Get∫
−

Sn−1

∫
Ω

|∇u · ω|2dx dS(ω) ≥ 1

4

∫
−

Sn−1

∫
Ω

u2

d2
ω

dx dS(ω) .

But for any p ∈ Rn, −
∫
Sn−1 |p · ω|2dS(ω) = 1

n
|p|2, hence

1

n

∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
av
dx

where
1

d2
av (x)

=

∫
−

Sn−1

u2

d2
ω(x)

dS(ω) , x ∈ Ω,

defines the mean distance function dav (x), x ∈ Ω.

So: if the exists c > 0 such that

dav (x) ≤ cd(x) , x ∈ Ω,

then the Hardy inequality is valid on Ω.

Note. The mean distance function is useful also for Lp and higher-order Hardy
inequalities.



Remark. If Ω is unbounded then boundary regularity is not enough to
guarantee the validity of the Hardy inequality.

Assume for example that Ω = R2 \ D(1). Then, by the scale invariance of the
Hardy constant (H(Ω) = H(λΩ), λ > 0)

H(R2 \ D(1)) = H(R2 \ D(r)) = lim
r→0

H(R2 \ D(r)) = H(R2 \ {0}) = 0 ,

since the inequality∫
Ω

|∇u|2dx ≥
(n − 2

2

)2
∫

Ω

u2

|x |2 dx , u ∈ C∞c (Rn \ {0})

is sharp also for n = 2.

Note. In what follows we shall be considering (mostly) Lipschitz domains.



On the precise value of the Hardy constant

The importance of H(Ω) being 1/4

Theorem. If some part of ∂Ω is C 2 then H(Ω) ≤ 1/4.

Proof. For ε > 0 define
uε(x) = d(x)

1
2

+εφ(x)

where φ is supported in a small enough neighbourhood where ∂Ω is C 2. Then
uε ∈ H1

0 (Ω) and∫
Ω

|∇uε|2dx∫
Ω

u2
ε

d2
dx

=
( 1

2
+ ε)2

∫
Ω
d−1+2εφ dx + O(1)∫

Ω
d−1+2εφ dx

−→ 1

4
,

as ε→ 0.



A dichotomy for the associated minimization problem:

H(Ω) = inf
H1

0 (Ω)

∫
Ω
|∇u|2dx∫
Ω

u2

d2 dx

Theorem. Assume that Ω is bounded with C 2 boundary. Then the infimum is
attained if and only if

H(Ω) <
1

4
.

Moreover, if a minimizer u ∈ H1
0 (Ω) exists, then

u(x) � d(x)α , x ∈ Ω ,

where α is the largest solution of the equation

α(1− α) = H(Ω)

Proof. (only for the existence or non-existence of a minimizer) For β > 0 define

Ωβ = {x ∈ Ω : d(x) < β}

(⇐) It can be shown that there exists β > 0 so that∫
Ωβ

|∇u|2dx ≥ 1

4

∫
Ωβ

u2

d2
dx , u ∈ C∞c (Ωβ).



Let (wk) ⊂ H1
0 (Ω) be a minimizing sequence for the Hardy quotient normalized

so that
∫

Ω

w2
k

d2 dx = 1; hence∫
Ω

|∇wk |2dx −→ H(Ω), as k →∞.

The sequence (wk) has a weakly convergent in H1
0 (Ω) subsequence,

wk ⇀ w0 ∈ H1
0 (Ω). Let vk = wk − w0. Then∫

Ω

|∇wk |2dx =

∫
Ω

|∇vk |2dx +

∫
Ω

|∇w0|2dx + o(1)

and ∫
Ω

w 2
k

d2
dx =

∫
Ω

v 2
k

d2
dx +

∫
Ω

w 2
0

d2
dx + o(1) .

Let φ ∈ C∞(Ω) be a function such that 0 ≤ φ ≤ 1, φ(x) = 1 if d(x) < β/2

and φ(x) = 0 , if d(x) > β. Writing vk = φvk + (1− φ)vk and integrating by
parts we find∫

Ω

|∇vk |2dx =

∫
Ω

|∇(φvk)|2dx +

∫
Ω

|∇
(
(1− φ)vk

)
|2dx

+2

∫
Ω

φ(1− φ)|∇vk |2dx +

∫
Ω

(2φ− 1)∆φ v 2
k dx .

The last integral converges to zero by the compactness of the imbedding
H1

0 (Ω) ⊂ L2(Ω).



It follows that∫
Ω

|∇vk |2dx ≥
∫

Ω

|∇(φvk)|2dx + o(1)

≥ 1

4

∫
Ω

φ2v 2
k

d2
dx + o(1)

=
1

4

∫
Ω

v 2
k

d2
dx +

1

4

∫
Ω

(φ2 − 1)v 2
k

d2
dx + o(1)

=
1

4

∫
Ω

v 2
k

d2
dx + o(1),

by compactness and the fact that φ = 1 near ∂Ω.
Combining the above we obtain

H(Ω) =

∫
Ω

|∇vk |2dx +

∫
Ω

|∇w0|2dx + o(1)

≥ 1

4

∫
Ω

v 2
k

d2
dx + H(Ω)

∫
Ω

w 2
0

d2
dx + o(1)

=
1

4

(
1−

∫
Ω

w 2
0

d2
dx
)

+ H(Ω)

∫
Ω

w 2
0

d2
dx + o(1),

and hence (
H(Ω)− 1

4

)(
1−

∫
Ω

w 2
0

d2
dx
)
≥ 0.



