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Lecture I :Content

* Metric and differential structures *.1

* Perturbation of measures *.2

* Dirichlet forms *.3

* Orlicz spaces basics *.3



Metric and differential structures
* Space Ò ≡�

n.
Natural (abelian) addition of vectors & scaling

x⊕ y ≡ (xj + yj )j=1,..,n
Ý⊙ x ≡ (Ý · xj )j=1,..,n

Metrics given by lp norms p ∈ [1,∞] :

∥x∥p ≡

 ¼
j=1,..,n

|xj |p


1
p

if p ∈ [1,∞)

∥x∥∞ ≡ max
j=1,..,n

|xj |

Homogeneity and triangle inequality

∥Ý⊙ x∥p = |Ý| · ∥x∥p
∥x⊕ y∥p ≤ ∥x∥p + ∥y∥p
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Equivalence of metrics

âp(x,y) ≡ ∥x− y∥p
∀p1,p2 ∈ [1,∞]∃C ∈ (0,∞)

1
C âp2(x,y) ≤ âp1(x,y) ≤ Câp2(x,y)

* Gauge metrics :
Fix a convex set O and define define

∥x∥O = inf{Ý > 0 : Ý−1 ⊙ x ∈ O}



Non-homogeneous Space

Ý⊙ x ≡ (ÝÜj xj )j=1,..,r

with 1 ≤ Ü1 ≤ ... ≤ Ür .

Ý⊙ x ≡ (Ý · xj )j=1,..,n

Adapted metrics

âp,Ü(x,y) ≡

 ¼
j=1,..,r

|xj − yj |
p
Üj


1
p

≡ ∥x⊖ y∥p,Ü

Homogeneous norm

∥Ý⊙ x∥p,Ü = |Ý| · ∥x∥p,Ü
E.g. r = 3, p = 4, Ü = (1,2)

N(x ,y ,z) ≡ ∥(x ,y ,z)∥4,Ü =
(
(x2 + y2)2 + 16z2

) 1
4



Families of metrics
* positive linear combinations of metrics
* If F (s , t) is jointly concave and vanishes at zero than for any
metrics â, ẫ, also F (â, ẫ) is a metric.
(e.g. F (s , t) = f ( s

h(t) )h(t) for perspective function f and a
concave h > 0 .)
E.g.
*Arithmetic and geometric means generate new metrics.
* A metric plus a semimetric = metric

â(x,y) + F (x, |yj |)
for some j .
* Use homogeneous norms

e.g .1 (dp + Np)
1
p

e.g .2

 ¼
l=1,..,m

âp
l


1
p



Metric defined by length of a curve

â(x,y) ≡ inf
{
l(Õx,y)

}
where l denotes a length function ≡ an additive nonnegative
function on some family of allowed paths.



Fields ≡ Differential operators
* Gradient ∇ ≡ (�j ≡ �xj )j=1,..,n in �

n

**Smooth and nonsmooth metrics
∥ · ∥p , p ∈ (1,∞) are smooth out of origin.

*Eikonal equation
For p,q ∈ (1,∞), dual 1

p + 1
q = 1

∥∇∥x∥p∥q = 1

for x , 0.



Fields ≡ Differential operators
* SubGradient ∇ ≡ (Xj ≡ �xj +

´
l>j al�xj )j=1,..,k , k < n in �

n,
al smooth.

* Assumption : Multiple commutators

[Xj1 , [Xj2 , ..[Xjm−1 ,Xjm]]]

of finite order m ∈� span all tangent space.



E.g. �
3 ∇

�
≡ (X ,Y )

X = �x + 2y�z Y = �y − 2x�z

Then
[X ,Y ] = 4�z

Kaplan homogeneous norm

N(x ,y ,z) ≡
(
(x2 + y2)2 + 16z2

) 1
4

is smooth and we have

∥∇
�

N∥2 =
|(x ,y )|

N
É
�

N−2 ≡ (X 2 + Y 2)N−2 = 0, a.e.

http://www-sop.inria.fr/members/James.Inglis/
Site/Publications_files/Inglis_THESIS_FINAL.pdf

http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf
http://www-sop.inria.fr/members/James.Inglis/Site/Publications_files/Inglis_THESIS_FINAL.pdf


Control distance
* Chow-Rashevski Theorem: Every two points in �

n can be
connected by a path which is piecewise smooth with tangent
vectors in Span(∇).
* Length of a curve

l(Õx,y) =
∫ 1

0
∥XÕ(t)∥2dt

* Control Distance
d(x,y) ≡ inf l(Õx,y)

* Eikonal equation
∥∇

�
d∥2 = 1

* Control distance is not smooth
É
�

d(0,x)→|(x ,y )|2→0 −∞



Nilpotent Lie groups

x ◦ y = (xj + yj + Pj (x,y))j=1,..,n

E.g.Heisenberg Group

(x ,y ,z) ◦ (x ′,y ′,z ′) = (x + x ′,y + y ′,z + z ′ + a(x ′y − xy ′))

* Noncommutative Discrete Infinite Coxeter Group associated
to Nilpotent Lie Groups.



