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POURQUOI FAIRE DES MATHEMATIQUES ?

Parce que les mathématiques, ca sert a faire de la physique.
La physique, ca sert a faire des frigidaires. Les frigidaires, ca
sert a y mettre des langoustes, et les langoustes, ca sert aux
mathématiciens, qui les mangent et sont alors dans de bonnes
dispositions pour faire des mathématiques, qui servent a la
physique, qui sert a faire des frigidaires qui ...

Laurent Schwartz

* What is mathematics helpful for 7 Mathematics is helpful for physics. Physics helps us make fridges. Fridges are
made to contain spiny lobsters, and spiny lobsters help mathematicians who eat them and have hence better

abilities to do mathematics, which are helpful for physics, which helps us make fridges which.. *

Anne-Sandrine Paumier, Laurent Schwartz (1915-2002) et la vie collective des mathématiques.

https://tel.archives-ouvertes.fr/tel-01087201/document
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QUICK REVIEW OF PROBABILISTIC TAIL ESTIMATES

PIXI = t) < (t)



Nice Orlicz functions
O:R—1R
x|
O(x) = [ o(s)ds

where ¢ : Rt — R™, ¢(0) =0 and otherwise ¢ >0,
and ¢(s) —s— 00 00.
Complementary Function

()= [ vis)as

where
Y(t) =inf{s>0:¢(s) >t}
Young's Inequality

xy < ®(x)+W¥(y)



Luxemburg norm

|X|lp = inf{\A >0: E®(X/\) <1}.

Normalisation Property

X
ED =1
(IIXIIcp)

Michat Lemanczyk, Concentration inequalities survey.
https://www.mimuw.edu.pl/~bpolaczyk/projects/resources/orlicz.pdf

(%)



Tail Estimates |.

If ® is N-function and 0 < || X||p < o0, then

1
PUXI= D < S/ IXTo)

» Skip MaxEstimates



Max Estimates maxj<j<p | Xj|

Let @ be a strictly increasing, non-zero function,
s.t. (1) <1/2 and

dc>0Vx,y > 1, O(x)P(y) < P(cxy).
Then for any n € IN

. < -1 : *
Il max Xillo < ¢ ®7%(2n) max [|X;]o (%)

If ® is a strictly increasing, convex, non-zero function,
then for any n€ IN

3 ( max |x,-|) <®1(n) max || Xio (*¥)

1<i<n 1<i<n

» Skip Proof



Proof: The assumption says that for x > y > 1 we have

? (;‘() <%0)

Thus, for y > 1 and any C > 0 using the monotonicity of ®

~ @(c|Xil/C)

| Xi]
o P ( Cy) SO+ 2 g

For C = cmaxi<i<n || Xil|lo we get

ED (mamg;gnx,-) < E max @ X-)
Cy 1<i<n  \ Cy

1
q)(y)JrCD(l) q)()+ <1

where the last inequality holds iff 2n < ®(y).




To get the second part of this lemma where @ convex note
that due to Jensen's inequality we have (w.l.o.g. X; > 0)

1 » D(X;)
CEIQ?SXHX' s® (Eltgﬁgn C

) <@7(n)



Exponential Luxemburg norms

DEFINITION :

For any a € (0,00) we define
W, (x) =exp(|x|*) —1
and the corresponding a-exponential Luxemburg norm as

IX|ly, =inf{c >0: Eexp(|X|*/c) < 2}



Tail Estimates ||

For any random variable X with
0 <[[X|lw, <oo
and t > 0 we have

P(IX| = t) < 2exp(—t*/X|[,)



Observations

(1) If one replaces a Luxemburg norm by some convenient
estimate from above, one still gets a tail estimates.

(2) If one replaces X by X — EX we get concentration
estimates.

(3) More generally, given a space P of R.V.s , one can study
X—w, for weP.