[REP]
(
H(Ω)− 1

4

)(
1−

∫
Ω

w 2
0

d2
dx
)
≥ 0.

Since H(Ω) < 1/4, we conclude that
∫

Ω
w 2

0 /d
2 dx ≥ 1. By weak lower

semicontinuity we conlude that

H(Ω) ≥
∫

Ω

|∇w0|2dx ≥ H(Ω)

∫
Ω

w 2
0

d2
dx ≥ H(Ω).

Hence w0 is a minimizer.

(⇒) Assume for contradiction that H(Ω) = 1/4 and u0 ∈ H1
0 (Ω) is a minimizer.

There exists β > 0 such that for any 0 < η < 1/4 the function

v = d
1
2

+η + d

is a weak subsolution to the Euler equation in Ωβ , that is

∆v +
1

4d2
v ≥ 0 , in Ωβ .



Let C > 0 be such that

v < Cu0 , on {d(x) =
β

2
}.

Then the function w = (v − Cu0)+ is a subsolution in the set Ωβ/2 which
vanishes in a neighbourhood of {d(x) = β/2}.

So ∫
Ωβ/2

(
∇w · ∇φ− H(Ω)

wφ

d2

)
dx ≤ 0

for any non-negative φ ∈ C∞c (Ωβ/2). Taking φ = ψ2w where ψ ∈ C∞c (Ω) we
obtain ∫

Ωβ/2

(
∇w · ∇(ψ2w)− ψ2w 2

4d2

)
dx ≤ 0.

Using a simple identity for ∇(ψ2w) this is written∫
Ωβ/2

(
|∇(ψw)|2 − ψ2w 2

4d2

)
dx ≤

∫
Ωβ/2

w 2|∇ψ|2dx .



[REP]

∫
Ωβ/2

(
|∇(ψw)|2 − ψ2w 2

4d2

)
dx ≤

∫
Ωβ/2

w 2|∇ψ|2dx

Also, since u0 is a positive solution,∫
Ωβ/2

(
∇u0 · ∇(

ψ2w 2

u0
)− 1

4
u0
ψ2w 2

u0d2

)
dx = 0,

i.e. ∫
Ωβ/2

u2
0

∣∣∇(
ψw

u0
)
∣∣2dx =

∫
Ωβ/2

(
|∇(ψw)|2 − ψ2w 2

4d2

)
dx .

So ∫
Ωβ/2

u2
0

∣∣∇(
ψw

u0
)
∣∣2dx ≤ ∫

Ωβ/2

w 2|∇ψ|2dx

Now take ψ = ψε where

ψε = 0, in Ωε/2 , ψε = 1, in Ω \ Ωε , |∇ψε| ≤
c

ε
.

We obtain ∫
Ωβ/2

u2
0

∣∣∇(
ψεw

u0
)
∣∣2dx ≤ c

ε2

∫
{ ε

2
<d(x)<ε}

w 2dx



[REP]

∫
Ωβ/2

u2
0

∣∣∇(
ψεw

u0
)
∣∣2dx ≤ c

ε2

∫
{ ε

2
<d(x)<ε}

w 2dx

Hence, for any η > 0 small,∫
Ωβ/2

u2
0

∣∣∇(
w

u0
)
∣∣2dx =

∫
Ωβ/2

u2
0 lim
ε→0

∣∣∇(
ψεw

u0
)
∣∣2dx

≤ lim inf
ε→0

∫
Ωβ/2

u2
0

∣∣∇(
ψεw

u0
)
∣∣2dx

≤ c lim inf
ε→0

c

ε2

∫
{ ε

2
<d(x)<ε}

w 2dx

≤ c lim inf
ε→0

c

∫
{ ε

2
<d(x)<ε}

d1+2η

d2
dx

= 0.

It follows that there exists c > 0 such that w = cu0 in Ωβ/2. Hence w = 0 in
Ωβ/2.



Recalling that
w = (v − Cu0)+

we obtain

u0 ≥
1

C
v ≥ 1

C
d

1
2

+η , in Ωβ/2.

Letting η → 0 we get

u0 ≥
1

C
d

1
2 .

Hence ∫
Ωβ/2

u2
0

d2
dx ≥ 1

C 2

∫
Ωβ/2

1

d
dx = +∞,

a contradiction. 2

Q: Are there domains for which H(Ω) = 1/4 ?

A: Yes. The simplest is the half-space Rn
+ = {x = (x ′, xn) : xn > 0}:

∫
Rn

+

|∇u|2dx ≥
∫
Rn−1

∫ ∞
0

u2
xndxndx

′ ≥ 1

4

∫
Rn−1

∫ ∞
0

u2

x2
n
dxndx

′ =
1

4

∫
Rn

+

u2

d2
dx



Theorem. If Ω is convex then H(Ω) = 1/4.

