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METRIC AND DIFFERENTIAL STRUCTURES

* Space (2 = R".
Natural (abelian) addition of vectors & scaling

x®y = (X +yj)j=1,.
AOX = (A Xj)j=1,,n
Metrics given by /, norms p € [1,00] :

Tl

lo=| ) bl if pell o)

j=1,.,n

X = max [(X;
o = max b

Homogeneity and triangle inequality

IAox|l, = [Al-[Ixl,
lIx®yll, <IIxll,+Ilyll,



EQUIVALENCE OF METRICS
Pp(x; Y) = ”X - Y||p
Vpl, P € [1, 00]3 Ce (0, OO)
1
Eppz(x,y) < pp,(xy) < Cpp,(x,y)

* Gauge metrics :
Fix a convex set O and define define

IXllo = inflA>0: A oxe O}



Non-homogeneous Space

Aox= (A,
with 1 <xq1 <...<«,.

AOXx = (/1 ' Xj)j:l,..,n
Adapted metrics

Ppc(xY) :[Z b~ y,|’<] =Ixe Yl

Homogeneous norm
||A'®x||p,1( = |/\| ' ”x”p,K
Eg. r=3p=4 x=(12)

FST

N(lelz) = ||(X,y,z)||4y,< = ((X2 +y2)2 + 1622)



FAMILIES OF METRICS

* positive linear combinations of metrics

*If F(s,t) is jointly concave and vanishes at zero than for any
metrics p, P, also F(p,p) is a metric.

(e.g. F(s,t)= f(ﬁ)h(t) for perspective function f and a
concave h>0 .)

E.g.

*Arithmetic and geometric means generate new metrics.

* A metric plus a semimetric = metric

p(x,y)+ F(x,ly;l)

for some j.
* Use homogeneous norms

e.g.l (dP + NP)%

e.g.2 Z pf

1=1,..,m

1
P



METRIC DEFINED BY LENGTH OF A CURVE

p(x,y) = inf{/(yyy)}

where | denotes a length function = an additive nonnegative
function on some family of allowed paths.



FIELDS = DIFFERENTIAL OPERATORS
* Gradient V= (aj = axj)j:]_’wn in R"
**Smooth and nonsmooth metrics

l-1l, . p€(1,00) are smooth out of origin.

*Eikonal equation
For p,q € (1, 00), dual %+% =1

IVIIxllpllg =1

for x # 0.



FIELDS = DIFFERENTIAL OPERATORS
* SubGradient V = (X; = 8Xj + 215 a,&xj)j:l,_”k , k<ninR",
a; smooth.

* Assumption : Multiple commutators

(X (X [ XK1 X111

of finite order m € IN span all tangent space.



E.g. R3Vy,=(X,Y)
X =0d,+2yd, Y =d,-2xd,

Then
[X,Y]=40,

Kaplan homogeneous norm

1
N(x,y,z) = ((x2 +y%)? + 1622)4
is smooth and we have

X,
Vil = 1)

AN =(X2+YY)N2=0, ae

http://www-sop.inria.fr/members/James.Inglis/
Site/Publications_files/Inglis_THESIS_FINAL.pdf


http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf
http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf

CONTROL DISTANCE

* Chow-Rashevski Theorem: Every two points in R” can be
connected by a path which is piecewise smooth with tangent
vectors in Span(V).

* Length of a curve

1
(ey) = L 1 lodt

* Control Distance

d(x,y) = inf/(yx’y)

* Eikonal equation
[Vid]l2 =1

* Control distance is not smooth

Apd(0,%) =(x,y)|,—0 =00



NILPOTENT LIE GROUPS
xoy = (xj+y;+Pj(x,y))j=1,.n
E.g.HEISENBERG GROUP
(x,y,2)0(x,y,2))=(x+x",y+y,z+ 2"+ a(x'y —xy’))

* Noncommutative Discrete Infinite Coxeter Group associated
to Nilpotent Lie Groups.