How to get bounds on Luxemburg Norms

COERCIVE INEQUALITIES



e Poincaré Inequality

mE(f — Ef)? < E|Vf|?, (Pl,)
with

E(f — Ef)? = inf E(f — a)?
d

H. Poincaré (Eqn (11) p. 253), « Sur les Equations aux Dérivées Partielles de la Physique Mathématique »,
Amer. J. of Math. vol. 12, no 3, 1890, pp. 211-294, doil0. 2307 /2369620

( [BE'1985].., [Antoniuk Antoniuk'1993] , [V '06],[BCG'08] [HZ 09],. )



Facts
o [HZ'09]

Let dE = e~ Vd\ with U locally bounded. Let g € [1,2].

If 30 < > no matter how slowly
- T?(X) dist(0,x)— o0 > { !
and 3C,D € (0,0)
E(1|f|¥) < CE|V|+ DE|f| ()
then 3m € (0,00) s.t.
i — 3|9 < q
m;grféﬂf a|? < E|Vf] (IPg)

o If (IP4 ) holds, then for every Lip function f with finite first
moment there exists € > 0 s.t.

Eeflfl <« 0o

i.e. Lip functions (with finite 1 moment) belong to Orlicz
space with exp norm.



e Poincaré Inequality with a Weight

([BL'1976],..,[Antoniuk Antoniuk'1993],.. [HZ'09|...)

q
mE|f — Ef|9 < E|VV£| . gq>1 (IPg,w)




Facts o [HZ'09]
Let dE = e~ Yd\ with U locally bounded. Let g € [1,2].

q
If 30 S H(X), |;E|5 d,'st([] x)_}oo‘r‘ o0 (with some 0 < & < 1)
and 3C,D € (0, 0)
E(n|f|?) < CE|VF|+ DE|f|9, (%)

then 3m € (0,00) s.t.

q
m inf E|f —a|7 < E|Vf|
acR

(IPq,W)

o If (IPg w ) holds, then for every Lipy, function f

e || Wiﬂq | oo < 00, (with E|f| < 0o ), there exists € > 0 s.t.

Eeflf « o

i.e. Lipw functions (with E|f| < oo ) belong to
Orlicz space with exp norm.



e Higher order Poincaré inequalities
dm € (0,00) s.t.

my inf E|f —w|? < E|V¥f| (IPg.x)
wePy :
where k € IN and Py denotes space of polynomials of order k,
and
VEf = Y |Vef|
|| =k



Facts

o [WZ'21] Downbhill Induction L,-Case.
Vke N (IPq) = (IPq)
Theorem

For q € (1,00), there exists Cy 5 € (0,00) and a polynomial
my q(f) of order k — 1, such that

q o
ulf = mig(F)| < Gg 3o ulVFI9. (Pliq)
la|=k

Y.Wang & BZ, Higher Order Coercive Inequalities, Potential Analysis
(2021) nttps://link.springer.com/article/10.1007/511118-021-09940=1



Assume that (Plg 1) holds. Then

ST opVverT= 3 S ulvvef|e

o=k B|=k—1 ]
>Crg . ulVPf—Myg(VPF)9
1B|=k—1
=Cq > VP (f=Bigk-1(f)) ]
Bl=k—1
with



Applied inductively, yields

S uVeFT> ¢ 6 STy (F = Brgya(F))°

lor|=k la|=k—j
with
x“ o
Brgj-1(f)= 2. —Mig(V(f = Big;(f))).
lal=k—j
Hence (Pl q) follows my g = By, g,1(f) and Cy 4 < qu. O

Remark The constant in the above is exponential in k and is
generally not optimal and different then the optimal constant
in the (Ply q) with the minimizing polynomial My 4(f).

E. Bou Dagher, Y.Wang & BZ, Coercive inequalities on Carnot groups
and applications, , Advances in Analysis and Geometry, Vol. 6 (2022)
https://doi.org/10.1515/9783110741711



Statistical Polynomials my o(f)

Questions :
What is the structure & possible applications of my ,(f) ?