Proof. We have already seen that for any Ω ⊂ Rn there holds∫
Ω

|∇u|2dx ≥ n

4

∫
Ω

u2

d2
av
dx

So it is enough to show that if Ω is convex then d−2
av ≥ 1

n
d−2 in Ω.

Let x ∈ Ω. Let y ∈ ∂Ω be such that |y − x | = d(x) and let Py be a supporting
hyperplane at y . Let σω(x) be the point of intersection of the half-line
x + t(y − x), t > 0, with Py . as in the diagram. Then

1

d2
av (x)

=

∫
−

Sn−1

dS(ω)

d2
ω(x)

= 2

∫
−

S+

dS(ω)

d2
ω(x)

≥ 2

∫
−

S+

dS(ω)

σ2
ω(x)

= 2

∫
−

S+

(
(y − x) · ω)

)2

d4(x)
dS(ω)

=
1

d4(x)

∫
−

Sn−1

(
(y − x) · ω)

)2
dS(ω)

=
1

n d2(x)
2



The positive supersolution method.

Let φ be a positive function on Ω. For any u ∈ C∞c (Ω),

0 ≤
∫

Ω

|∇u − ∇φ
φ

u|2dx =

∫
Ω

|∇u|2dx +

∫
Ω

|∇φ|2

φ2
u2dx −

∫
Ω

∇u2 · ∇φ
φ

dx

=⇒
∫

Ω

|∇u|2dx ≥ −
∫

Ω

∆φ

φ
u2dx .

Hence, if in addition

∆φ+
c

d2
φ ≤ 0 , in Ω ,

then ∫
Ω

|∇u|2dx ≥ c

∫
Ω

u2

d2
dx .

Conclusion: To prove the Hardy inequality

∫
Ω

|∇u|2dx ≥ c

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω).

it is enough to find a (weak) positive supersolution φ to the Euler-Lagrange
equation,

∆φ+
c

d2
φ ≤ 0 .



Assume that the domain Ω is such that

∆d ≤ 0, in Ω.

Then for the function φ = d1/2 we compute

∆φ+
1

4d2
φ = div(

1

2
d−

1
2∇d) +

1

4
d−

3
2 =

1

2
d−

1
2 ∆d ≤ 0

Definition. A domain Ω ⊂ Rn is weakly mean convex if ∆d ≤ 0 in Ω.

Hence we have

Theorem. If Ω is weakly mean convex then∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω) .

Remark. The condition ∆d ≤ 0 must be understood in the distributional sense.



Examples.

1. Suppose Ω = (0, 1). Then∫ 1

0

d ′′(t)φ(t)dt = −2φ(
1

2
)

2. Suppose Ω = B1 ⊂ Rn, n ≥ 2. Then

∆d = −n − 1

|x |

3. Suppose Ω = (0, a)× (0, b) ⊂ R2 where a > b > 0.

Then ∫
Ω

∆dφ dx = −
√

2
4∑

k=1

∫
Lk

φ ds − 2

∫
L5

φ ds



Concerning weak mean convexity:

• Any convex domain is weakly mean convex.

• If Ω is bounded with C 2 boundary then weak mean convexity is equivalent
to mean convexity, i.e. to the mean curvature being non-negative.

• In two dimensions and for C 2 boundary mean convexity is equivalent to
convexity.

• In three of more dimensions there exist mean convex domains which are
not convex.



Other domains for which H(Ω) = 1
4
.

• Let n ≥ 3. The annulus

{x ∈ Rn : r < |x | < R}

has Hardy constant equal to 1/4.

Proof. The function
φ(x) = |x |

n−1
2 d

1
2 (x)

is a positive supersolution to the Euler equation

• Let Ω ⊂ Rn be bounded and D = supΩ d(x). There exists a constant cn
such that if each y ∈ ∂Ω admits an exterior ball of radius (at least) cnD
then the Hardy constant of Ω is equal to 1/4.

Q: What about domains with H(Ω) < 1
4

?



II. The Hardy inequality in two dimensions

Theorem. If Ω ⊂ R2 is simply connected then∫
Ω

|∇u|2dx ≥ 1

16

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω).

Proof. Makes use of Koebe’s 1/4 theorem: If g : D→ g(D) is conformal, then

g(D) ⊇ D
(
g(0),

|g ′(0)|
4

)
In particular if Ω = g(D) then

d(g(0)) ≥ 1

4
|g ′(0)|.

Let f : C+ → Ω be a conformal map.



Claim: for any z = x + iy ∈ C+ there holds

d(f (z)) ≥ y

2
|f ′(z)|.

Proof of Claim. Write z = x + iy . The map

hz(w) =
z w − z

w − 1

maps conformally D onto C+ and satisfies hz(0) = z , h′z(0) = 2y . Then

gz = f ◦ hz

maps conformally D onto Ω. It follows that

d(gz(0)) ≥ 1

4
|g ′z(0)|.

