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Introduction.
Hardy inequality.
Let 1 < p < 4o0 and let « > 0. Then
/a | (£)|Pdt > (p;l)”/a W 4 for all ue €(0,a)
0 p o tP

» The power t” is optimal

» The constant ("Tfl)p is optimal.

»  There is no minimizer in W, "(0, )

These remain true if (0, a) is replaced by (0, +00).

For p = 2 the inequality reads

e 1 1 et u2
A UdtZZ‘/o th7 UECC (0,0[)



Proof of the Hardy inequality:

Given u € CZ°(0, ) we have
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= dt + = —dt — = —dt
/0 Y +4 o t? 2/, t?

and therefore

Equality holds if and only if u(t) = ct'/2, which does not belong in H3(0, ).

To prove the optimality of the exponent and the constant use the sequence
ue(t) =t27p(t), ¢>0,

where ¢(t) is a smooth function with ¢(t) = 1 near t = 0 and ¢(t) = 0 near
t=a.



Higher dimensional analogues.

There are two main generalizations of the Hardy inequality in higher
dimensions.

A. Hardy inequalities involving distance to a point: let 2 C R" be a domain
containing the origin and assume that p < n. There holds

_ P
/Q\Vu\”dxz (Lpp)" Q%dx, ue C(Q)

n—p P
P

In case p > n the same inequality remains true, the constant now being

But in this case the inequality is valid for u € C2°(2\ {0}).

In both cases the constant

P
”P”‘ is sharp. This is seen using the sequence

u(x) = Ix|7 Fo(x), e>0,

where ¢ is a function in C2°(2) with ¢(x) = 1 near the origin.



B. Hardy inequalities involving distance to the boundary: let Q C R" be a
domain and d(x) = dist(x, 0).

We say that the (geometric) Hardy inequality is valid for the domain Q if there
exists ¢ > 0 such that

P
/|Vu|pdx2c/|s—!7dx, ue ()
Ja Ja

This inequality is not always valid: the geometry of Q plays a role.

We shall restrict attention to the case p = 2. We define

/\Vu\ dx
u CWQ
€@ /—dx

the Hardy constant of the domain Q.

H(Q) =



It is easy to see that

® The Hardy constant is invariant under dilations, that is H(Q2) = H(AQ),
A>0

® There is no domain monotonicity for the Hardy constant

Q: When is the Hardy inequality valid? What can we say about H(£2)?

In some sense H(2) is more rigid than the first Dirichlet eigenvalue.



Motivation.

G.H. Hardy

"I have never done anything ‘useful’. No discovery of mine has made, or is
likely to make, directly or indirectly, for good or ill, the least difference to the
amenity of the world.”



Heat equation in R”

Solution

The function

u=Au, t>0 xeR",
u = uo, t=0, xcR"
1 Ix—y|?
1) = g [ € )y,
1 [x—y|?
h(t = —

is the heat kernel (fundamental solution).



Consider know the heat equation on a bounded domain Q C R"™:

u=Au, t>0, xeR"
u = up, t=0, x e R,
u=0, t>0, x €00

The solution is again represented as

u(x,t) = /Q h(t,x,y)uo(y)dy.

The heat kernel h(t, x,y) cannot be written explicitly. Given a subdomain
V CcC Qand T > 0 there exist C > 0 such that

bx—yl? D _—1lx=yl?
t

C 't 2e ™ 7 <h(t,xy)<Ct Ze

forall0<t< T and x,y € V.



Assume now the additional presence of a potential V(x), x € Q.

u=Au+ V(x), t>0, xe€Q,
u = up, t=0, x € Q,
u=0, t>0, x € 0Q.

If V is bounded then the same estimate as above is valid. But what is V is
unbounded? In particular we are interest in the case where supg V(x) = +o0.

Assume for simplicity that

V(x)>0, x € Q.

The behaviour of the heat kernel depends on ‘how bad’ the potential V/(x) is.
Consider potentials of the specific form

1

V(x) = )\W

where Q contains the origin and 3, A > 0.



Then the following is true:
» If 0 < B < 2 then the same estimate as above is valid:
1 _cley? o _c-1lx=y?
C't72e C t <h(t,x,y)< Ct 2e ¢ ¢
forall0<t< T and x,y € V.

» For 3 > 2 the problem is ill-posed.

In this sense the potential

is a critical potential.



Let V(x) = A2;. Thenfor0 < t < T and x,y € V we have:

x]2°

> If0 <A< (%52)° then

2
o 7C 1]x—yl® yI

_1,_n —ag— [x— _n _
C Ry e S5 < (e x,y) < R x|y

where o > 0 is the smallest solution of the equation a(n —2 — o) =

> If A > (22) then the problem is ill-posed.