Are they orthogonal for different values of k if g=2 7



Facts CND

o Similar techniques based on x-bounds for (1P, ) and

IVKF|9
W

m inf E|f—p|q§E( (IPg.k,w)

PEPK_1



Facts CND

Vk € N (IP, x) = ExpBounds

\ALik
Suppose || Voo < o0

Je>0  Eeflf~maalf) < o

S. G. Bobkov, F. Gotze, H. Sambale, Higher Order Concentration of
Measure, Commun. Contemporary Math., Vol. 21, No. 03 (2018)
https://doi.org/10.1142/50219199718500438

Friedrich Gotze and Holger Sambale, Higher Order Concentration in
Presence of Poincaré-Type Inequalities, Ch. 6, in "High Dimensional
Probability VIII, The Oaxaca Volume", Birkhdauser 2019, Eds. N.Gozlan,
R.Latata, K.Lounici, M.Madiman,
https://doi.org/10.1007/978-3-030-26391-1



Multiparticle decay

Higher order estimates for Gaussian semigroup Let
L=A-x-V and P=¢e".

Then we have

Theorem

VP f? < e 2elpvef|?

Hence with the corresponding invariant Gaussian measure -,
we have

f|V“Ptf|2dfyie_2|“|/|\7“f|2d’y



Proof In the case of interest to us it is well known that the
kernel is smooth.
Following an idea of Bakry-Emery, we have

OsPr—s|VOPsf > = Pe_s (—L|VPsf > +-2VLPsf - VPyf
and so
3sPt—s\VaP5f\2
= Pe_s ((—LIVOPSF? + 2V Pof - LVOPSF) +2[VO, L]Psf - VOPSf
Since
V.1=-,
using the following inductive formula
V"L =V[V" L +[V, v

we have
[V L] = —nV".
Hence for a component V¢, we get

Ve L] = —|a|Ve.



Using the fact that the Markovian form of L satisfies
L(g*) —2glg =2|Vg|* >0,
we obtain the following differential inequality
OsPr_s|VOPsf > < —2|a|Py_s (VP [?),
thereby concluding
VP f> < e 20l Py |VF |2

Accordingly, with the corresponding invariant Gaussian
measure 7y, we have

[19°PefPdy < el [verdy



Optimal higher order Poincaré constants for O-U

Note that for Hermite polynomials Hy, kK € IN, in one
dimensions, we have

VH(t) = VkHy_1(t).

and hence

V' Hi(t) = \/k-..- (k= n)Hy_n(t) forall k> n.



Thus, using representation

f = Z fi Hy
kelN

with respect to the O-N basis of Hermite polynomials, we
compute

[19fPdy =3 kalk=n)lfial? > nt [ |F=Mapns(F)Pdy
k>n+1

where in ILy(7y), we have

M2,ﬂ,"f(f) = Z fi Hp.

k<n



The optimal k-th order Poincare Inequality for O-U

Theorem

n / If — Moo~ (F)|2dy < /|V"f|2d7.

Remark: This is better than Downhill Induction gives.



Entropy Estimates
and Unrestricted Exp Bounds



LOG-SOBOLEV INEQUALITY

[Stamm’59), [Federbush'69|[Gross 75],.., [JResen'76), [Adams'79],..,[B-E'85]...

I(f — EFY?||lp < E|VF|?

with (D(X) = |X| |0g(1 -+ |X|), [BG'JFAQD].