But
gz(0) = f (z) , g ′z(0) = 2yf ′(z)

so
d(f (z)) ≥ y

2
|f ′(z)|



[REP] d(f (z)) ≥ y

2
|f ′(z)|

Therefore, given u ∈ C∞c (Ω),∫
Ω

|∇u|2dx ′dy ′ =

∫
C+

|∇(u ◦ f )|2dx dy

≥
∫ ∞
−∞

∫ ∞
0

|∇(u ◦ f )|2dy dx

≥ 1

4

∫ ∞
−∞

∫ ∞
0

(u ◦ f )2

y 2
dy dx

≥ 1

4
· 1

4

∫ ∞
−∞

∫ ∞
0

(u ◦ f )2 |f ′(z)|2

d(f (z))2
dy dx

=
1

16

∫
C+

(u ◦ f )2 |f ′(z)|2

d(f (z))2

=
1

16

∫
Ω

u2

d2
dx ′dy ′ .



A modified version of the above theorem:

Theorem. Let Ω ⊂ R2 be simply connected and satisfy an external cone
condition: each y ∈ ∂Ω is the vertex of an infinite angle of size θ which
contains Ω. Then∫

Ω

|∇u|2dx ≥ π2

4θ2

∫
Ω

u2

d2
dx , for all u ∈ C∞c (Ω).

Best case: Ω convex −→ θ = π −→ H(Ω) = 1
4

Worst case: θ = 2π −→ 1
16

The proof makes use of a modified version of Koebe’s 1/4 theorem.



Open problem.

Find the best uniform Hardy constant over all simply connected domains
Ω ⊂ R2. That is, find the largest constant H∗ such that∫

Ω

|∇u|2dx ≥ H∗
∫

Ω

u2

d2
dx

for all simply connected domains Ω ⊂ R2 and for all u ∈ C∞c (Ω).

Moreover, determine whether there are extremal domains, that is domains Ω
for which H(Ω) = H∗.

It follows from the preceding discussion that

1

16
≤ H∗ ≤ 1

4
.



The anguler sector.

Let Λβ denote the infinite sector of angle β,

Λβ = {(r , θ) : r > 0 , 0 < θ < β}.

Symmetry plays an important role. Note that

1

d2
=


1

r2 sin2 θ
, 0 < θ < π

2
,

1
r2 ,

π
2
< θ < β − π

2
,

1
r2 sin2(β−θ)

, β − π
2
< θ < β.

=:
1

r 2
Vβ(θ)

Lemma. The Hardy constant H(Λβ) coincides with the best constant cβ for the
Hardy-type inequality∫ β

0

g ′(θ)2dθ ≥ cβ

∫ β

0

g(θ)2Vβ(θ)dθ , g ∈ C∞c (0, β).



Proof. Let u ∈ C∞c (Λβ). Then∫
Λβ

|∇u|2dx =

∫ β

0

∫ ∞
0

(
u2
r +

1

r 2
u2
θ

)
r dr dθ

≥ cβ

∫ β

0

∫ ∞
0

Vβ(θ)

r 2
u2r dr dθ = cβ

∫
Λβ

u2

d2
dx

hence H(Λβ) ≥ cβ . For the reverse inequality, let g ∈ C∞c (0, β). For ε > 0 set

hε(r) =

{
r ε, 0 < r < 1,
r−ε, r > 1.

The function uε(x) = hε(r)g(θ) then belongs to H1
0 (Λβ). So

H(Λβ) ≤

∫
Λβ

|∇uε|2dx∫
Λβ

u2
ε

d2
dx

=

∫ β

0

g ′(θ)2dθ∫ β

0

g(θ)2Vβ(θ)dθ

+ ε2

∫ β

0

g(θ)2dθ∫ β

0

g(θ)2Vβ(θ)dθ

Letting ε→ 0+ we obtain

H(Λβ) ≤

∫ β

0

g ′(θ)2dθ∫ β

0

g(θ)2Vβ(θ)dθ

.

Hence H(Λβ) ≤ cβ . 2



Change variables to pass from (0, β) to (0, π),

cβ = inf

∫ π

0

g ′(θ)2dθ∫ π

0

g(θ)2Vβ(βθ/π)dθ

so

1

cβ
= sup

∫ π

0

g(θ)2Vβ(βθ/π)dθ∫ π

0

g ′(θ)2dθ

.

We can easily see the following:

• The function β 7→ Vβ(βθ/π) is convex in (0, 2π); hence β 7→ c−1
β is convex

• c4 = 1
4

(the function φ(θ) = θ
1
2 (4− θ)

1
2 is a positive supersolution)

• c2π <
1
4

(test with g(θ) = sin( θ
2

) )

Hence there exists a critical angle βcr ∈ (4, 2π) such that

cβ =

{
1
4
, for 0 < β ≤ βcr ,

decreases monotonically, for βcr ≤ β ≤ 2π .

Numerical computations give βcr ' 1.546π, c2π ' 0.205



More work is required in order to obtain a better understanding of the constant
cβ .

Fix β ∈ (0, 2π) and for c > 0 consider the boundary value problem

(∗)

{
ψ′′(θ) + cVβ(θ)ψ(θ) = 0, 0 ≤ θ ≤ β,
ψ(0) = ψ(β) = 0,

where, we recall,

Vβ(θ) =


1

sin2 θ
, 0 < θ < π

2
,

1, π
2
< θ < β − π

2
,

1
sin2(β−θ)

, β − π
2
< θ < β.