Perturbation of measures

dÞ = e−UdÝ

*Quasi invariant measures

dÞ(· ◦ etXj )
dÞ

* Associated Unitary Group and CCRs
Start



Nice Orlicz functions
Ð : �→�

Ð(x ) =
∫ |x |

0
æ(s)ds

where æ : �+→�
+, æ(0) = 0 and otherwise æ> 0,

and æ(s)→s→∞∞.
Complementary Function

Ñ (y ) =
∫ |y |

0
è(s)ds

where
è(t) = inf{s ≥ 0 : æ(s) ≥ t}

Young’s Inequality

xy ≤ Ð(x ) +Ñ (y )



Luxemburg norm

∥X∥Ð = inf{Ý > 0 : EÐ(X /Ý) ≤ 1}.

Normalisation Property

EÐ

(
X
∥X∥Ð

)
= 1 (⋆)

Michał Lemańczyk, Concentration inequalities survey.
https://www.mimuw.edu.pl/~bpolaczyk/projects/resources/orlicz.pdf

https://www.mimuw.edu.pl/~bpolaczyk/projects/resources/orlicz.pdf


Tail Estimates I.

If Ð is N-function and 0 < ∥X∥Ð <∞, then

P(|X | ≥ t) ≤ 1
Ð(t/∥X∥Ð )

Skip MaxEstimates



Max Estimates max1≤i≤n |Xi |
Let Ð be a strictly increasing, non-zero function,
s.t. Ð(1) ≤ 1/2 and

∃c > 0 ∀x ,y ≥ 1, Ð(x )Ð(y ) ≤ Ð(cxy ).

Then for any n ∈�

∥max
1≤i≤n

Xi∥Ð ≤ c Ð−1(2n) max
1≤i≤n

∥Xi∥Ð (*)

If Ð is a strictly increasing, convex, non-zero function,
then for any n ∈�

E
(

max
1≤i≤n

|Xi |
)
≤ Ð−1(n) max

1≤i≤n
∥Xi∥Ð (**)

Skip Proof



Proof: The assumption says that for x ≥ y ≥ 1 we have

Ð

(x
y

)
≤ Ð(cx )

Ð(y )

Thus, for y ≥ 1 and any C > 0 using the monotonicity of Ð

max
1≤i≤n

Ð

(
|Xi |
Cy

)
≤ Ð(1) +

n¼
i=1

Ð(c |Xi |/C )
Ð(y )

For C = c max1≤i≤n ∥Xi∥Ð we get

EÐ

(max1≤i≤n Xi
Cy

)
≤ E max

1≤i≤n
Ð

( Xi
Cy

)
≤ n
Ð(y )

+Ð(1) ≤ n
Ð(y )

+
1
2 ≤ 1

where the last inequality holds iff 2n ≤ Ð(y ).



To get the second part of this lemma where Ð convex note
that due to Jensen’s inequality we have (w.l.o.g. Xi ≥ 0)

1
C E max

1≤i≤n
Xi ≤ Ð−1(E max

1≤i≤n

Ð(Xi )
C ) ≤ Ð−1(n)



Exponential Luxemburg norms

Definition :

For any Ó ∈ (0,∞) we define

ÑÓ(x ) = exp(|x |Ó)− 1

and the corresponding Ó-exponential Luxemburg norm as

∥X∥ÑÓ
= inf{c > 0 : E exp(|X |Ó/cÓ) ≤ 2}



Tail Estimates II

For any random variable X with

0 < ∥X∥ÑÓ
<∞

and t > 0 we have

P(|X | ≥ t) ≤ 2exp(−tÓ/∥X∥ÓÑÓ
)

LuxNorm



Observations

(1) If one replaces a Luxemburg norm by some convenient
estimate from above, one still gets a tail estimates.

(2) If one replaces X by X −EX we get concentration
estimates.

(3) More generally, given a space P of R.V.s , one can study
X −w , for w ∈ P .



How to get bounds on Luxemburg Norms

Coercive Inequalities

Start



• Poincaré Inequality

mE (f −Ef )2 ≤ E |∇f |2, (PI2)

with

E (f −Ef )2 = inf
a∈�

E (f − a)2

H. Poincaré (Eqn (11) p. 253), « Sur les Equations aux Dérivées Partielles de la Physique Mathématique »,

Amer. J. of Math. vol. 12, no 3, 1890, pp. 211–294, doi10.2307/2369620

( [BE’1985].., [Antoniuk Antoniuk’1993] ,..[V’06],[BCG’08],[HZ’09],..)

Start

doi10.2307/2369620


Facts
◦ [HZ’09]

Let dE = e−UdÝ with U locally bounded. Let q ∈ [1,2].