M. Ledoux, Logarithmic Sobolev Inequalities, what they are, some history
analytic, geometric, optimal transportation proofs, last decade
developments, at the interface between analysis, probability, geometry
https://www.math.univ-toulouse.fr/~ledoux/Logsobwpause.pdf



Entropy Bounds & Exponential Moments

If , for g € (1,00),

fl9
E(|f|qlog r-llllfl‘J') < cE|VF|9

then

Ee'" < exp{const - t7||Vf|%, + Ef}



Proof Idea

|

d 1 tf C q-2
— | = < — 9 q
o (t log Ee ) S t9 ||\ V£,

q9(q—1)

tf erf i q q ,tf
EeIogE < tE(lVf|e)

Eet’cgexp{ £ |Vf|go+Ef}

M. Ledoux, Remarks on logarithmic Sobolev constants, exponential
integrability and bounds on the diameter, J. Math. Kyoto Univ.
(JMKYAZ) 35-2 (1995) 211-220 https://perso.math.
univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
S.G.Bobkov and B.Zegarlinski, Entropy bounds and isoperimetry,
Mem.Amer.Math. Soc. 2005; Vol.176, Nr 829
http://www.ams.org/books/memo/0829



Generalised Entropy Bounds

Let
dp=e Yd)

Adams Regularity Conditions: aq,mssra1979]

Je, C € (0,00)
ST |VEUI < C(L+|VU|)* e (ARC)
=2

Remark :
o Note that in particular we have

LU < C(1+|VU|)?> == |VU?

where
Lf =Af-VU-VFf



Smooth Orlicz functions

Let

D 5(t) = |tP [ log; (1£]))P = P A(log" ¢),
j=1

and

f[ (log;(~ + |£]))” = t@(t).

Then there exists C € (0,00) s.t.

D(|x]P) < CD4p(Ix]).



Lemma
Suppose the following Adams Inequality holds

~ p ~
w(®@ap(F) < Ca | V¥F|" + Da @ap(lI£15)
with some Cy, D € (0,00) independent of f. Then
p
IHFIP o < C'u| V¢ + D'||F|5.

with some C',D' € (0,00) independent of f.

(A)

(AOI)



Theorem
If the following (p, k)-Poincaré inequality holds

p
I(F = Mp ()5 < cpic 1| V¥ (Plo)

with some ¢, i € (0,00) for all f for which the r.h.s. is well
defined, then the following tight (®, p, k)-Inequality holds

I = Mos(F)] llo < C | V¥F". (0SI)



Class N

If we have with a € (1,00)

ul? o
p.p.N*(u) = —— (H (log IUI)_'“‘)

Krasnosielski, M., Ruticki, B.: Convex functions and Orlicz spaces.
Groningen: Noordhoff 1961. Chapter 1 §7



Questions:
o For g = 2, what are the optimal estimates

1Pe(F — Ma(F)II3 < ™™ || — Ma(F)3

| Pe(f — Mn(£)) o < e [|f — My(f) o>

o Description of Invariant subspaces and Martingales.
o Analysis on Nilpotent Lie Groups:

Kaplan versus Carnot-Caratheodory.
No Adams regularity for U(d) with C-C distance d,
(|[Vd|=1). No Log-Sobolev with Kaplan Distance(y;z/oq] :(
and any smooth homogeneous norm ),
Some (Log)?-Sobolev (EBz'21—22] and Poincaré Inequality are

still OK:)in10) [cFz721)



o E.Bou Dagher and B.Zegarlinski, Coercive Inequalities and U-Bounds on
Step-Two Carnot Groups, Potential Analysis 2021 https://doi.org/10.
1007/s11118-021-09979-0

o E.Bou Dagher, B.Zegarlinski, Coercive inequalities in higher-dimensional
anisotropic heisenberg group. Anal.Math.Phys. 12, 3 (2022).
https://doi.org/10.1007/s13324-021-00609-x

o E. Bou Dagher and B. Zegarlinski, Coercive Inequalities on Carnot Groups:
Taming Singularities, arXiv:2105.03922

o M. Chatzakou, Serena Federico and Boguslaw Zegarlinski, g-Poincaré
inequalities on Carnot Groups, (2020) arXiv:2007.04689

o B. Zegarlinski, Crystallographic Groups of Hormander Fields, Special
Issue in Honour of Alexander Grigor'yan, Math. Phys. & Computer Sim-
ulations Vol 20 Nr.3 (2017) 43-64, https://doi.org/10.15688/mpcm.
jvolsu.2017.3.4 ; (hal-01160736).