PERTURBATION OF MEASURES
du=eVdr
*Quasi invariant measures
dp(-0 &™)
dp
* Associated Unitary Group and CCRs



Nice Orlicz functions
d:R—R

Ix|
P(x)= . ¢(s)ds

where ¢ : R* — R*, ¢(0) =0 and otherwise ¢ > 0,
and ¢(s) =5, 0.
Complementary Function

Iyl

Wiy)= , (s)ds

where
P(t) =inf{s > 0: ¢(s) > t}

Young's Inequality

xy < P(x)+W(y)



Luxemburg norm

IX|l = inf{A>0: ED(X/A) < 1},

Normalisation Property

X
q’(nxn¢ ) =1 ™)

Michat Lemanczyk, Concentration inequalities survey.
https://wuw.mimuw.edu.pl/~bpolaczyk/projects/resources/orlicz.pdf


https://www.mimuw.edu.pl/~bpolaczyk/projects/resources/orlicz.pdf

Tail Estimates |I.

If @ is N-function and 0 < || X]||p < oo, then

1
PIXIZ 0 < e IXTe)

» Skip MaxEstimates



Max Estimates max;;<,|Xil

Let ® be a strictly increasing, non-zero function,
s.t. #(1)<1/2 and

dc>0Vx,y>1, P(x)P(y) < P(cxy).
Then for any ne€ N

-1
| max Xjllo < ¢ ®7(2n) max || Xi[lo
1<i<n 1<i<n

If @ is a strictly increasing, convex, non-zero function,
then for any ne€ N

E(max |X,-|) < ® Y (n) max |IXillo
1<i<n

1<i<n



Proof: The assumption says that for x > y > 1 we have

°(3)< 55

Thus, for y > 1 and any C > 0 using the monotonicity of ®

|Xi — P(c|Xil/C)
pme(g)<ow L 750

For C = cmaxi<j<, | Xillo we get

£ ( maxlSISnXi)

Cy

where the last inequality holds iff 2n < ®(y).



To get the second part of this lemma where ® convex note
that due to Jensen's inequality we have (w.l.o.g. X; >0)

1 d(X;
EE max X; < ®~}(E max M) <o Y(n)

1<i<n 1<i<n -



Exponential Luxemburg norms

DEFINITION :

For any a € (0, 00) we define
W, (x) = exp(|x|*) -1
and the corresponding a-exponential Luxemburg norm as

IX|ly,, = inf{c >0: Eexp(]X|%/c%) < 2}



Tail Estimates 1l

For any random variable X with
0<IXlly, <o
and t >0 we have

P(X|>1t)< 2exp(—ta/||X||f‘Ua)



Observations

(1) If one replaces a Luxemburg norm by some convenient
estimate from above, one still gets a tail estimates.

(2) If one replaces X by X — EX we get concentration
estimates.

(3) More generally, given a space P of R.V.s, one can study
X —w, for weP.



How to get bounds on Luxemburg Norms

COERCIVE INEQUALITIES



e Poincaré Inequality

mE(f — Ef)? < E|Vf], (Pl2)
with

E(f — Ef)? = inf E(f — a)?

acR

H. Poincaré (Eqn (11) p. 253), « Sur les Equations aux Dérivées Partielles de la Physique Mathématique »,
Amer. J. of Math. vol. 12, no 3, 1890, pp. 211-294, doi10.2307/2369620

( [BE'1985].., [Antoniuk Antoniuk'1993] ,..[V'06],[BCG'08],[HZ'09)],..)


doi10.2307/2369620

Facts
[HZ'09)]

Let dE = e Yd A with U locally bounded. Let g € [1,2].

H: 3 0 S 77(X) —> (no matter how slowly)
dist(0,x)—o0
and 4C,D € (0, 00)
E(n|f|9) < CE|Vf|?+ DE|f|9, (*)
then dm € (0, ) s.t.
m inf E|f —a|? < E|VF|Y (IP4)
aelR

If (IP4 ) holds, then for every Lip function f with finite first
moment there exists € > 0 s.t.

Eeflfl <« o

i.e. Lip functions (with finite 15* moment) belong to Orlicz
space with exp norm.



e Poincaré Inequality with a Weight

([BL'1976],..,[Antoniuk Antoniuk’1993],..,[HZ’09],..)

[VF|9
mEf-Ef7< E= -, q21 (IPg,w)



Facts o [HZ09]
Let dE = e Yd A with U locally bounded. Let g € [1,2].

[Vl
H: 30< y with some 0<6<1
1) 19 dist(0,x)—o00 OO ( ey
and 3C, D € (0, o)
E(n|f|7) < CE|Vf|?+ DE|f|9, (%)
then dAm € (0, 00) s.t.
|V£]9
fE|f—al9< E1” P
m o EIf el < B (IPgw)

If (IPg,w ) holds, then for every Lipyy, function f
ie. ||%||oo < 0o, (with E|f| < o0 ), there exists € > 0 s.t.