The above are intrically related to the Hardy inequality

/|vu| x> ( / R )

and its critical nature. Analogous results are valid for the geometric Hardy
inequality (distance to the boundary).




|. The Hardy inequality in R".

2
/|Vu|2dx2<:/%dx7 ue C(Q)
Q Q

Sufficient conditions for the Hardy inequality.
Boundary regularity.

If 02 is bounded, then some boundary regularity is enough.

Let Q C R" be bounded. Assume that for each y € 9 there exists an open
neighbourhood V, of y and ¢, > 0 such that

2
u oo
|Vul?dx > cy/ o dx , ue C(Vy).
V)/ Vy
Then the Hardy inequality is valid in €.

This is the case, in particular, if Q has a Lipschitz boundary.



Davies's mean distance function method.
Let Q C R". For w € S""! and x € Q denote
Ly(x) =QN{x+sw:seR}

and
du(x) =min{s >0: x+sw & Qorx—sw¢Q}

Let v € C°(R2). By the Hardy inequality in one dimension we have

1 u?
(Vu-w)’ds > = —ds.
I i@

Intagrating over all directions perpendicular to w we obtain

1 u?
Vu-w)ldx> > [ “—dx.
/Q( ) T4 Jgd2



[REP] /(Vu w)’dx > = /—dx

Now average over all w € "7 1. Get

2
][ / |Vu-wfdx dS(w) > 1][ / u—dde(w).
sn-1.Jq 4) sn1q d3

But for any p € R”, £, |p- w[*dS(w) = %|p|*, hence
/\Vu\ dx > = /dazvdx

1 2
705 fsn i) xen

defines the mean distance function d,,(x), x € Q.

where

So: if the exists ¢ > 0 such that
dav(x) < cd(x), x€Q,

then the Hardy inequality is valid on .

Note. The mean distance function is useful also for L and higher-order Hardy
inequalities.



Remark. If Q is unbounded then boundary regularity is not enough to
guarantee the validity of the Hardy inequality.

Assume for example that Q = R?\ D(1). Then, by the scale invariance of the
Hardy constant (H(Q2) = H(AQ), A > 0)

H(R®\ D(1)) = H(R*\ D(r)) = lim H(R*\ D(r)) = H(R*\ {0}) =0,

since the inequality

/|wd > (

is sharp also for n = 2.

/‘ sdx. ue CEE\{0))

Note. In what follows we shall be considering (mostly) Lipschitz domains.



On the precise value of the Hardy constant

The importance of H(Q2) being 1/4
Theorem. If some part of dQ is C? then H(Q) < 1/4.

Proof. For € > 0 define .

ue(x) = d(x)2 " (x)
where ¢ is supported in a small enough neighbourhood where 9Q is C2. Then
ue € H3(Q) and

/ Vul'dx (14 2 [ a2 v+ 0(1) 1
Q _ \2 Q .

[Za o g
42
Q

as € — 0.



A dichotomy for the associated minimization problem:

fQ |V ul?dx

H(Q) = ) [ Edx

Theorem. Assume that Q is bounded with C2? boundary. Then the infimum is
attained if and only if

HQ) < L.
Moreover, if a minimizer u € Hy(Q) exists, then
u(x) < d(x)*, x € Q,
where « is the largest solution of the equation
a(l —a) = H(Q)
Proof. (only for the existence or non-existence of a minimizer) For 8 > 0 define
Qs ={xeQ : d(x) < B}

(<) It can be shown that there exists 5 > 0 so that

1 u? s
|V ul?dx > d2d ue C(Qp).
Qp



Let (wx) C H3(2) be a minimizing sequence for the Hardy quotient normalized

so that [, Z-dx = 1; hence
/\Vwk\de — H(Q), ask— oo.
Q

The sequence (wx) has a weakly convergent in Hg () subsequence,
Wk — wp € H&(Q). Let vi = wx — wp. Then

/|Vwk\2d><:/|Vvk|2dx+/|VW0|2dx+o(l)
Q Q Q

/Wkd— d+/d°dx+o

Let ¢ € C*(Q2) be a function such that 0 < ¢ <1, ¢(x) =1if d(x) < 8/2

and ¢(x) =0, if d(x) > B. Writing vi = ¢vi + (1 — ¢)vk and integrating by
parts we find

/\vvk|2dx = /|V(¢vk)|2dx+/\v((1—¢>)vk)|2dx
Q Q Q
+2/¢(1—¢)|Vw|2dx+/(2¢—1)A¢v£dx.
JQ Q

The last integral converges to zero by the compactness of the imbedding
Hs (Q) C L*(Q).