If ∃0 ≤ Ù(x ) −−−−−−−−−−→
dist(0,x )→∞

∞ (no matter how slowly)

and ∃C ,D ∈ (0,∞)

E (Ù|f |q) ≤ C E |∇f |q + D E |f |q, (⋆)

then ∃m ∈ (0,∞) s.t.
m inf

a∈�
E |f − a|q ≤ E |∇f |q (IPq)

◦ If (IPq ) holds, then for every Lip function f with finite first
moment there exists ê > 0 s.t.

E eê|f | <∞
i.e. Lip functions (with finite 1st moment) belong to Orlicz
space with exp norm.



• Poincaré Inequality with a Weight
([BL’1976],..,[Antoniuk Antoniuk’1993],..,[HZ’09],..)

mE |f −Ef |q ≤ E |∇f |q
W , q ≥ 1 (IPq,W )



Facts ◦ [HZ’09]
Let dE = e−UdÝ with U locally bounded. Let q ∈ [1,2].

If ∃0 ≤ Ù(x ), |∇Ù|
q

Ùq+Ö −−−−−−−−−−→dist(0,x )→∞
∞ (with some 0 < Ö < 1)

and ∃C ,D ∈ (0,∞)

E (Ù|f |q) ≤ C E |∇f |q + D E |f |q, (⋆)

then ∃m ∈ (0,∞) s.t.

m inf
a∈�

E |f − a|q ≤ E |∇f |q
W (IPq,W )

◦ If (IPq,W ) holds, then for every LipW function f
i.e. ∥ |∇f |q

W ∥∞ <∞, (with E |f | <∞ ), there exists ê > 0 s.t.

E eê|f | <∞

i.e. LipW functions (with E |f | <∞ ) belong to
Orlicz space with exp norm.



• Higher order Poincaré inequalities

∃m ∈ (0,∞) s.t.

mk inf
w∈Pk

E |f −w |q ≤ E |∇k f | (IPq,k)

where k ∈� and Pk denotes space of polynomials of order k ,
and

|∇k f | ≡
¼
|Ó|=k
|∇Óf |q



Facts

◦ [WZ’21] Downhill Induction Lq-Case.

∀k ∈� (IPq) =⇒ (IPq,k )

Theorem

For q ∈ (1,∞), there exists Ck ,q ∈ (0,∞) and a polynomial
mk ,q(f ) of order k − 1, such that

Þ
∣∣∣f −mk ,q(f )

∣∣∣q ≤ Ck ,q
¼
|Ó|=k

Þ|∇Óf |q. (PIk ,q)

Y.Wang & BZ, Higher Order Coercive Inequalities, Potential Analysis
(2021) https://link.springer.com/article/10.1007/s11118-021-09940-1

https://link.springer.com/article/10.1007/s11118-021-09940-1


Assume that (PIq,1) holds. Then¼
|Ó|=k

Þ|∇Óf |q =
¼
|Ô|=k−1

¼
j
Þ|∇j∇Ôf |q

≥ C−1
1,q

¼
|Ô|=k−1

Þ|∇Ôf −M1,q(∇Ôf )|q

= C−1
1,q

¼
|Ô|=k−1

Þ|∇Ô
(
f −B1,q,k−1(f )

)
|q

with
B1,q,k−1(f ) ≡

¼
|Ô|=k−1

xÔ

Ô!
M1,q(∇Ôf )



Applied inductively, yields¼
|Ó|=k

Þ|∇Óf |q ≥ C−(k−j)
1,q

¼
|Ó|=k−j

Þ|∇Ó
(
f −B1,q,j−1(f )

)
|q

with

B1,q,j−1(f ) ≡
¼
|Ó|=k−j

xÓ

Ó!
M1,q(∇Ó(f −B1,q,j (f ))).

Hence (PIk ,q) follows mk ,q ≡ B1,q,1(f ) and Ck ,q ≤ Ck
1,q.

Remark The constant in the above is exponential in k and is
generally not optimal and different then the optimal constant
in the (PIk ,q) with the minimizing polynomial Mk ,q(f ).

E. Bou Dagher, Y.Wang & BZ, Coercive inequalities on Carnot groups
and applications, , Advances in Analysis and Geometry, Vol. 6 (2022)
https://doi.org/10.1515/9783110741711

https://doi.org/10.1515/9783110741711


Statistical Polynomials mk ,q(f )

Questions :

What is the structure & possible applications of mk ,q(f ) ?

Are they orthogonal for different values of k if q = 2 ?