o James Devear Inglis, Coercive Inequalities for Generators of Hérman-
der Type, Thesis IC2010 http://www-sop.inria.fr/members/James.
Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf



TIME NON HOMOGENEOUS PROCESSES
WITH VARIABLE SMOOTHING PROPERTIES



+CONTRACTIVITY ALONG ORLICZ SPACES
Let (Ly,)cr+ be a nested family of Orlicz spaces.

o For a Markov semigroup (P¢);cg+ defined in the given
family of Orlicz spaces spaces, when do we have the following

strong contractivity property ?

1Pefllo, < [l

o Can we also consider variable family (Pt(t))tew semigroups

1PE) Fllog < 11F |-

o C.Roberto and B.Zegarlinski, Hypercontractivity for Markov
Semigroups, J. Funct. Analysis (2022)
https://doi.org/10.1016/j.jfa.2022.109439



Theorem Let (®;):>0 be a family of C? Young functions.
Assume that for some t,s > 0 there exist two positive
constants C(t,s) and C(t,s) such that

(/)
(Dt(q)t_l) S C(tis)d)s(q)s_l):
(ﬁ) 1" H’
D —5 0@ 1> C(t,s
(I)

Assume that for some ¢ € (0,00) and for any f (smooth
enough), it holds

11, [ @ (i) s e [0 () 9ePan.
[7lo, 7o

Then, for any f smooth enough it holds

I [0 (177 ) dn < eEe2) [t (r) 1vran




Proof

Let
’S,t X IL'(I)[ — I['(Ds

F o [flo®s o ().

For any f € ILg,, by the very definition of the Luxembourg
norm, it holds ||/s ¢(f)| @, = ||f|lo,. Therefore, Is +(f) is an
isometry between the two Orlicz spaces Ly, and LLg, .
Applying (1) to /s +(f) leads to

: B f
”f‘lgpt/(DS ((Ds loq)t(”f”tp )) dﬂ
2
/ f 2
f ) D, (—ufncpt) VF]

”f”(Dt / -1 f 2
(DSO(DS D(Dt 'H—"—

fllo,

Sc/(l);'o(]?;lo(l)t( du.

The result follows by (i) and (ii). ]



The Standard Orlicz Family

Let F:(0,00) — R be a C? increasing function s.t. F(1)=0.
Assume that (0,00) 3 x — xF(x) is convex and that 1/xF(x)
is not integrable at x =0, x =1 and x = 4o00. Let

F1:(0,1) = R and F2 : (1,4+00) = R be two primitives of
x> 1/(xF(x)). Let @y be a N-Young function of class C? on
(0,00), and x, the unique positive point s.t. Pp(x,) = 1.

/
Assume — (%’?) F(®Dg) — DoF'(Dp) is non-increasing on RT.
0

Let \: RT — R™ be an increasing function, s.t. A(0) =0.
Definition The standard Orlicz family (®¢)¢>o built from F,
Dg and X is defined by

D;(x) 1= 4

s

0
FrH(Fu(DPo(x)) + A1)
1

ot (Fa(Po(x)) + A(t))

forx =0
for x € (0, xo) Vi 0
for x = x,

for x € (xo,+00).



Examples

Example [G'75] For F(x) = log(x) and any N-function ®p ,
Fi1(x) = log(log(1/x)), x € (0,1) and F2(x) = log(log(x)),
x>1

so that F; }(x) = e~ and F, }(x) =€, x€R.

Hence, ®¢(x) = (DO .

If g(t) = 1+e(4/P)t and A(t) = log(q(t)/2), with ®g(x) = X2,
we have @;(x) = |x|9(t) | we get IL, scale of Gross' setting.