It follows that

/ |V vie|* dx
Q

and hence

H(Q)

%

Y

/de + H(Q /dodx+o

4 Q

/ IV (6w 2dx + o(1)

¢d‘2/"d +0o(1)
/de 42 /(‘;3;721)"*2dx+o(1)

1 vP
— | —dx+o(1
/ 5 dx + o(1),

by compactness and the fact that ¢ = 1 near 99.
Combining the above we obtain

/|Vvk|2dx+/|VWo|2dx+o(1)

%(1_/ dgdx +H(Q)/ 28 dx + o(1),

(H(Q)

1

4

(-

Wo
2 dx

)_o.



[REP] (H(Q) — %)(1 - /Q Z—fdx) > 0.

Since H(Q) < 1/4, we conclude that [, wg/d” dx > 1. By weak lower
semicontinuity we conlude that

2
W
H(Q) > /Q |V wo|*dx > H(Q)/Qd—gdx > H(Q).
Hence wy is a minimizer.

(=) Assume for contradiction that H(Q2) = 1/4 and up € H3(Q) is a minimizer.
There exists 3 > 0 such that for any 0 < 1 < 1/4 the function

v=d2tn +d
is a weak subsolution to the Euler equation in Qg, that is

1 .
Av+4—dzv207 in Qp.



Let C > 0 be such that

v < Cug, on {d(x) = g}

Then the function w = (v — Cuo), is a subsolution in the set Q5,, which
vanishes in a neighbourhood of {d(x) = 5/2}.

So
/ (Vw v - H(Q)W—¢)dx <0
42
Q572
for any non-negative ¢ € C°(Q3,2). Taking ¢ = ?w where ¢ € C°(Q) we
obtain

/Qﬁ/2 (Vw V(@ w) — 1/;2;;2)(1)( <o.

Using a simple identity for V(¢*w) this is written

J

Qs /2

wZWZ ) )
IV (pw)[* - dx < W | V| dx .
( i )os )



[REP] / (Iv@w)P - 4d2 )dx</Q W2 |V 2dx

Q572 /2
Also, since up is a positive solution,

/Q (VUo-V(w2W2) L )dx:o,

2
5 uo 4 uod

Y N S 2 Pw?
/QM &V dx—/ﬂﬁ/z (\V(ww)| - )dx.

/ u0|V( )|?dx </ w?|Vep[* dx
Q Q

B8/2 B8/2
Now take 1 = 1 where

So

$e=0,inQp, we=1,nQ\Q, |we|g§.
We obtain

/ uS|V(M)‘2dx < %/ w?dx
Q52 o € J{s<d(x)<e}



[REP] / ué!V(¢EW)}2dx < 7/ w2dx
2/2 to € J{g<dx)<er

Hence, for any n > 0 small,

/95/2 u§|V(%)}2dX = /QB/ g lim !V 1/)6 )}

e—0 (7o}

. ' w

< I|m|nf/ u§|V(¢6 )|2dx
e—0 Qﬁ/z Up
... C

< climinf — w2 dx
=0 € J{s<dx<e)

<

d1+277
cIiminfc/ 3 dx
=0 Jiscdm<a 9

= 0.

It follows that there exists ¢ > 0 such that w = cug in Qg/,. Hence w =0 in
Qs/2.



Recalling that

we obtain 1 1
1
uozfv26d5+", in Qg
Letting 7 — 0 we get
1 1
ug 2 Edz

Hence

2
Ug 1 / 1
—dx > — —dx = 400,
/nﬁ/z d? Ja,, d

a contradiction.

Q: Are there domains for which H(Q) = 1/4 ?

A: Yes. The simplest is the half-space R = {x = (x', xs) : x» > 0}:

[e%S) co 2
/ |Vu|2dx > / / uf"dx,,dx' > 1/ / u—2dx,,dx' = l/
Rl rn—1 Jo 4 rn—1 Jo Xn 4 JR‘”F

u2

d?

dx



Theorem. If Q is convex then H(Q2) = 1/4.

Proof. We have already seen that for any 2 C R" there holds

2
n [ u

|Vul?dx > 7/ dx
/Q 4 Q da2v

So it is enough to show that if Q is convex then d,,> > %d72 in Q.

Let x € Q. Let y € 9Q be such that |y — x| = d(x) and let P, be a supporting
hyperplane at y. Let o.,(x) be the point of intersection of the half-line

x+t(y —x), t >0, with P,. as in the diagram. Then

1 dS(w) _ dS(w)
d3(x) ]lsn—l d2(x) 2][5+ dz(x)

dS(w)
= 2L k)
_ (y=x) @) o
_ 2][5+ )
1 2
- d4(X) J—_— ((y - X) : w)) ds(w)
1

Te) O



The positive supersolution method.