Facts CND

◦ Similar techniques based on ⋆-bounds for (IPq,k) and

m inf
P∈Pk−1

E |f − P |q ≤ E
(
|∇k f |q

W

)
(IPq,k ,W )



Facts CND
◦

∀k ∈� (IPq,k ) =⇒ ExpBounds

Suppose ∥ |∇
k f |q
W ∥∞ <∞

∃ ê > 0 Eeê|f −mk ,q(f )| <∞

S. G. Bobkov, F. Gotze, H. Sambale, Higher Order Concentration of
Measure, Commun. Contemporary Math., Vol. 21, No. 03 (2018)
https://doi.org/10.1142/S0219199718500438
Friedrich Götze and Holger Sambale, Higher Order Concentration in
Presence of Poincaré-Type Inequalities, Ch. 6, in "High Dimensional
Probability VIII, The Oaxaca Volume", Birkhäuser 2019, Eds. N.Gozlan,
R.Latała, K.Lounici, M.Madiman,
https://doi.org/10.1007/978-3-030-26391-1

 https://doi.org/10.1142/S0219199718500438
 https://doi.org/10.1007/978-3-030-26391-1


Multiparticle decay

Higher order estimates for Gaussian semigroup Let

L = É− x · ∇ and Pt = etL.

Then we have
Theorem

|∇ÓPt f |2 ≤ e−2|Ó|Pt |∇Óf |2

Hence with the corresponding invariant Gaussian measure Õ,
we have ∫

|∇ÓPt f |2dÕ ≤ e−2|Ó|
∫
|∇Óf |2dÕ

Skip Proof/Jump to Optima



Proof In the case of interest to us it is well known that the
kernel is smooth.
Following an idea of Bakry-Emery, we have

�sPt−s |∇ÓPs f |2 = Pt−s
(
−L|∇ÓPs f |2 + 2∇ÓLPs f · ∇ÓPs f

)
and so
�sPt−s |∇ÓPs f |2

= Pt−s
((
−L|∇ÓPs f |2 + 2∇ÓPs f · L∇ÓPs f

)
+ 2[∇Ó,L]Ps f · ∇ÓPs f

)
.

Since
[∇,L] = −∇,

using the following inductive formula
[∇n,L] ≡ ∇[∇n−1,L] + [∇,L]∇n−1,

we have
[∇n,L] = −n∇n.

Hence for a component ∇Ó, we get
[∇Ó,L] = −|Ó|∇Ó.



Using the fact that the Markovian form of L satisfies

L(g2)− 2gLg = 2|∇g |2 ≥ 0,

we obtain the following differential inequality

�sPt−s |∇ÓPs f |2 ≤ −2|Ó|Pt−s
(
|∇ÓPs f |2

)
,

thereby concluding

|∇ÓPt f |2 ≤ e−2|Ó|Pt |∇Óf |2

Accordingly, with the corresponding invariant Gaussian
measure Õ, we have∫

|∇ÓPt f |2dÕ ≤ e−2|Ó|
∫
|∇Óf |2dÕ



Optimal higher order Poincaré constants for O-U

Note that for Hermite polynomials Hk , k ∈�, in one
dimensions, we have

∇Hk (t) =
√

kHk−1(t).

and hence

∇nHk (t) =
√

k · .. · (k − n)Hk−n(t) for all k ≥ n.



Thus, using representation

f =
¼
k∈�

fkHk

with respect to the O-N basis of Hermite polynomials, we
compute∫
|∇nf |2dÕ =

¼
k≥n+1

k ..(k − n)|fk−n|2 ≥ n!
∫
|f −M2,n,Õ(f )|2dÕ

where in �2(Õ), we have

M2,n,Õ(f ) =
¼
k≤n

fkHh.



The optimal k-th order Poincare Inequality for O-U

Theorem

n!
∫
|f −M2,n,Õ(f )|2dÕ ≤

∫
|∇nf |2dÕ.

Remark: This is better than Downhill Induction gives.



Entropy Estimates
and Unrestricted Exp Bounds

Start



Log-Sobolev Inequality
[Stamm’59], [Federbush’69][Gross’75],.., [JRosen’76], [Adams’79],..,[B-E’85],..

E
(
f 2 log

f 2

Ef 2

)
≤ c E |∇f |2~w�

∥(f −Ef )2∥Ð ≤ c ′E |∇f |2

with Ð(x ) = |x | log(1 + |x |), [BG’JFA99].

M. Ledoux, Logarithmic Sobolev Inequalities, what they are, some history
analytic, geometric, optimal transportation proofs, last decade
developments, at the interface between analysis, probability, geometry
https://www.math.univ-toulouse.fr/~ledoux/Logsobwpause.pdf

https://www.math.univ-toulouse.fr/~ledoux/Logsobwpause.pdf


Entropy Bounds & Exponential Moments

If , for q ∈ (1,∞),

E
(
|f |q log

|f |q
E |f |q

)
≤ c E |∇f |q

then

Eetf ≤ exp
{
const · tq ∥∇f ∥q∞ + Ef

}



Proof Idea
E
(
etf log

etf

Eetf

)
≤ c

qq tq E
(
|∇f |qetf

)
www�

d
dt

(1
t logEetf

)
≤ c

qq tq−2 ∥∇f ∥q∞www�
Eetf ≤ exp

{
c

qq(q − 1)
tq ∥∇f ∥q∞ + Ef

}
M. Ledoux, Remarks on logarithmic Sobolev constants, exponential
integrability and bounds on the diameter, J. Math. Kyoto Univ.
(JMKYAZ) 35-2 (1995) 211-220 https://perso.math.
univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
S.G.Bobkov and B.Zegarlinski, Entropy bounds and isoperimetry,
Mem.Amer.Math. Soc. 2005; Vol.176, Nr 829
http://www.ams.org/books/memo/0829

https://perso.math.univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
https://perso.math.univ-toulouse.fr/ledoux/files/2019/10/Kyoto.pdf
http://www.ams.org/books/memo/0829