Example [BCR'] For F(x) = log(1+ x)” —log(2)?, 3 € (0,1),
one gets non explicit 1 and />

with an asymptotic of the corresponding ®¢(x), when x tends
to oo or +oo equivalent to @geaﬁ)‘("’g%)ﬁ,

with a numerical constant ag depend only on (3.

This is the family of Young functions x2e<tF (x) considered in
Barthe-Cattiaux-Roberto.



Integration Lemma for standard Orlicz family

Theorem
Let (P¢)¢>0 be a standard Orlicz family built from F, ®y and

A. Let ¢ > 0. Then the following are equivalent

()
17, f@o( 177 )F (cpo(“ fﬂ%))dmc [ (| fﬂ%) v Pd

for any function f for which the r.h.s. is well defined;
(if) Vt>s>0, it holds

1Pefllo; < [IPsf |,
for any function f € Lo, .




Hyperboundedness in IL,-scales

Let
Lt = A—VVtV

t >0, on R”, with V; smooth (tbs) and s.t. [e~ V¢ =1.
The associated semi-group (Ps(t))szo is reversible with respect
to the probability measure

pe(dx) == e Vi) dx

Define
ar = |(Ve)= oo bt == |||V Vie||loo, €t := [ (V Ve VVe—AV,)_ |



Theorem

Consider the inhomogeneous diffusion operator L; as above.
Assume VYt > 0 a;, by, ¢ < 00.

Suppose Vt > 0 dp; € R s.t. Hess(V;) > pe.
Assume 3¢; € (0,00)

/f2 log(F2)dpur < Et/|Vf|2dut,

for all f with [ f>du; =1 for which the r.h.s is well defined.
Then, forany p>1and 0<s <t < oq,

1PE e e < m(s, ) |PEF g

where @,(x) = |x|91), q(t) =1+ (p — 1)exp{[5(2/Cs)ds},
and

t a, ol —e Pul
m(s,t) = exp{/S m+ucu+bu 2 (q(u)—l)du}.



Example

Vi(x) = U(x) + a(t) V(x) +(t)
with V unbounded and (t) := log [e~Y=*Vdx so that p; is a
probability measure.

2
Let U(x) = % a: Rt — R non-decreasing and

V(x) = (1+|x[2)2, with 3 € (0,1].
Then,

Ve =a/(£)(1+|x?)?
so that a; =0; VV; = o/ (t)B(1+ |x|2)§'_1x, whence
by = d/(t)5 % ( and when 8 — 1, we get b; = a/(t).

One can prove that ¢; < n°a/(t)(c(t) +2) and Hess(V;) > 1

so that p; =1 and ¢; = 2. Hence (Pt(t))t;_:,g is hyper-bounded
in the IL, (4 scale, with g(t) =1+ (p—1)e'.



General result

Let Vi(x) = U(x) +a(t)V(x) +~(t).

Let L;=A—-VV;-V.

Theorem Assume Vt >0, by := |||V V4|[loo < 00 and 3p; € R
s.t. Hess(V;) > ptl.

Let (P;):>0 be a family of N-functions s.t.

Dy (x) < xD)(x) < BeD¢(x), @2 < C, D, D! and

x*®/(x) < D;®:(x) + E; for all x > 0 and some constants

Bt: Ct: Dt: Et-

Assume Vt >0 3d; € [0,1) and F; € R such that

(Ve)- < 2 (IVVE?—2AV;) + Fe.