Eeffl < 0o

i.e. Lipy functions (with E|f| < oo ) belong to
Orlicz space with exp norm.



e Higher order Poincaré inequalities
dAm € (0, ) s.t.
my inf E|f —wl|9 < E|Vf| (IPg)
weP

where k € IN and P, denotes space of polynomials of order k,

and
IVkfl= ) Ivef)
la|l=k



Facts
[WZ'21] Downbhill Induction L -Case.
VkeN (IPg) = (IPy))
Theorem

For q € (1,00), there exists Cy 4 € (0,00) and a polynomial
my q(f) of order k-1, such that

V|f_ mk,q(f)|q < Ck,q Z I"lvaﬂq- ('le,q)
|a|=k

Y.Wang & BZ, Higher Order Coercive Inequalities, Potential Analysis
(2021) nttps://link.springer.com/article/10.1007/511118-021-09940=1


https://link.springer.com/article/10.1007/s11118-021-09940-1

Assume that (P, 1) holds. Then

Y MVEAT= ) ) uVVRA

|lal=k IBl=k-1 j
> iy ) VA= My (VEF)
|Bl=k—1
=Cb Y HVE(F = Bygua(f)
|Bl=k—1

with

B

X

Brgka(f)= ) ZoMyg(VFf)
|Bl=k-1""



Applied inductively, yields

—(k—j
Y MVt G Y Ve (f - Bug ()l
la|=k lal=k—j
with

on
Buaja(f)= ) My g(VA(F = Byq (F))
laf=k=j

Hence (Pl q) follows my o = By 41(f) and Gy q < qu. O

Remark The constant in the above is exponential in k and is
generally not optimal and different then the optimal constant
in the (Pli q) with the minimizing polynomial My ,(f).

E. Bou Dagher, Y.Wang & BZ, Coercive inequalities on Carnot groups
and applications, , Advances in Analysis and Geometry, Vol. 6 (2022)
https://doi.org/10.1515/9783110741711


https://doi.org/10.1515/9783110741711

Statistical Polynomials m; .(f)

Questions :
What is the structure & possible applications of my (f) ?

Are they orthogonal for different values of k if g=2 7



Facts CND

Similar techniques based on *-bounds for (IP, ) and

il
mpelnflElf p|q<E( W (IPg )



Facts CND
VkeN (IPgx) = ExpBounds

vkf|a
Suppose ||%||Oo <0

Je>0 Eetlf~miq(fl < oo

S. G. Bobkov, F. Gotze, H. Sambale, Higher Order Concentration of
Measure, Commun. Contemporary Math., Vol. 21, No. 03 (2018)
https://doi.org/10.1142/50219199718500438

Friedrich Gotze and Holger Sambale, Higher Order Concentration in
Presence of Poincaré-Type Inequalities, Ch. 6, in "High Dimensional
Probability VIII, The Oaxaca Volume", Birkhauser 2019, Eds. N.Gozlan,
R.Latata, K.Lounici, M.Madiman,
https://doi.org/10.1007/978-3-030-26391-1


 https://doi.org/10.1142/S0219199718500438
 https://doi.org/10.1007/978-3-030-26391-1

Multiparticle decay

Higher order estimates for Gaussian semigroup Let
L=A-x-V and P,=et.

Then we have

Theorem

VAP, fI? < el pvar?

Hence with the corresponding invariant Gaussian measure y,

we have
f IVEP,fPdy < e J VefPdy



Proof In the case of interest to us it is well known that the
kernel is smooth.
Following an idea of Bakry-Emery, we have

5Py _s|VEPf = Py_s (~LIVEPSf P + 2V LPf - VA P,f)
and so
dsPy_o|V* P fI?
= Pos((—LIVEPFI? + 2V P - LVE P ) +2[V®, LIPof - VP, ).
Since
[V,L]=-V,
using the following inductive formula
[V, L] = V[V"L L +[V, L]V" T,

we have

[V, L]=-nV".
Hence for a component V¥, we get

[V¥, L] = —|a|V.



Using the fact that the Markovian form of L satisfies
L(g%)-2gLg =2|Vgl >0,
we obtain the following differential inequality
5Py s|VE P> < =2lalP,_s (IVEPFP),
thereby concluding
VEP,fI? < el pvar?