Generalised Entropy Bounds
Let

dÞ ≡ e−UdÝ

Adams Regularity Conditions:[Adams’JFA1979]

∃ê,C ∈ (0,∞) ¼
|Ó|=2
|∇ÓU | ≤ C (1 + |∇U |)2−ê. (ARC)

Remark :
◦ Note that in particular we have

LU ≤ C (1 + |∇U |)2−ê − |∇U |2.

where
Lf = Éf −∇U · ∇f



Smooth Orlicz functions

Let

ÐA,p(t) = |t |p
n½

j=1
(log∗j (|t |))pj ≡ |t |pA(log∗ t),

and

Ð(t) = t
n½

j=1
(logj (Õj + |t |))pj ≡ tΘ(t).

Then there exists C ∈ (0,∞) s.t.

Ð(|x |p) ≤ CÐA,p(|x |).



Lemma
Suppose the following Adams Inequality holds

Þ(ÐA,p(f )) ≤ C̃A Þ
∣∣∣∇k f

∣∣∣p + D̃A ÐA,p(∥f ∥pp) (AI)

with some C̃A, D̃A ∈ (0,∞) independent of f . Then

∥ |f |p ∥Ð ≤ C ′Þ
∣∣∣∇k f

∣∣∣p + D′∥f ∥pp . (AOI)

with some C ′,D′ ∈ (0,∞) independent of f .



Theorem
If the following (p,k)-Poincaré inequality holds

∥(f −Mp,k (f ))∥pp ≤ cp,k Þ
∣∣∣∇k f

∣∣∣p (PIp,k)

with some cp,k ∈ (0,∞) for all f for which the r.h.s. is well
defined, then the following tight (Ð ,p,k)-Inequality holds

∥
∣∣∣f −Mp,k (f )

∣∣∣p ∥Ð ≤ C Þ
∣∣∣∇k f

∣∣∣p . (OSI)

•



Class N

If we have with Ó ∈ (1,∞)

p.p.N(u) =
|u|Ó
Ó

n½
k=1

(logk |u|)Õk

then with 1
Ó + 1

Ô = 1

p.p.N∗(u) =
|u|Ô
Ô

 n½
k=1

(logk |u|)−Õk

Ô−1

Krasnosielski, M., Ruticki, B.: Convex functions and Orlicz spaces.
Groningen: Noordhoff 1961. Chapter 1 §7



Questions:
◦ For q = 2, what are the optimal estimates

∥Pt (f −Mn(f ))∥22 ≤ e−mnt∥f −Mn(f )∥22

◦
∥Pt (f −Mn(f ))∥Ð ≤ e−ênt∥f −Mn(f )∥Ð

◦ Description of Invariant subspaces and Martingales.
◦ Analysis on Nilpotent Lie Groups:

Kaplan versus Carnot-Caratheodory.
No Adams regularity for U(d ) with C-C distance d , (|∇d | = 1).
No Log-Sobolev with Kaplan Distance[HZ ′09] :( and any
smooth homogeneous norm ),
Some (Log)Ô-Sobolev [EBZ ′21−22] and Poincaré Inequality are
still OK:)[In′10],[CFZ ′21]



◦ E.Bou Dagher and B.Zegarlinski, Coercive Inequalities and U-Bounds on
Step-Two Carnot Groups, Potential Analysis 2021 https://doi.org/10.
1007/s11118-021-09979-0
◦ E.Bou Dagher, B.Zegarliński, Coercive inequalities in higher-dimensional
anisotropic heisenberg group. Anal.Math.Phys. 12, 3 (2022).
https://doi.org/10.1007/s13324-021-00609-x
◦ E. Bou Dagher and B. Zegarlinski,Coercive Inequalities on Carnot
Groups: Taming Singularities, arXiv:2105.03922
◦ M. Chatzakou, Serena Federico and Boguslaw Zegarlinski, q-Poincaré
inequalities on Carnot Groups, (2020) arXiv:2007.04689
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+Contractivity along Orlicz spaces
Let (�Ðt )t∈�+ be a nested family of Orlicz spaces.

◦ For a Markov semigroup (Pt )t∈�+ defined in the given family
of Orlicz spaces spaces, when do we have the following strong
contractivity property ?

∥Pt f ∥Ðt ≤ ∥f ∥Ð0 .

◦ Can we also consider variable family (P (t)
t )t∈�+ semigroups

∥P (t)
t f ∥Ðt ≤ ∥f ∥Ð0 .