Let ¢ be a positive function on Q. For any u € CZ°(Q),

2
O§/|Vufﬁu|2dx:/|Vu|2dx+ |V(f‘ u2dxf/Vu2-de
Q ¢ Q o ¢ Q ¢

= /|Vu|2dxz—/ A—qux
Q Q ¢

A+ 6 <0, inQ,

2
/\Vu\dezc/u—dx.
42
Q Q

Conclusion: To prove the Hardy inequality

Hence, if in addition

then

2
/|Vu|dx>c/d2d, ue C(Q).

it is enough to find a (weak) positive supersolution ¢ to the Euler-Lagrange
equation,
c
A¢ + ﬁ¢ <0.



Assume that the domain Q is such that
Ad <0, inQ.
Then for the function ¢ = d*/? we compute
Ap+

4= dl( 4 ivd) + 2d- = tg-tad <o
4d2 ¥ 29 772 =

Definition. A domain Q C R" is weakly mean convex if Ad <0 in Q.

Hence we have

Theorem. If Q is weakly mean convex then

/|Vu| dx> —dx ue C(Q).

Remark. The condition Ad < 0 must be understood in the distributional sense.



Examples.
1. Suppose Q2 = (0,1). Then
Lo 1
| @' @o0d = ~26(3)
0

2. Suppose Q2 = B; CR", n> 2. Then
n—1

Ad = —
Ix]

3. Suppose Q = (0,a) x (0, b) C R? where a > b > 0.

Ly L

Ly Ly

a

4
/Ad¢dx:—ﬁz pds—2 [ ¢ds
Q k=1 Ly Ly

Then



Concerning weak mean convexity:

® Any convex domain is weakly mean convex.

® If Q is bounded with C? boundary then weak mean convexity is equivalent
to mean convexity, i.e. to the mean curvature being non-negative.

¢ In two dimensions and for C2 boundary mean convexity is equivalent to
convexity.

® |n three of more dimensions there exist mean convex domains which are
not convex.



Other domains for which H(Q) = &.

® |et n> 3. The annulus
{xeR":r<|x| <R}
has Hardy constant equal to 1/4.

Proof. The function P
o(x) = x| 2 d>(x)

is a positive supersolution to the Euler equation

® Let Q C R" be bounded and D = supg d(x). There exists a constant ¢,
such that if each y € 9Q admits an exterior ball of radius (at least) c,D
then the Hardy constant of Q is equal to 1/4.

Q: What about domains with H(R) < 1 ?



[I. The Hardy inequality in two dimensions
Theorem. If Q C R? is simply connected then
2 1 lJ2 oo
/Q\Vu\dxzﬁ/nﬁdx, ue C2(Q).

Proof. Makes use of Koebe's 1/4 theorem: If g: D — g(D) is conformal, then

&) 2 D(5(0), &)
In particular if Q = g(D) then

d(g(0)) > ;18'(0)]

Let f : C;+ — € be a conformal map.



Claim: for any z = x + iy € C; there holds
Yy
d(f(2)) > X1 (2)].

Proof of Claim. Write z = x + iy. The map

Zw—2z

ho(w) = w—1

maps conformally D onto C and satisfies h,(0) = z, h,(0) = 2y. Then
gz = f o hz

maps conformally D onto €. It follows that

d(5:(0)) > ;18(0)].
But
g:(0)=1f(z) ,  £(0)=2yf"(2)

SO
d(f(2)) 2 31 (2)]



[REP]  d(f(2)) = 2 (2)]

Therefore, given u € CZ°(Q),

|[V(uo f)|2dx dy

+

/ [Vul>dx'dy’
Q

Il
P

Oo/ V(uo f)|Pdy dx
A
i1l / d(fZ))|>2 o

- el P
= 5 L e iy

_ /ﬂ,d

v

v
i \

ddx

%




A modified version of the above theorem:
Theorem. Let Q C R? be simply connected and satisfy an external cone

condition: each y € 0 is the vertex of an infinite angle of size 6 which
contains 2. Then

/ |Vul?dx > 492 ﬁ dx, forall ue C°(Q).

Best case: Q convex — =7 — H(Q) = 7

Worst case: 0 =27 —» %

The proof makes use of a modified version of Koebe's 1/4 theorem.



Open problem.

Find the best uniform Hardy constant over all simply connected domains
Q C R?. That is, find the largest constant H* such that

2
u

|Vuldx > H*/ = dx
/n o d?

for all simply connected domains Q C R? and for all u € CZ°(Q).

Moreover, determine whether there are extremal domains, that is domains
for which H(Q2) = H™.