Accordingly, with the corresponding invariant Gaussian
measure , we have

J IVEP,f2dy < e j Ve fPdy



Optimal higher order Poincaré constants for O-U

Note that for Hermite polynomials H,, k € IN, in one
dimensions, we have

VH,(t) = VkH,_1(

and hence

V'H (t) =+k-..- (k= n)H,_,(t) for all k> n.



Thus, using representation
f=) fiH
keN

with respect to the O-N basis of Hermite polynomials, we
compute

JIV”f|2dy = Z k.(k=n)|fi_pl® > n!f|f— My, (F)Pdy
k>n+1

where in Ly(y), we have

Many(f) =) fiHp

k<n



The optimal k-th order Poincare Inequality for O-U

Theorem

n! f If = My, (F)Pdy < JIV"ﬂzdy.

Remark: This is better than Downhill Induction gives.



Entropy Estimates
and Unrestricted Exp Bounds



LOG-SOBOLEV INEQUALITY

[Stamm’59], [Federbush’'69][Gross'75],.., [JRosen'76], [Adams'79],..,[B-E’85],..

f2
2 2
I(f = EF?llo < c'EIVF

with ®(x) = |x|log(1 +|x|), Bcracs.

M. Ledoux, Logarithmic Sobolev Inequalities, what they are, some history
analytic, geometric, optimal transportation proofs, last decade
developments, at the interface between analysis, probability, geometry
https://www.math.univ-toulouse.fr/~ledoux/Logsobwpause.pdf


https://www.math.univ-toulouse.fr/~ledoux/Logsobwpause.pdf

Entropy Bounds & Exponential Moments

If , for g € (1,00),

|£19
Elfla

E(|f|qlog )ScE|Vf|q

then

Eetf < exp{const~ t9||VFI|L + Ef}



Proof Idea

tf

tf
E( logE =

) —th(IVflq ff)
q9

d (1 c

9 (2 Eff)<_q—2 %
7t |glogEe”) < e 2w

C
S — \v ] Ef}
q9(g-1)

Eetf < exp{

M. Ledoux, Remarks on logarithmic Sobolev constants, exponential
integrability and bounds on the diameter, J. Math. Kyoto Univ.
(JMKYAZ) 35-2 (1995) 211-220 https://perso.math.
univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
S.G.Bobkov and B.Zegarlinski, Entropy bounds and isoperimetry,
Mem.Amer.Math. Soc. 2005; Vol.176, Nr 829
http://www.ams.org/books/memo/0829


https://perso.math.univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
https://perso.math.univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
http://www.ams.org/books/memo/0829

Generalised Entropy Bounds

Let
du=eVda

Adams Regularity Conditions: jqams'sra1979]

de, C € (0,0)
Z IVEU| < C(1+|VU)>. (ARC)
|a|=2

Remark :
Note that in particular we have

LU< C1+|VU)* ¢ -|VU.

where

Lf =Af-VU-Vf



Smooth Orlicz functions

Let

n

(1) = [t | (togj (1)) =|tlPAllog"t),
j=1

and
n

(1) = t| [(og;(y;+ It = tO(2).

j=1
Then there exists C € (0, ) s.t.

P(Ix[7) < CPy p(Ix]).



Lemma
Suppose the following Adams Inequality holds

H®ap(1) < Ca |V |+ Da D pIFI1R)
with some Ca, D, € (0,00) independent of f. Then

1P llo < C'p

ka|"+ D'||f1[5.

with some C’, D’ € (0,00) independent of f.



Theorem
If the following (p, k)-Poincaré inequality holds

I(F = Mk (FDII < ok [ V5[ (Pl,x)

with some c,, € (0,00) for all f for which the r.h.s. is well
defined, then the following tight (P, p, k)-Inequality holds

1 = Mp (6| Nl < € | V*F|". (0SI)



Class 12
If we have with a € (1, 00)
p.p-N(u) = —

. 1 1 _
then with E+F_1

ol S
p.p-N*(u) = — (logy Jul)7*
B\t

Krasnosielski, M., Ruticki, B.: Convex functions and Orlicz spaces.
Groningen: Noordhoff 1961. Chapter 1 §7