◦ C.Roberto and B.Zegarlinski, Hypercontractivity for Markov
Semigroups, J. Funct. Analysis (2022)
https://doi.org/10.1016/j.jfa.2022.109439

https://doi.org/10.1016/j.jfa.2022.109439


Theorem Let (Ðt )t≥0 be a family of C2 Young functions.
Assume that for some t ,s ≥ 0 there exist two positive
constants C (t ,s) and C̃ (t ,s) such that
(i )

Ð̇t (Ð−1
t ) ≤ C (t ,s)Ð̇s (Ð−1

s ),

(ii )
Ð ′′t

Ð ′t
2 ◦Ð

−1
t ≥ C̃ (t ,s)

Ð ′′s
Ð ′s

2 ◦Ð
−1
s .

Assume that for some c ∈ (0,∞) and for any f (smooth
enough), it holds

∥f ∥2Ðs

∫
Ð̇s

(
f
∥f ∥Ðs

)
dÞ ≤ c

∫
Ð ′′s

(
f
∥f ∥Ðs

)
|∇f |2dÞ. (1)

Then, for any f smooth enough it holds

∥f ∥2Ðt

∫
Ð̇t

(
f
∥f ∥Ðt

)
dÞ ≤ c C (t ,s)

C̃ (t ,s)

∫
Ð ′′t

(
f
∥f ∥Ðt

)
|∇f |2dÞ.



Proof
Let

Is ,t : �Ðt → �Ðs

f 7→ ∥f ∥ÐtÐ
−1
s ◦Ðt

(
f
∥f ∥Ðt

)
.

For any f ∈ �Ðt , by the very definition of the Luxembourg
norm, it holds ∥Is ,t (f )∥Ðs = ∥f ∥Ðt . Therefore, Is ,t (f ) is an
isometry between the two Orlicz spaces �Ðt and �Ðs .
Applying (1) to Is ,t (f ) leads to

∥f ∥2Ðt

∫
Ð̇s

(
Ð−1

s ◦Ðt

( f
∥f ∥Ðt

))
dÞ

≤ c
∫

Ð ′′s ◦Ð−1
s ◦Ðt

(
f
∥f ∥Ðt

) Ð ′t

(
f
∥f ∥Ðt

)2
|∇f |2

Ð ′s ◦Ð−1
s ◦Ðt

(
f
∥f ∥Ðt

)2 dÞ.

The result follows by (i ) and (ii ).



The Standard Orlicz Family
Let F : (0,∞)→� be a C2 increasing function s.t. F (1) = 0.
Assume that (0,∞) ∋ x 7→ xF (x ) is convex and that 1/xF (x ) is
not integrable at x = 0, x = 1 and x = +∞. Let F1 : (0,1)→�

and F2 : (1,+∞)→� be two primitives of x 7→ 1/(xF (x )). Let
Ð0 be a N-Young function of class C2 on (0,∞), and xo the
unique positive point s.t. Ð0(xo) = 1.
Assume −

(
Ð0
Ð ′0

)′
F (Ð0)−Ð0F ′(Ð0) is non-increasing on �

+.
Let Ý : �+→�

+ be an increasing function, s.t. Ý(0) = 0.
Definition The standard Orlicz family (Ðt )t≥0 built from F ,
Ð0 and Ý is defined by

Ðt (x ) :=


0 for x = 0
F −1

1 (F1(Ð0(x )) +Ý(t)) for x ∈ (0,xo)

1 for x = xo
F −1

2 (F2(Ð0(x )) +Ý(t)) for x ∈ (xo ,+∞).

∀t > 0.



Examples
Example [G’75] For F (x ) = log(x ) and any N-function Ð0 ,
F1(x ) = log(log(1/x )), x ∈ (0,1) and F2(x ) = log(log(x )), x > 1
so that F −1

1 (x ) = e−ex and F −1
2 (x ) = eex , x ∈�.

Hence, Ðt (x ) = ÐeÝ(t)

0 .
If q(t) = 1 + e(4/â)t and Ý(t) = log(q(t)/2), with Ð0(x ) = x2, we
have Ðt (x ) = |x |q(t) , we get �p scale of Gross’ setting.

Example [BCR’] For F (x ) = log(1 + x )Ô − log(2)Ô, Ô ∈ (0,1),
one gets non explicit F1 and F2
with an asymptotic of the corresponding Ðt (x ), when x tends
to ∞ or +∞ equivalent to Ð0eaÔÝ(logæ0)Ô ,
with a numerical constant aÔ depend only on Ô.
This is the family of Young functions x2ectF (x ) considered in
Barthe-Cattiaux-Roberto.