It follows from the preceding discussion that

1

Z<H'<
6= =

B



The anguler sector.

Let Ag denote the infinite sector of angle 3,

Ng=A{(r,0):r>0, 0<6<p}.

Symmetry plays an important role. Note that

1 ™
r2sin2 0<0<5’
1 1 ™ ™ 1
Z=) 7 3<0<B-7, = 5 Vs(0)
1 ™
r2sin2(—0)°’ ’B_§<€<ﬂ'

Lemma. The Hardy constant H(Ag) coincides with the best constant cg for the
Hardy-type inequality

B B
/0 g (02d0 > ¢ / g0 Vs(0)do, g C=(0,5).



Proof. Let u € CZ°(Ag). Then

B )
/\Vu\zdx // (u3+1 2>rdrd9
" v ér) 2
// ﬂ( rdrdGZCB/ 2 dx
d2
Ag

hence H(Ag) > cs. For the reverse inequality, let g € C°(0, 3). For € > 0 set

he(r):{ re, 0<r<l,

Y

r ¢ r>1
The function ue(x) = he(r)g(6) then belongs to Hj(Ag). So
) B B
[V ue|"dx / g'(0)%do / g(0)°de
H(Ag) < =22 =0 +& o
[ s [sorvom [ sorvean

Letting ¢ — 0+ we obtain
s 2
/ & (0)2d0
. J0
5 .

g(0)* Vs (6)do

Hence H(Ag) < cs. O

2

H(Ag) <



Change variables to pass from (0, 3) to (0, ),

/ " g'(0)%d6
g = inf r 0
/0 g(0)?Vs(50/7)do
SO x
/ g(6)2Vs(56/7)do
— =sup 0 — .
s | &eras

We can easily see the following:
® The function 8 — V;3(860/7) is convex in (0, 27); hence § +— cgl is convex
® ¢ = 1 (the function ¢(f) = 9%(4 - 9)% is a positive supersolution)
® o < } (test with g(0) =sin(%) )

Hence there exists a critical angle . € (4,27) such that

5 for 0 < B < Ber,
cg = )
decreases monotonically, for B < 8 < 27.

Numerical computations give . ~ 1.5467, c» ~ 0.205



More work is required in order to obtain a better understanding of the constant
c3.

Fix 8 € (0,27) and for ¢ > 0 consider the boundary value problem

(*) w”(e) + CVL%(QW(@) =0, 0<0<3,
¥(0) =(B) =0,

where, we recall,

=55 0<0<7,
Vs(0) =< 1, s <0<p—-73,
sinz(,lee)’ ﬂ_ % <6<B’

The Hardy constant cg of Ag is the largest constant ¢ for which the boundary
value problem (x) has a positive solution.



In the inteval (0, 7/2) the general solution of the ODE can be expressed in
terms of hypergeometric functions. In case 0 < ¢ < % we have

O T N U USRS S
y(0) = asin (2)cos (2)F(2,2,a+2,5|n(2))

-17@9 1,(19 3 _-ZQ
+c2sin (2)cos (2)F(1 a,l @, 5 —aisin (2))

while for ¢ = % we have

y0) = asin?(%)eos?(] )F(2 2, :sin2(§))
in1/2(9 cosl/? sin?(? v d
ez sin'(3) cos ( )F( ' (2))Ln2(9/z) t(1—t)F2(3, 5, 1;t)

From the above one can analyze the boundary value problem ().



Theorem. The critical angle (.- is the unique solution in the interval (m, 27) of

on P2y 41

4

the equation

Moreover for any 8 € (0,27) the Hardy constant of the sector Ag is given by

l .
HAg) =4 * if <8 < Ber,
the unique solution of (xx), if B < B < 2.

3+4/1-4c5 |\ »
B—r r( % )
(#+)  /Catan (\/ca( ) =2( ——A—"
Cs ta ( (o] 2 ) (r(1+«/14c3))

4

Note. Slightly modifying the above argument we can see that the bounded
sector Ag N D(1) also has Hardy constant cg.

Q: What about other bounded domains with Hardy constant smaller
than 1/4 ? What about domains where there is no symmetry ?



A comment on the positive supersolution method.
"If the Hardy quotient admits a minimizer ug, then to apply the positive
supersolution method we need to now exactly the minimizer.”

Proposition. If the Hardy quotient admits a minimizer ug then any positive
supersolution is a scalar multiple of wp.