Questions:
For g = 2, what are the optimal estimates

IPL(f = M,(F)I3 < e ™||f — M, ()13

1P(f = Ma(F))lle < e[| = Mp(F)llen

Description of Invariant subspaces and Martingales.
Analysis on Nilpotent Lie Groups:
Kaplan versus Carnot-Caratheodory.
No Adams regularity for U(d) with C-C distance d, (|Vd|=1).
No Log-Sobolev with Kaplan Distance(;;z/go] :( and any
smooth homogeneous norm ),
Some (Log)P-Sobolev [EBZ’21-22] and Poincaré Inequality are

still OK:)(in10],[cFz21]



E.Bou Dagher and B.Zegarlinski, Coercive Inequalities and U-Bounds on
Step-Two Carnot Groups, Potential Analysis 2021 https://doi.org/10.
1007/s11118-021-09979-0

E.Bou Dagher, B.Zegarlinski, Coercive inequalities in higher-dimensional
anisotropic heisenberg group. Anal.Math.Phys. 12, 3 (2022).
https://doi.org/10.1007 /s13324-021-00609-x

E. Bou Dagher and B. Zegarlinski,Coercive Inequalities on Carnot
Groups: Taming Singularities, arXiv:2105.03922

M. Chatzakou, Serena Federico and Boguslaw Zegarlinski, g-Poincaré
inequalities on Carnot Groups, (2020) arXiv:2007.04689

B. Zegarlinski, Crystallographic Groups of Hérmander Fields, Special
Issue in Honour of Alexander Grigor'yan, Math. Phys. & Computer Sim-
ulations Vol 20 Nr.3 (2017) 43-64, https://doi.org/10.15688/mpcm.
jvolsu.2017.3.4 ; (hal-01160736).

James Devear Inglis, Coercive Inequalities for Generators of Hoérman-
der Type, Thesis 1C2010 http://www-sop.inria.fr/members/James.
Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf


https://doi.org/10.1007/s11118-021-09979-0
https://doi.org/10.1007/s11118-021-09979-0
https://doi.org/10.15688/mpcm.jvolsu.2017.3.4
https://doi.org/10.15688/mpcm.jvolsu.2017.3.4
http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf
http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf

TIME NON HOMOGENEOUS PROCESSES
WITH VARIABLE SMOOTHING PROPERTIES



+CONTRACTIVITY ALONG ORLICZ SPACES
Let (Lo, )ter+ be a nested family of Orlicz spaces.

o For a Markov semigroup (P;):cr+ defined in the given family

of Orlicz spaces spaces, when do we have the following strong
contractivity property ?

1Pefllo, < Il

o Can we also consider variable family (Pﬁt))tew semigroups

1P Fllo, < 11Flleny-

C.Roberto and B.Zegarlinski, Hypercontractivity for Markov
Semigroups, J. Funct. Analysis (2022)
https://doi.org/10.1016/j.jfa.2022.109439


https://doi.org/10.1016/j.jfa.2022.109439

Theorem Let (®,);5q be a family of C? Young functions.
Assume that for some t,s > 0 there exist two positive
constants C(t,s) and C(t,s) such that
(i)

b (@7) < C(t,5)by(@5),
(i)

// (D//
So® > C(t,5)—%5 0.,

d; ®;

Assume that for some c € (0,00) and for any f (smooth
enough), it holds

”f”ésfcb (Hf(lcp )d” fq}:(nffl )'wlzd” 1)

Then, for any f smooth enough it holds

. f C(t,s)
flI2 JCD (—)d <c— fcb”( )Vf2d
IPlloc | P\l )= s ) T Tl )1V T -




Proof

Let
ls,t . |]_¢, —> |]_q3

F o fllo,® 0@ efe- )

For any f € LLo,, by the very definition of the Luxembourg
norm, it holds ||/s +(f)lle, = [|flle,. Therefore, /s ((f) is an
isometry between the two Orlicz spaces Lo, and L.
Applying (1) to /5 ¢(f) leads to

: _ f
1716, [ (@5 o) n
: [T,

Ol )'Vf|2

7 -1

_CJ¢SO¢S oCDt(”f” ) 2d}4.
o, ¢;o¢;1o¢t(||fﬁ¢t)

The result follows by (i) and (if).



The Standard Orlicz Family

Let F:(0,00) — R be a C? increasing function s.t. F(1)=0.
Assume that (0,0) 3 x > xF(x) is convex and that 1/xF(x) is
not integrable at x =0, x =1 and x = +c0. Let /4:(0,1) > R
and 7 : (1,+00) — R be two primitives of x +— 1/(xF(x)). Let
@, be a N-Young function of class C? on (0,0), and x, the
unique positive point s.t. Pg(x,) = 1.