Integration Lemma for standard Orlicz family
Theorem

Let (Ðt )t≥0 be a standard Orlicz family built from F , Ð0 and
Ý. Let c > 0. Then the following are equivalent
(i )

∥f ∥2Ð0

∫
Ð0

( f
∥f ∥Ð0

)
F
(
Ð0

( f
∥f ∥Ð0

))
dÞ≤c

∫
Ð ′′0

(
f
∥f ∥Ð0

)
|∇f |2dÞ ;

for any function f for which the r.h.s. is well defined;
(ii ) ∀ t ≥ s ≥ 0, it holds

∥Pt f ∥Ðt ≤ ∥Ps f ∥Ðs .

for any function f ∈ �Ðs .
Moreover (i )⇒ (ii ) with any (increasing) Ý such that
Ð ′′t
Ð ′t

2 ◦Ð−1
t ≥ cÝ′(t) Ð

′′
0

Ð ′0
2 ◦Ð−1

0 for any t ≥ 0 (in particular, any Ý

satisfying Ý′(t) ≤ 1/c would do); and (ii )⇒ (i ) with
c = 1/Ý′(0).



Hyperboundedness in �p-scales

Let
Lt := É−∇Vt · ∇

t ≥ 0, on �
n, with Vt smooth (tbs) and s.t.

∫
e−Vt = 1.

The associated semi-group (P (t)
s )s≥0 is reversible with respect

to the probability measure

Þt (dx ) := e−Vt (x )dx

Define

at := ∥(V̇t )−∥∞,bt := ∥|∇V̇t |∥∞,ct := ∥(∇Vt · ∇V̇t −ÉV̇t )−∥∞



Theorem
Consider the inhomogeneous diffusion operator Lt as above.
Assume ∀t ≥ 0 at ,bt ,ct <∞.
Suppose ∀t ≥ 0 ∃ât ∈� s.t. Hess(Vt ) ≥ ât .
Assume ∃c̄t ∈ (0,∞)∫

f 2 log(f 2)dÞt ≤ c̄t

∫
|∇f |2dÞt ,

for all f with
∫

f 2dÞt = 1 for which the r.h.s is well defined.
Then, for any p > 1 and 0 ≤ s ≤ t <∞,

∥P (t)
t f ∥Ðt ,Þt ≤m(s , t)∥P (s)

s f ∥Ðs ,Þs

where Ðt (x ) = |x |q(t), q(t) = 1 + (p − 1)exp{
∫ t
0 (2/ c̄s )ds}, and

m(s , t) := exp

{∫ t

s

au
q(u)

+ ucu + b2
u

1− e−âuu

2âu
(q(u)− 1)du

}
.



Example

Vt (x ) = U(x ) +Ó(t)V (x ) +Õ(t)

with V unbounded and Õ(t) := log
∫

e−U−ÓV dx so that Þt is a
probability measure.
Let U(x ) = |x |

2

2 , Ó : �+→�
+ non-decreasing and

V (x ) = (1 + |x |2)
Ô
2 , with Ô ∈ (0,1].

Then,
V̇t = Ó′(t)(1 + |x |2)

Ô
2

so that at = 0; ∇V̇t = Ó′(t)Ô(1 + |x |2)
Ô
2−1x , whence

bt = Ó′(t)Ô

√
(1−Ô)1−Ô

(2−Ô)2−Ô
( and when Ô→ 1, we get bt = Ó′(t).

One can prove that ct ≤ n2Ó′(t)(Ó(t) + 2) and Hess(Vt ) ≥ 1 so
that ât = 1 and c̄t = 2. Hence (P (t)

t )t≥0 is hyper-bounded in
the �q(t) scale, with q(t) = 1 + (p − 1)et .



General result

Let Vt (x ) = U(x ) +Ó(t)V (x ) +Õ(t).
Let Lt = É−∇Vt · ∇.
Theorem Assume ∀t ≥ 0, bt := ∥|∇V̇t |∥∞ <∞ and ∃ât ∈�
s.t. Hess(Vt ) ≥ ât I .
Let (Ðt )t≥0 be a family of N-functions s.t.
Ðt (x ) ≤ xÐ ′t (x ) ≤ BtÐt (x ), Ð ′t

2 ≤ CtÐtÐ
′′
t and

x2Ð ′′t (x ) ≤ DtÐt (x ) + Et for all x ≥ 0 and some constants
Bt ,Ct ,Dt ,Et .
Assume ∀t ≥ 0 ∃Öt ∈ [0,1) and Ft ∈� such that
(V̇t )− ≤

Öt
4Ct

(
|∇Vt |2 − 2ÉVt

)
+ Ft .



Set Wt := (∇Vt · ∇V̇t −ÉV̇t )− and denote by â̄t ∈ (0,∞] the
best constant such that for all f with ∥f ∥Ð0 = 1 it holds∫

Ð̇t (f )dÞt ≤ â̄t

∫
Ð ′′t (f )|∇f |2dÞt . (2)

Finally, assume either that (i ) ct := ∥Wt∥∞ <∞ and
â̄t < 1− Öt ;or (ii )
c ′t := max

(
2∥|∇Wt |∥∞/bt ,supx :Wt (x ),0

(LtWt
Wt
− ât

)
−

)
<∞ and

that for all t ≥ 0 there exists Ö′t ∈ [0,1) and F ′t ∈ [0,∞) such
that Ö′t

∫ t
0 e(c ′s−âs )sds < 1 and Wt ≤

Ö′t
4BtCt

(
|∇Vt |2 − 2ÉVt

)
+ F ′t .