Proof. Let ¢ be a positive supersolution and (u,) C CS°(2) be such that
Up — to in H3(Q). Then

O</|Vu,,——un\ dx</\vun| dx— H Q)/ g,

Hence
/\Vuo—wuofdx:/Iim\Vu,,—@unfdx
é ®
2
< |.m.nf/\wn V9 o2dx < Ilmmf /\wn| dx — (Q)/%dx)
Q

= /\vUode— /ﬂd

Q
= 0

It follows that ¢ = cup for some ¢ € R. O



The Hardy constant of a quadrilateral.

Theorem. Let Q@ be a non-convex quadrilateral with non- convex angle
B € (m,2w). Then H(Q) = cs.

Proof. Set-up:

® Denote by « the largest solution of the equation a(l — a) = ¢

® Denote by 1(0) the positive solution of the boundary value problem

V" (0) + csVp(0)(0) =0, 0<6< B,
¥(0) = ¢(B) = 0.

® Assume that the non-convex vertex lies at the origin. Let A, B, C denote
the other three vertices, with A lying on the positive x-semiaxis.



C

Divide @ into two parts Q_ and € by means of the equidistance curve
M= {(x,y) € Q :dist((x,y), OAU OI') = dist((x, y), ABU BI)

Denote by i the unit normal vector along ' which is exterior with respect to

Q_.
Apply the positive supersolution method separately on each subdomain Q...

® On Q_ choose the function ¢ = 1 (8) (it is a solution)

® On Q4 choose ¢ = d* Note that, since a(1 — a) = ¢z, we have

Ad® + %da = div(ad®'Vd) + c5d® 2 = ad® 'Ad <0, inQ,



We obtain that for any u € C°(R),

2
/ \Vu\2dx2<:3/ %dx+/@.ﬁu2ds
JQ_ JQ_ d JI ¢

2
/ |Vul?dx > C/j/ u—zdx— a/v—d - Au’dS
Q. o, d rd

Adding we obtain

-2
Vi vd, . »
Vul?dx > ¢ / u—dx—&—/ — —a——) -Au°dS
/Q‘ | @ ® e )
Hence what is required is to prove that

Vi vd, .
(?_QT)'H >0, along T.
—  one-dimensional inequalities, parametrized by 6 € (0, 3)

Everything can be written explicitly except for ¢(0). Also, different types of
quadrilaterals must be distinguished.



Consider this quadrilateral:

C

Starting from the point A (i.e. 8 = 0) the curve I' has the form L-P-P-L. These
four segment correspond to angles 6 as follows:

M 0<0< 3 (line segment)
M : 5<60<6 (parabola segment)
M3 6o<0<pB—7F (parabola segment)
M, B—=5<0<p3 (line segment)



For the line segment I'; we need

. 7\ ¢'(0) gl m
0 0+ =)—= = > <9< =
sin cos(+2)w(0)+ozc052_0, 0_9_2
Indeed, letting 7(0) = qfl)/((:)) we have
Lemma. Let 0 < w < 7/4. Then
f(6) sin6 cos(f + w) + acosw > 0, ogegg.

This is applied for w = 3, where + is the angle at the vertex A.

For the parabola segment ', we need

Lemma. Let 37/2 — 8 <w <27 — 3. Then

f(6) cos(f + w) + (1 +sin(f +w)) >0, <0< B—

™ ™
2 2
This is applied for w = ~.

Both proofs use the fact that the function f() solves

flefPtesVs=0, f0)=a.



Consider this quadrilateral:

Cc

Now the curve I has the form L-L-P-L. These four segments correspond to
angles 0 as follows:

Mo 0<60<6b (line segment)
I <0< % (line segment)
M : 3 <0< p—7% (parabola segment)
M, B—=35<60<pB  (line segment)

The segment I, is different from before.



Consider the following quadrilateral: now v > 7/2. The curve I has the form
L-L-P-L.

Note that in this case 8 < 37/2 < S and hence ¢ = 1.

The previous argmument does not work: the required inequality is not valid on
' (the segmant AS).

An alternative approach is required.



Use the positive supersolution method as follows:

Consider a second coordinate system (x1, y1) with origin O = proj,z(0O) and
the positive x; semiaxis containing the side AB. Denote by 6 the polar angle
in this new system. Divide Q in two parts, Q% and QS with the bisector at B.

® On Q_ use the solution ¢ = ¢ (6) (as before)
® On Qf use the solution ¢ = v(61)

. 1
® On QS use the supersolution ¢ = d2



For the segment AS we need the following: define g(0) = w((g) sinf.

Lemma. Let 5 <y <. For § € (0,7) let 61 = 61(6) be the angle determined
by
cot )y = —cosycot + sin~y

Then there holds

g(0)cos(9+ 1) + g(61)cos(bs — ) 20, 0<0<

N

But we may also have v > 7 and I be of the form L-P-P-L. In this case the
construction is the same and for the (first) parabola we need

Lemma. Let r < B <2mand 5 <y <7 For 7 <6< 37”—*ydenote by
61 = 61(6) the angle in [0, 7/2] uniquely determined by

cotfy = —cos(f + )

Then

2
1—%—cos(9-&-’y)7 gg@g%—v.