Assume — %2 F(®Pg) — Py F’(Pg) is non-increasing on R*.
Let A: Rt — R" be an increasing function, s.t. A(0)=0.

Definition The standard Orlicz family (®;):~q built from F,
@y and A is defined by

0 for x=0
o) | A FAD) orxe @)
R for x = x, '

]-“2—1 (FH(Dg(x))+ A(t))  for x € (x,, +00).



Examples

[G'75] For F(x) = log(x) and any N-function @, ,
Fi(x) = log(log(1/x)), x € (0,1) and F>(x) = log(log(x)), x > 1
so that .7-"1_1(x) = e ¢ and .7-"2‘1(x) =e®, xeR.
Hence, ®,(x) = dDgA(t).
If g(t) =1+ e*P)t and A(t) = log(q(t)/2), with Dy(x) = x2, we
have ®,(x) = |x|9) | we get L, scale of Gross' setting.

[BCR'] For F(x) = log(1 +x)f —log(2)?, B €(0,1),
one gets non explicit /4 and 5
with an asymptotic of the corresponding ®,(x), when x tends
to oo or +oo equivalent to dyet(ioed0)”
with a numerical constant az depend only on B.
This is the family of Young functions x2e<tF %) considered in
Barthe-Cattiaux-Roberto.



Integration Lemma for standard Orlicz family

Theorem
Let (P;):>0 be a standard Orlicz family built from F, ®; and

A. Let ¢ >0. Then the following are equivalent

(7)

f f
fI2 Jq: (—)F(cb( ))d gch:"( )Vf2d ;
Fley ) oo, 1\ P\ Tl =€ ) 0 gy )11

for any function f for which the r.h.s. is well defined;
(if) V t >s>0, it holds

1Pefllo, < 1Psfllo,-

for any function f € Lo_.



Hyperboundedness in [I_p—scales

Let
Lt::A_VVt'V

t >0, on R", with V; smooth (tbs) and s.t. fe‘vf =1

The associated semi-group (Pét))szo is reversible with respect
to the probability measure

pe(dx) = e Ve dx

Define

ar = ||(Vt)—||001 by = |V th”ool ct = [[(VV;- V\'/t - AVt)—”oo



Theorem

Consider the inhomogeneous diffusion operator L; as above.
Assume Yt >0 a;, by, ¢; < 0.

Suppose ¥Vt >0 dp; € R s.t. Hess(V;) > p;.

Assume 3¢, € (0, 0)

| Progtr@iau <c [ 1vreau,

for all f with ffzdyt =1 for which the r.h.s is well defined.
Then, for any p>1 and 0 <s <t < oo,

1P llo, , < m(s, OIPY Fllo, .

where ®,(x) = |x|90), q(t) =1+ (p- l)exp{fot(Z/Es)ds}, and

— e_pu”

m(s,t):=e {Jt 4 e +b21
,t) :=exp uc, + b,
s qu) 204

(q(u) - 1)dU}-



Example

Vi(x) = U(x) + a(t) V(x) + y(t)
with V' unbounded and y(t) := logfe‘u_"‘vdx so that p; is a
probability measure.
2

Let U(x) = % a: R* — R* non-decreasing and
V(x) = (1+|xP)%, with g€ (0,1].
Then, ,

Vi = a/(1)(1+|xP)2

so that a, = 0; VV, = a/(t)B(1 + |x|2) X, whence

by = a'(t)B ,g_g—);g ( and when B — 1, we get b, = a/(t).

One can prove that ¢; < n?a’(t)(a(t)+2) and Hess(V,) > 1 so

that p; =1 and ¢; = 2. Hence (Pit))tzo is hyper-bounded in
the Ly scale, with g(t) = 1+ (p—1)ef



General result

Let Vi(x) = U(x)+a(t)V(x)+p(t).

Let L, =A-VV;-V.

Theorem Assume Yt >0, b, := |||V V||| < o0 and Jp, € R
s.t. Hess(V;) > p:l.

Let (P;):>0 be a family of N-functions s.t.

Py (x) < xP{(x) < B;P(x), q)z;z < G, ¥} and

x?®/(x) < Dy®4(x) + E; for all x>0 and some constants
B;, C;, Dy, E;.

Assume Vt >0d6,€0,1) and F; € R such that

(Vo)- < 3 (VA2 - 2AV, ) + .