Then, for any f : �n→�+ smooth enough, it holds

∥P (t)
t f ∥Ðt ,Þt ≤m(s , t)∥P (s)

s f ∥Ðs ,Þs

where under assumption (i ),

m(s , t) = exp


∫ t

s
Fu +

(
bu

1− e−âuu

âu

)2 Du + Eu
2(1− Öu − â̄u)

+ cuBuudu

 ,



and under assumption (ii ),

m(s , t) =

exp


∫ t

s

(∫ u

0
e(c ′v−âv )vdv

)2 bu(Du + Eu)

2(1− Öu − â̄u − Ö′u
∫ u
0 e(c ′v−âv )vdv )

+
∫ u

0
e(c ′v−âv )vdv (BuF ′u + Fu)du

}
.

endtheorem



Open Problems
◦ An interesting example not yet covered : with Ó ∈ (1,2),

Vt (x ) = (1− t)2+|x |2 + |x |Ó

we have a critical point t = 1 in which hypercontractivity in �p
spaces is replaced by a weaker property. Such an example
requires bt =∞ and is not covered yet by the theorem.
◦ Time Dependent Diffusion Equation
For

Lt = L + V (t) · ∇,

�tP
(t)
t f = L(t)f +

∫ t

0

(
eäL(t) ˙V (t)e(t−ä)L(t)f

)
dä.

◦ What are nonhommogeneous stochastic processes with
nonconstant smoothing properties ?



Extended Gradient Bounds
For W : �n→�+, W 2 ∈ C2, define

È W (f ,g ) := È (f ,g ) + W 2fg
with

È (f ) ≡ 1
2
(
Lf 2 − 2fLf

)
and define the iterated operator

È W
2 (f ,g ) :=

1
2
(
LÈ W (f ,g )− È W (Lf ,g )− È W (f ,Lg )

)

= È2(f ,g ) +
1
2 fgL(W 2) + W 2È (f ,g ) + 2W∇W∇(fg ).

Start

◦ C. Roberto, B. Zegarlinski, Bakry-Emery Calculus For Diffusion With
Additional Multiplicative Term, (2021) arXiv:2102.10633



Theorem [Extended Gradient Bound]

Assume that for some â ∈�

È2 ≥ âÈ

and
Õ := inf

x∈�n:W (x ),0

(
LW
W − 3 |∇W |2

W 2

)
> −∞.

Then, for t ≥ 0,

È W (Pt f ) ≤ e−2min(â,Õ)tPt (È W (f )) .

for all f ∈ C2.
EquivThm

Examples.Skip EquivThm



Remark
For â = 0, the ratio 1−e−2ât

â is understood as its limit (i.e. 2t).
Notice that it is always non-negative.

Observe that, applying (ii ) to constant functions f ≡ C , C , 0,
leads to

W 2 ≤ e−2âtPt (W 2).

Therefore, if
∫

W 2dÞ <∞ and â > 0,
taking the limit t→∞ and by ergodicity, we would conclude
that W ≡ 0.
Therefore, for

È W
2 (f ) ≥ âÈ W (f )

to hold for a non trivial W , either â ≤ 0 or
∫

W 2dÞ =∞.
But, we have no such restriction removing mean value Þ(f ) of
the function f .



Example

For p,q ≥ 1 , consider

U(x ) = c +
(1 + |x |2)p/2

p and W (x ) =
(1 + |x |2)q/2

q ,

with c s.t.
∫

e−U(x )dx = 1 and |x | = (
´

x2
i )1/2. Then

LW
W − 3 |∇W |2

W 2

=
qn

1 + |x |2
− q|x |2

1 + |x |2

(
2(q + 1)
1 + |x |2

+ (1 + |x |2)(p−2)/2
)

is bounded from below iff 1 ≤ p ≤ 2.



Extended Gradient Bounds

Complete Characterisation

⟨∇Pt f ,∇Pt f ⟩ ≤ eÓtPt⟨∇f ,∇f ⟩

The description of all allowed ⟨·, ·⟩ comes from
Theory of Markov Semigroups in Noncommutative Spaces

see ⇓

• F.Cipriani, B.Zegarlinski, KMS Dirichlet forms, coercivity and super-
bounded Markovian semigroups, arXiv:2105.06000
•• F.Cipriani, B.Zegarlinski, Noncommutative Perturbation Theory.
https://it.overleaf.com/project/6214cf6524f31131f50ea0ad

arXiv:2105.06000
https://it.overleaf.com/project/6214cf6524f31131f50ea0ad


Thank you for your attention
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