The Hardy constant cβ of Λβ is the largest constant c for which the boundary
value problem (∗) has a positive solution.



In the inteval (0, π/2) the general solution of the ODE can be expressed in
terms of hypergeometric functions. In case 0 < c < 1

4
we have

y(θ) = c1 sinα(
θ

2
) cos1−α(

θ

2
)F (

1

2
,

1

2
, α +

1

2
; sin2(

θ

2
))

+c2 sin1−α(
θ

2
) cos1−α(

θ

2
)F (1− α, 1− α, 3

2
− α; sin2(

θ

2
)).

while for c = 1
4

we have

y(θ) = c1 sin1/2(
θ

2
) cos1/2(

θ

2
)F (

1

2
,

1

2
, 1; sin2(

θ

2
))

+c2 sin1/2(
θ

2
) cos1/2(

θ

2
)F (

1

2
,

1

2
, 1; sin2(

θ

2
))

∫ 1/2

sin2(θ/2)

dt

t(1− t)F 2( 1
2
, 1

2
, 1; t)

.

From the above one can analyze the boundary value problem (∗).



Theorem. The critical angle βcr is the unique solution in the interval (π, 2π) of
the equation

tan
(βcr − π

4

)
= 4

(
Γ( 3

4
)

Γ( 1
4
)

)2

.

Moreover for any β ∈ (0, 2π) the Hardy constant of the sector Λβ is given by

H(Λβ) =

{
1
4
, if π < β < βcr ,

the unique solution of (∗∗), if βcr ≤ β ≤ 2π.

(∗∗) √
cβ tan

(√
cβ(

β − π
2

)
)

= 2

(
Γ(

3+
√

1−4cβ

4
)

Γ(
1+
√

1−4cβ

4
)

)2

Note. Slightly modifying the above argument we can see that the bounded
sector Λβ ∩ D(1) also has Hardy constant cβ .

Q: What about other bounded domains with Hardy constant smaller
than 1/4 ? What about domains where there is no symmetry ?



A comment on the positive supersolution method.

”If the Hardy quotient admits a minimizer u0, then to apply the positive
supersolution method we need to now exactly the minimizer.”

Proposition. If the Hardy quotient admits a minimizer u0 then any positive
supersolution is a scalar multiple of u0.

Proof. Let φ be a positive supersolution and (un) ⊂ C∞c (Ω) be such that
un → u0 in H1

0 (Ω). Then

0 ≤
∫

Ω

|∇un −
∇φ
φ

un|2dx ≤
∫

Ω

|∇un|2dx − H(Ω)

∫
Ω

u2
n

d2
dx .

Hence

0 ≤
∫

Ω

|∇u0 −
∇φ
φ

u0|2dx =

∫
Ω

lim |∇un −
∇φ
φ

un|2dx

≤ lim inf

∫
Ω

|∇un −
∇φ
φ

un|2dx ≤ lim inf
(∫

Ω

|∇un|2dx − H(Ω)

∫
Ω

u2
n

d2
dx
)

=

∫
Ω

|∇u0|2dx − H(Ω)

∫
Ω

u2
0

d2
dx

= 0.

It follows that φ = cu0 for some c ∈ R. 2



The Hardy constant of a quadrilateral.

Theorem. Let Q be a non-convex quadrilateral with non- convex angle
β ∈ (π, 2π). Then H(Q) = cβ .

Proof. Set-up:

• Denote by α the largest solution of the equation α(1− α) = cβ

• Denote by ψ(θ) the positive solution of the boundary value problem{
ψ′′(θ) + cβVβ(θ)ψ(θ) = 0, 0 ≤ θ ≤ β,
ψ(0) = ψ(β) = 0.

• Assume that the non-convex vertex lies at the origin. Let A,B,C denote
the other three vertices, with A lying on the positive x-semiaxis.



Divide Q into two parts Ω− and Ω+ by means of the equidistance curve

Γ = {(x , y) ∈ Q : dist((x , y),OA ∪ OΓ) = dist((x , y),AB ∪ BΓ)

Denote by ~n the unit normal vector along Γ which is exterior with respect to
Ω−.
Apply the positive supersolution method separately on each subdomain Ω±.

• On Ω− choose the function φ = ψ(θ) (it is a solution)

• On Ω+ choose φ = dα Note that, since α(1− α) = cβ , we have

∆dα +
cβ
d2

dα = div(αdα−1∇d) + cβd
α−2 = αdα−1∆d ≤ 0, in Ω+



We obtain that for any u ∈ C∞c (Ω),∫
Ω−

|∇u|2dx ≥ cβ

∫
Ω−

u2

d2
dx +

∫
Γ

∇ψ
ψ
· ~n u2dS

∫
Ω+

|∇u|2dx ≥ cβ

∫
Ω+

u2

d2
dx − α

∫
Γ

∇d
d
· ~n u2dS

Adding we obtain∫
Ω

|∇u|2dx ≥ cβ

∫
Ω

u2

d2
dx +

∫
Γ

(∇ψ
ψ
− α∇d

d

)
· ~n u2dS

Hence what is required is to prove that(∇ψ
ψ
− α∇d

d

)
· ~n ≥ 0 , along Γ.