Set Wi :=(VV;- V\'/t — AV;)_ and denote by p; € (0,00] the
best constant such that for all f with ||f||p, =1 it holds

[ D) due < e [ @L(F)VFPdpe 2)

Finally, assume either that (/) ¢t := || W¢||co < 00 and
pr < 1 — d¢;0r (ii)
ct = max (2] Wellloo/ bt supwsuyeo (L — 1) ) < o0
and that for all t > 0 there exists 0} € [0,1) and F{ € [0, 00)
such that &} [ e(5~s)sds < 1 and
We < g5t (IV Va2 —2AV;) + F.
Then, for any f: R” — IR} smooth enough, it holds
1Pt Fllo e < m(s, £)IPEF |,

where under assumption (i),

t — @ Pul 2
m(s,t)—iey.:p{/5 Fu+(bu1 € ) 2 Du+ By +cuBuudu}

Pu 1_511_/5”)



and under assumption (i),

m(s,t) =

tyopu o, = bu(D, + E,)
(CV_PV)Vd ) u - 4
&P {-[5 (/0 € ’ 2(1 o 5u - 5u _ 5:; fOu e(c{,—pv)vdv)

+ ‘/011 e(c{'—pv)vdv (BUF:[ -+ Fu) dU} .



Open Problems

o An interesting example not yet covered : with o € (1,2),
Ve(x) = (1= £)3 x> + |x|*

we have a critical point t =1 in which hypercontractivity in
IL, spaces is replaced by a weaker property. Such an example
requires by = oo and is not covered yet by the theorem.

o Time Dependent Diffusion Equation

For

Ly =L+ V(t)-v,

t .
0P = Lt + [ (e0v(e)etkof ) dr.

o What are nonhommogeneous stochastic processes with
nonconstant smoothing properties ?



EXTENDED GRADIENT BOUNDS
For W: R" — R, W2 e C2, define

r(f,g) :=T(f,g) + Wfg
with

— % (Lf2 - 2fo)

and define the iterated operator

I(f)

Y(f,8) = 5 (LTY(F.8) ~T(LF,g) ~T¥(f Lg))

1
=Dx(f,g) + 5 fgl(W?) + WEL(f, g) + 2WV WV (fg).

o C. Roberto, B. Zegarlinski, Bakry-Emery Calculus For Diffusion With
Additional Multiplicative Term, (2021) arXiv:2102.10633



THEOREM [Extended Gradient Bound]

Assume that for some p € R

I > pl’
and
- it (W _GIVWEY
1= x€R™:W/(x)=0 w w2 '

Then, for t > 0,
TW(Ptf) < e—2min(p,'y)rpt(I~W(f))
for all f € C?.

» Examples.Skip EquivThm



Remark

1—e 2!

For p =0, the ratio is understood as its limit (i.e. 2t).
Notice that it is always non-negative.

Observe that, applying (ii) to constant functions f = C,

C %0, leads to
W? < e 2Py W?).

Therefore, if [ W?du < 0o and p > 0,
taking the limit t — oo and by ergodicity, we would conclude
that W =0.

Therefore, for
LY (f) > pr' " (f)

to hold for a non trivial W, either p <0 or [ W?du = .
But, we have no such restriction removing mean value pu(f) of
the function f.



Example

For p,g > 1, consider

2\p/2 2yq/2
A+PP2 L Wi = A2

p q

Ux)=c+

with ¢ s.t. [e Y™ dx =1 and |x| = (X x?)Y/2. Then

LW 3|'~7W|2
W W2

gn qlx|? (2(q+ 1)

— _ 1 2\(p—2)/2
1+ x]2  14|x|2 \ 1+ |x|? +(1+Ix)

is bounded from below iff 1 < p <2.



Extended Gradient Bounds

COMPLETE CHARACTERISATION

(VP:f,VPf) < e*Pe(VFf,VF)

The description of all allowed (-,-) comes from

Theory of Markov Semigroups in Noncommutative Spaces
see )

e F.Cipriani, B.Zegarlinski, KMS Dirichlet forms, coercivity and super-
bounded Markovian semigroups, arXiv:2105.06000

ee F Cipriani, B.Zegarlinski, Noncommutative Perturbation Theory.
https://it.overleaf.com/project/6214c£f6524£31131f50ea0ad
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