) < FO) 5 5 )



In all, five types of quadrilaterals must be considered:

il

Type Al (L-P-P-L) Type A2 (L-L-P-L)
Type Bl (L-P-P-L) Type B2 (L-L-P-L)
C o/ A

Type B3 (L-P-L-L)



Lemma. Let 0 < w < 7/4. Then

f(0) sin @ cos(f + w) + acosw >0, 0<6<

ST

Proof. The inequality is trivially true for 0 < 0 < 7 — w, so we restrict our
attention to the interval 5 —w <0 < 5. We must prove that
f(0) < q(9), —w<O<

T T
2 2’

where
cosw

9(6) = Y cos(f + w)’

We have ,/cz < «, hence

q(g)—f(g) = acotw—@tan[\@(g_g)]

> a{cotw—tan[@(?—g)]}
- sinwcos[\;é:»ﬁ(g -5 cos <@(§ B g) +w)
> 0,

since0< \/G5(5 - ) +w< -7 +u< /2



In view of the above, it is enough to establish that

’ 2 (o] ™ e
< ——w<o< —.
q(tﬁ’)—l—q(@)—&—SinZG_O7 for2 w_0_2

Indeed, for 0 € [7/2 — w, 7/2] we find

q'(0) +q*(0) + -

sin? 0
- a2coswcos€cos(0—|—w)—(1—a)sin49$in(9+2w)
B sin 0 cos?( + w)
< 0
since 3
™ o Y
— < < — < —
> <Ol+w< 2+w_ 2
and - - -
< <2 42-=q.
2_6’+2w_2+22 7r



Exercise. Consider the initial value problem

{ g =-3 (g2 —cosf g+l — a))
g(0) =«
Prove that

(i) For 2 < a < 1 there there exists a unique solution
(ii) For oo = § there exists a continuum of solutions

Moreover, any solution is strictly decreasing in (0, 7/2).



Beyond the quadrilateral...

Are there other planar domains for which these ideas can be applied ?

»  More general polygons with one non-convex angle
» Polygons with two or more non-convex angles

» Domains that are not polygons

Note. If a planar domain Q has an angle of size 8 > 7 then H(Q) < cs.



Theorem. Let Q = KN Ag, B € (m,2r], where K is a bounded convex planar
domain containing the origin. Let v, and y_ denote the interior angles of
intersection of K with Ag.

There exists an angle v3 € (7/2, ) such that if v4,v— < 73, then the Hardy
constant of Q is cg.



Theorem. Consider the domain Eg , (diagram) where 7 < 8 < 2w, 0 < v < 27
and 5+ v < 3.

(i) If v < 7 then the Hardy constant of Eg - is cg.

(ii) Assume that v > 7. If in addition

2
8=~ < F arccos(2 CBJr,y,W),
Y—T

s

then the Hardy constant of Eg ., is cg4y—x.



Some open problems.

Problem 1. Prove more results about the Hardy constant of domains in R?.
For example:

» Find the Hardy constant of various simply connected domains (polygons,
Koch snowflake...)

» Find a simply connected domain with Hardy constant smaller than ¢~
>
>

Find the best uniform Hardy constant valid over all simply connected domains
Q C R?, that is the largest constant H* such that

2
/\VUdez H*/%dx
Q Q

for all simply connected domains Q C R? and for all u € CZ°(Q).

We know that

Con S H* S (Cgﬂ- ~ 0.205)

FN



Problem 2. Davies' conjecture on the weak Hardy constant

Let Q C R" be bounded. Assume that there exist o, 3 > 0 such that

/|Vu|2dx2a —dxfﬂ/u dx, ueCZ(Q). (1)
Q
We define the weak Hardy constant of Q as

Hw () = sup {a > 0 : there exists 3 > 0 such that (1) is valid }

The weak Hardy constant depends only on the boundary regularity. To make
this precise, for y € 9Q and r > 0 define

Hy(y,r) = sup {a > 0 : there exists 5 > 0 such that
(1) is valid for all u € C°(B:(y))}

and
Hy(y) = sup Hy(y, r) = lim Hu(y, r).
r>0 r—0

Theorem. Let Q C R" be bounded. The function y — Hy(y) is lower

semicontinuous and
H (€2) = min Hu(y)

Conjecture. For any domain © C R" and any y € 9Q there holds H,(y) < 1/4.



Problem 3. Improved Hardy inequalities.