−→ one-dimensional inequalities, parametrized by θ ∈ (0, β)

Everything can be written explicitly except for ψ(θ). Also, different types of
quadrilaterals must be distinguished.



Consider this quadrilateral:

Starting from the point A (i.e. θ = 0) the curve Γ has the form L-P-P-L. These
four segment correspond to angles θ as follows:

Γ1 : 0 ≤ θ ≤ π
2

(line segment)

Γ2 : π
2
≤ θ ≤ θ0 (parabola segment)

Γ3 : θ0 ≤ θ ≤ β − π
2

(parabola segment)

Γ4 : β − π
2
≤ θ ≤ β (line segment)



For the line segment Γ1 we need

sin θ cos(θ +
γ

2
)
ψ′(θ)

ψ(θ)
+ α cos

γ

2
≥ 0 , 0 ≤ θ ≤ π

2

Indeed, letting f (θ) = ψ′(θ)
ψ(θ)

we have

Lemma. Let 0 ≤ ω ≤ π/4. Then

f (θ) sin θ cos(θ + ω) + α cosω ≥ 0 , 0 ≤ θ ≤ π

2
.

This is applied for ω = γ
2

, where γ is the angle at the vertex A.

For the parabola segment Γ2 we need

Lemma. Let 3π/2− β ≤ ω ≤ 2π − β. Then

f (θ) cos(θ + ω) + α
(
1 + sin(θ + ω)

)
≥ 0 ,

π

2
≤ θ ≤ β − π

2

This is applied for ω = γ.

Both proofs use the fact that the function f (θ) solves

f ′ + f 2 + cβVβ = 0 , f (0) = α .



Consider this quadrilateral:

Now the curve Γ has the form L-L-P-L. These four segments correspond to
angles θ as follows:

Γ1 : 0 ≤ θ ≤ θ0 (line segment)

Γ2 : θ0 ≤ θ ≤ π
2

(line segment)

Γ3 : π
2
≤ θ ≤ β − π

2
(parabola segment)

Γ4 : β − π
2
≤ θ ≤ β (line segment)

The segment Γ2 is different from before.



Consider the following quadrilateral: now γ > π/2. The curve Γ has the form
L-L-P-L.

Note that in this case β < 3π/2 < βcr and hence cβ = 1
4
.

The previous argmument does not work: the required inequality is not valid on
Γ1 (the segmant AS).

An alternative approach is required.



Use the positive supersolution method as follows:

Consider a second coordinate system (x1, y1) with origin O1 = projAB(O) and
the positive x1 semiaxis containing the side AB. Denote by θ1 the polar angle
in this new system. Divide Ω+ in two parts, ΩA

+ and ΩC
+ with the bisector at B.

• On Ω− use the solution φ = ψ(θ) (as before)

• On ΩA
+ use the solution φ = ψ(θ1)

• On ΩC
+ use the supersolution φ = d

1
2



For the segment AS we need the following: define g(θ) = ψ′(θ)
ψ(θ)

sin θ.

Lemma. Let π
2
≤ γ ≤ π. For θ ∈ (0, π

2
) let θ1 = θ1(θ) be the angle determined

by
cot θ1 = − cos γ cot θ + sin γ

Then there holds

g(θ) cos(θ +
γ

2
) + g(θ1) cos(θ1 −

γ

2
) ≥ 0 , 0 ≤ θ ≤ π

2
.

But we may also have γ > π
2

and Γ be of the form L-P-P-L. In this case the
construction is the same and for the (first) parabola we need

Lemma. Let π ≤ β ≤ 2π and π
2
≤ γ ≤ π. For π

2
≤ θ ≤ 3π

2
− γ denote by

θ1 = θ1(θ) the angle in [0, π/2] uniquely determined by

cot θ1 = − cos(θ + γ)

Then

f (θ1) ≤ f (θ)
1 + cos2(θ + γ)

2 + sin(θ + γ)
,

π

2
≤ θ ≤ 3π

2
− γ .



In all, five types of quadrilaterals must be considered:

Type A1 (L-P-P-L) Type A2 (L-L-P-L)

Type B1 (L-P-P-L) Type B2 (L-L-P-L)

Type B3 (L-P-L-L)



Lemma. Let 0 ≤ ω ≤ π/4. Then

f (θ) sin θ cos(θ + ω) + α cosω ≥ 0 , 0 ≤ θ ≤ π

2
.

Proof. The inequality is trivially true for 0 ≤ θ ≤ π
2
− ω, so we restrict our

attention to the interval π
2
− ω ≤ θ ≤ π

2
. We must prove that

f (θ) ≤ q(θ) ,
π

2
− ω ≤ θ ≤ π

2
,

where
q(θ) = −α cosω

sin θ cos(θ + ω)
.

We have
√
cβ ≤ α, hence

q(
π

2
)− f (

π

2
) = α cotω −√cβ tan[

√
cβ(

β

2
− π

2
)]

≥ α
{

cotω − tan[
√
cβ(

β

2
− π

2
)]
}

=
α

sinω cos[
√
cβ(β

2
− π

2
)]

cos
(√

cβ(
β

2
− π

2
) + ω

)
≥ 0,

since 0 <
√
cβ(β

2
− π

2
) + ω ≤ β

4
− π

4
+ ω ≤ π/2.