Set W, :=(VV,-VV,—AV,)_ and denote by g, € (0,00] the
best constant such that for all £ with [|f||p, =1 it holds

[ dcrrdc<oc [ @riverap. @
Finally, assume either that (/) ¢; := [|W||s < o0 and
Ct, = max(zlllth”loo/btfSUPX:Wt(X):tO ( Lf/l‘;‘t/t - Pt)_) < oo and
that for all t > 0 there exists 6; € [0,1) 1 and F/ € [0, 0) such

that & [ el Ps)ds <1 and W, < 75~ (|vvt|2 2AV;)+F.
Then, for any f: R” — R, smooth enough it holds

1P Fllo, , < m(s, OIPY Fllo, .

where under assumption (i),

t 1—ePu\? D +E
m(s, t) = exp j Fu+(bu € ) ut Y +c¢,Byudu},
s Pu 2(1_6u_pu)




and under assumption (if),

m(s,t) =

t u 2
, b,(D,+E,
exp J\ (J e(Cv_pv)Vdv) _U( U+ uu)( — )
s \Jo 2(1-6,—pu—0, J, e PVdv)

u
+ J el=Pv)Vdy (B, F, + Fu)du}.
0




Open Problems

An interesting example not yet covered : with a € (1,2),
Ve(x) = (L= ) Ix? + x|

we have a critical point t =1 in which hypercontractivity in IL,

spaces is replaced by a weaker property. Such an example

requires b; = co and is not covered yet by the theorem.
Time Dependent Diffusion Equation

For

Ly=L+V(t)-V,

t
9,Pf = L(t)f+f (etoVit)eHof) dr.
0

What are nonhommogeneous stochastic processes with
nonconstant smoothing properties 7



EXTENDED GRADIENT BOUNDS
For W: R" - R, W2 e 2, define

W (f,g):=T(f,g)+ W?fg
with 1
— 2
r(f) =5 (L2~ 2fLf)

and define the iterated operator

W (F,8):= 5 (LT ()~ T™(LF.0)~ TV (5, Lg)

1
=N(f,g)+ 5f;gL(W2) + W2T(f, g) + 2WVWV(fg).

C. Roberto, B. Zegarlinski, Bakry-Emery Calculus For Diffusion With
Additional Multiplicative Term, (2021) arXiv:2102.10633



THEOREM [Extended Gradient Bound)]

Assume that for some p € R

F2 > pr
and | 2
LW vw
= inf — =3 > —
4 XEIR”I:rV]V(x)iO( w W2 )

Then, fort >0,

FY(Pif) < e72mnetp,(r(f))

for all feC?.



Remark

.1 g2t . e
For p =0, the ratio 167‘” is understood as its limit (i.e. 2t).
Notice that it is always non-negative.

Observe that, applying (ii) to constant functions f = C, C #0,

leads to
W2 < e2PtP(W2).

Therefore, if f W2d;4 < oo and p >0,
taking the limit t — oo and by ergodicity, we would conclude
that W = 0.

Therefore, for
LY(F) 2 pr(f)

to hold for a non trivial W, either p <0 or I Wzdy = 00.
But, we have no such restriction removing mean value y(f) of
the function f.



Example

For p,q > 1, consider

2\p/2 2\q/2
U(x):c+—(1+|);|) and W(x)= —(1+|);|) )

with c s.t. [eU™Mdx =1 and |x| = (£ x})”/2. Then

W VWP
W W2

qn glx* (2(q+1) 2\(p-2)/2
= - +(1+ p=2)
T+ X~ 1+ X2\ 1+ %P (1+1x%)

is bounded from below iff 1 < p < 2.



Extended Gradient Bounds

COMPLETE CHARACTERISATION

(VPf,VP.f) < e* P(VFf,VF)

The description of all allowed (-,-) comes from
Theory of Markov Semigroups in Noncommutative Spaces

e F.Cipriani, B.Zegarlinski, KMS Dirichlet forms, coercivity and super-
bounded Markovian semigroups, arXiv:2105.06000

ee F.Cipriani, B.Zegarlinski, Noncommutative Perturbation Theory.
https://it.overleaf.com/project/6214c£6524£f31131f50ea0ad


arXiv:2105.06000
https://it.overleaf.com/project/6214cf6524f31131f50ea0ad

THANK YOU FOR YOUR ATTENTION
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