Let Q C R" be a weakly mean convex domain. So
/|Vu| dx> —dx ue C(Q).

Q: Can this be improved?

Define

X(t) = , t € (0,1).

1—logt
Theorem. If Q is weakly mean convex and D := supy d < +00, then

1 s
/Q\Vu|2dx2 A —d + = /d2x2 d/D) dx ue C(Q).

The inequality is sharp.



Can this be additionally improved?

Theorem. If Q is weakly mean convex and D := sup, d < 400, then

2 1 Ll2 1 U2 2
D — —
/Q|Vu| dx > 4/9 7 dx+4 Qd2X (d/D) dx

2
+% %Xz(d/D)XZ(X(d/D)) dx<, uweCI(Q).
Q
The inequality is sharp.
More generally, define
X(6) = X(£), Xea(t) = X%(X(0),  te(01).

Theorem. Let Q be weakly mean convex and D := supgy d < +o00, then
|Vul?dx > 1/ Cil o+ i/ ”—2X2(d/D)X2(d/D) X7 (d/D) dx
0 =4 ), d 4 Jo d® "t ? T

for all u € C2°(2). The inequality is sharp at each step.

Q: Can this inequality be improved?



Problem 4. Improved Hardy-Sobolev inequalities.
Hardy-Sobolev inequalities are inequalities of the form
2
/Q|Vu|2dxz H(Q)/ 5 dx+c /\u\qu q, ue C2(Q),
or weighted variations of this.

Theorem. For any n > 3 there exists ¢, > 0 such that for any convex domain
Q C R" there holds

n—2
/|vu| dx > = /—dx+cn /|u|%dx) T, ue ().
Q

Q: Does this remain true for weakly mean convex domains?

Note. In case Q = R3 there holds

2 1
/\vuﬁdle/ izdx+53(/ ufax)’, ue CE(EY)
= 4 Jwy d RS

where S3 is the Sobolev constant in three dimensions!



Problem 5. The best L” Rellich constant.
Recall that the LP Hardy inequality in one dimension reads

! p—1\r ! |u| 00
U/ t)|Pdt > ( —— / dt for all u € C 0,1
\/0 ‘ ( )| = ( ) o tP ra c ( ? )

What about higher dimensions?

Theorem. If Q is weakly mean convex then

/ VulPd > ( / Jul ue C2(Q)

The computation of the L” Hardy constant for other domains is more difficult.



The Rellich inequality.

The L? Rellich inequality in one dimension reads

2

"1 2 2 2 2 1
1°.3°-5°-....(2m—-1
[ e > B BT [ e,
0 4m 0 t2m

What about higher dimensions?

Theorem. If Q C R" is convex then

2 22 g2
/(Am/zu)2dx > 135 (2m /de
Q dzm

ue Ccz(0,1).

ue Cr(Q)



Proof. The proof uses the mean distance function method. Given a direction
w € S"7! and applying the Rellich inequality in one dimension we obtain

2
/(8:;'u)2dx2 A(m) / qux.
Q Jo dg"

Applying the Fourier transform this gives

[ (€ ormaeiae > am [ 2

Now average over all directions:

1. Lewrna@iacamf [ ;:szdx

But for any p € R”, £, 1(p - w)*"dS(w) = cn.m|p|*”, hence

2
o [ €I dE > Am) [ e
Q Yav

where

1 u?
_ _u Q.
420 (x) ][SH () W), x€

By the convexity of Q we obtain d;;>™(x) > camd 2"(x) , in Q



Q1: Is the above true when Q is weakly mean convex?
Q2: What about the corrsponding L? inequality?
In the case of an interior point singularity, the situation is very well understood.

Theorem. Let Q C R” be a bounded domain containing the origin. Assume that
mp < n. There exists D > supg, |x| such that for any u € C2°(2) there holds

P ~ |U\p 242 2
A'"/zudeZAm,p/ |ul dx + B(m, p) / X2X2 ... X2dx.
187 (m.p) [ 15 S [ X

Here X; = Xi(|x|/D) and

[(m-1)/2] [m/2]

= "Ti (a2 (e
i=0 j=1
and
((m-1)/2] L
Bmp) = P tamp) (3 (TTUm2R)T
i=0
(m/2)

+; ("P*n+émf2j)p)—2

The inequality is sharp at each step.



But the L? Rellich inequality is little understood in case p # 2 when we take
the distance to the boundary.

For example, the best constant for the inequality

P
/Rn AulPdx > C/Rn ‘X“T‘pdx, ue CRY)
+ + 7N

is not known.

By local considerations we have
c< (P=1)0(2p—1)F
< 2

but we do not have any nice lower bound.



THE END