In view of the above, it is enough to establish that

q′(θ) + q(θ)2 +
cβ

sin2 θ
≤ 0 , for

π

2
− ω ≤ θ ≤ π

2
.

Indeed, for θ ∈ [π/2− ω, π/2] we find

q′(θ) + q2(θ) +
cβ

sin2 θ

= α
2 cosω cos θ cos(θ + ω)− (1− α) sin θ sin(θ + 2ω)

sin2 θ cos2(θ + ω)

≤ 0,

since
π

2
≤ θ + ω ≤ π

2
+ ω ≤ 3π

4

and
π

2
≤ θ + 2ω ≤ π

2
+ 2

π

2
= π .

2



Exercise. Consider the initial value problem{
g ′ = − 1

sin θ

(
g 2 − cos θ g + α(1− α)

)
g(0) = α

Prove that

(i) For 1
2
< α < 1 there there exists a unique solution

(ii) For α = 1
2

there exists a continuum of solutions

Moreover, any solution is strictly decreasing in (0, π/2).



Beyond the quadrilateral...

Are there other planar domains for which these ideas can be applied ?

I More general polygons with one non-convex angle

I Polygons with two or more non-convex angles

I Domains that are not polygons

Note. If a planar domain Ω has an angle of size β > π then H(Ω) ≤ cβ .



Theorem. Let Ω = K ∩ Λβ , β ∈ (π, 2π], where K is a bounded convex planar
domain containing the origin. Let γ+ and γ− denote the interior angles of
intersection of K with Λβ .

There exists an angle γβ ∈ (π/2, π) such that if γ+, γ− ≤ γβ , then the Hardy
constant of Ω is cβ .



Theorem. Consider the domain Eβ,γ (diagram) where π < β < 2π, 0 < γ < 2π
and β + γ ≤ 3π.

(i) If γ ≤ π then the Hardy constant of Eβ,γ is cβ .

(ii) Assume that γ > π. If in addition

|β − γ| ≤ 2
√
cβ+γ−π

arccos(2
√
cβ+γ−π).

then the Hardy constant of Eβ,γ is cβ+γ−π.



Some open problems.

Problem 1. Prove more results about the Hardy constant of domains in R2.

For example:

I Find the Hardy constant of various simply connected domains (polygons,
Koch snowflake...)

I Find a simply connected domain with Hardy constant smaller than c2π

I ...

I ...

Find the best uniform Hardy constant valid over all simply connected domains
Ω ⊂ R2, that is the largest constant H∗ such that∫

Ω

|∇u|2dx ≥ H∗
∫

Ω

u2

d2
dx

for all simply connected domains Ω ⊂ R2 and for all u ∈ C∞c (Ω).

We know that

c2π ≤ H∗ ≤ 1

4
(c2π ' 0.205)



Problem 2. Davies’ conjecture on the weak Hardy constant

Let Ω ⊂ Rn be bounded. Assume that there exist α, β > 0 such that∫
Ω

|∇u|2dx ≥ α
∫

Ω

u2

d2
dx − β

∫
Ω

u2dx , u ∈ C∞c (Ω). (1)

We define the weak Hardy constant of Ω as

Hw (Ω) = sup
{
α > 0 : there exists β > 0 such that (1) is valid

}
The weak Hardy constant depends only on the boundary regularity. To make
this precise, for y ∈ ∂Ω and r > 0 define

Hw (y , r) = sup
{
α > 0 : there exists β > 0 such that

(1) is valid for all u ∈ C∞c (Br (y))
}

and
Hw (y) = sup

r>0
Hw (y , r) = lim

r→0
Hw (y , r).

Theorem. Let Ω ⊂ Rn be bounded. The function y 7→ Hw (y) is lower
semicontinuous and

Hw (Ω) = min
y∈∂Ω

Hw (y)

Conjecture. For any domain Ω ⊂ Rn and any y ∈ ∂Ω there holds Hw (y) ≤ 1/4.



Problem 3. Improved Hardy inequalities.

Let Ω ⊂ Rn be a weakly mean convex domain. So∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx , u ∈ C∞c (Ω) .

Q: Can this be improved?

Define

X (t) =
1

1− log t
, t ∈ (0, 1).

Theorem. If Ω is weakly mean convex and D := supΩ d < +∞, then∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

1

4

∫
Ω

u2

d2
X 2(d/D) dx , u ∈ C∞c (Ω) .

The inequality is sharp.



Can this be additionally improved?

Theorem. If Ω is weakly mean convex and D := supΩ d < +∞, then∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

1

4

∫
Ω

u2

d2
X 2(d/D) dx

+
1

4

∫
Ω

u2

d2
X 2(d/D)X 2(X (d/D)) dx , u ∈ C∞c (Ω) .

The inequality is sharp.

More generally, define

X1(t) = X (t) , Xk+1(t) = X1(Xk(t)) , t ∈ (0, 1).

Theorem. Let Ω be weakly mean convex and D := supΩ d < +∞, then∫
Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx +

1

4

∞∑
k=1

∫
Ω

u2

d2
X 2

1 (d/D)X 2
2 (d/D) . . .X 2

k (d/D) dx

for all u ∈ C∞c (Ω). The inequality is sharp at each step.

Q: Can this inequality be improved?



Problem 4. Improved Hardy-Sobolev inequalities.

Hardy-Sobolev inequalities are inequalities of the form∫
Ω

|∇u|2dx ≥ H(Ω)

∫
Ω

u2

d2
dx + c

(∫
Ω

|u|qdx
) 2

q
, u ∈ C∞c (Ω),

or weighted variations of this.

Theorem. For any n ≥ 3 there exists cn > 0 such that for any convex domain
Ω ⊂ Rn there holds∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

u2

d2
dx + cn

(∫
Ω

|u|
2n

n−2 dx
) n−2

n
, u ∈ C∞c (Ω).

Q: Does this remain true for weakly mean convex domains?

Note. In case Ω = R3
+ there holds∫

R3
+

|∇u|2dx ≥ 1

4

∫
R3

+

u2

d2
dx + S3

(∫
R3

+

|u|6dx
) 1

3
, u ∈ C∞c (R3

+)

where S3 is the Sobolev constant in three dimensions!



Problem 5. The best Lp Rellich constant.

Recall that the Lp Hardy inequality in one dimension reads∫ 1

0

|u′(t)|pdt ≥
(p − 1

p

)p ∫ 1

0

|u|p

tp
dt , for all u ∈ C∞c (0, 1)

What about higher dimensions?

Theorem. If Ω is weakly mean convex then∫
Ω

|∇u|pdx ≥
(p − 1

p

)p ∫
Ω

|u|p

dp
dx , u ∈ C∞c (Ω)

The computation of the Lp Hardy constant for other domains is more difficult.



The Rellich inequality.

The L2 Rellich inequality in one dimension reads∫ 1

0

(u(m))2dt ≥ 12 · 32 · 52 · . . . · (2m − 1)2

4m

∫ 1

0

u2

t2m
dt , u ∈ C∞c (0, 1).

What about higher dimensions?

Theorem. If Ω ⊂ Rn is convex then∫
Ω

(∆m/2u)2dx ≥ 12 · 32 · 52 · . . . · (2m − 1)2

4m

∫
Ω

u2

d2m
dx , u ∈ C∞c (Ω)



Proof. The proof uses the mean distance function method. Given a direction
ω ∈ Sn−1 and applying the Rellich inequality in one dimension we obtain∫

Ω

(∂m
ω u)2dx ≥ A(m)

∫
Ω

u2

d2m
ω

dx .

Applying the Fourier transform this gives∫
Rn

(ξ · ω)2m|û(ξ)|2dξ ≥ A(m)

∫
Ω

u2

d2m
ω

dx .

Now average over all directions:∫
−

Sn−1

∫
Rn

(ξ · ω)2m|û(ξ)|2dx ≥ A(m)

∫
−

Sn−1

∫
Ω

u2

d2m
ω

dx .

But for any p ∈ Rn, −
∫
Sn−1 (p · ω)2mdS(ω) = cn,m|p|2m, hence

cn,m

∫
Rn

|ξ|2m|û(ξ)|2dξ ≥ A(m)

∫
Ω

u2

d2m
av

dx

where
1

d2m
av (x)

=

∫
−

Sn−1

u2

d2m
ω (x)

dS(ω) , x ∈ Ω .

By the convexity of Ω we obtain d−2m
av (x) ≥ cn,md

−2m(x) , in Ω. 2



Q1: Is the above true when Ω is weakly mean convex?

Q2: What about the corrsponding Lp inequality?

In the case of an interior point singularity, the situation is very well understood.

Theorem. Let Ω ⊂ Rn be a bounded domain containing the origin. Assume that
mp < n. There exists D ≥ supΩ |x | such that for any u ∈ C∞c (Ω) there holds∫

Ω

|∆m/2u|pdx ≥ A(m, p)

∫
Ω

|u|p

|x |mp
dx + B(m, p)

∞∑
k=1

∫
Ω

|u|p

|x |mp
X 2

1 X
2
2 . . .X

2
k dx .

Here Xi = Xi (|x |/D) and

A(m, p) =

[(m−1)/2]∏
i=0

(n − (m − 2i)p

p

)p
×

[m/2]∏
j=1

(np − n + (m − 2j)p

p

)p
and

B(m, p) =
p − 1

2p
A(m, p)

[(m−1)/2]∑
i=0

(n − (m − 2i)p

p

)−2

+

[m/2]∑
j=1

(np − n + (m − 2j)p

p

)−2


The inequality is sharp at each step.



But the Lp Rellich inequality is little understood in case p 6= 2 when we take
the distance to the boundary.

For example, the best constant for the inequality∫
Rn

+

|∆u|pdx ≥ C

∫
Rn

+

|u|p

x2p
n

dx , u ∈ C∞c (Rn
+)

is not known.

By local considerations we have

C ≤ (p − 1)p(2p − 1)p

p2p

but we do not have any nice lower bound.



THE END


