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Before we begin
" If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is. "

John von Neumann

"Fall in love with some activity, and do it! Nobody ever figures
out what life is all about, and it doesn?t matter. Explore the
world. Nearly everything is really interesting if you go into it
deeply enough. Work as hard and as much as you want to on
the things you like to do the best. Don?t think about what
you want to be, but what you want to do. Keep up some kind
of a minimum with other things so that society doesn?t stop
you from doing anything at all. "

Richard P. Feynman
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Basic Objects and Inequalities in Commutative
Analysis

• Dirichlet Form

Eµ,X(f ) =
∫
|Xf |2dµ≡

∫ ∑
j
|Xj f |2dµ≡ µ|Xf |2

• Poincaré Inequality

mµ(f −µf )2 ≤ Eµ,X(f )

• Log-Sobolev inequality

Entµ,2(f )≡ µ
(
f 2 log f 2

µ(f 2)

)
≤ cEµ,X(f )



Few Classical Results in Commutative Analysis
Suppose

d µ̃= ρ̃dµ
If

0< ε≤ d µ̃
dµ ≤ ε

−1 <∞

then
• Comparison of Dirichlet forms

ε Eµ,X(f )≤ Eµ̃,X(f )≤ ε−1 Eµ,X(f )
• Perturbation of Poincaré Inequality

µ̃(f − µ̃f )2 = inf
a∈R

(
µ̃(f − a)2

)
≤ ε−1 inf

a∈R

(
µ(f − a)2

)
= ε−1µ(f −µf )2 ≤ ε−1m−1Eµ,X(f )≤ ε−2m−1Eµ̃,X(f )

i.e.
m̃ ≥mε2



• Perturbation of Logarithmic Sobolev Inequality

Entµ̃,2(f )≡ µ
(
f 2 log f 2

µ(f 2)

)
= inf

t>0

(
µ̃(f 2 log f 2

t − f 2 + t)2
)

≤ ε−1 inf
t>0

(
µ(f 2 log f 2

t − f 2 + t)2
)

= Entµ,2(f )≤ ε−1c Eµ,X(f )
≤ ε−2c Eµ̃,X(f )



L.Gross Integration Lemma:
Hypercontractivity ⇐⇒ Log-Sobolev inequality.
γn - the standard Gaussian measure on R

n.
Ornstein-Uhlenbeck semi-group (Pt)t≥0, whose infinitesimal
generator is L := ∆− x · ∇

‖Pt f ‖q(t) ≤ ‖Ps f ‖q(s), s ≤ t

where q(t) = 1+ (q(0)− 1)e2t , q(0)≥ 1, and
‖g‖pp :=

∫
|g |pdγn, p ≥ 1.

Log-Sobolev inequality:

Entγn(f 2) :=
∫
f 2 log f 2dγn−

∫
f 2dγn log

∫
f 2dγn ≤ 2

∫
|∇f |2dγn.

By Bounded perturbation Lemma for d µ̃= e−Udγn with U
bounded one gets

Entµ̃(f 2)≤ 2eosc(U)Eµ̃,∇(f )



Discrete Systems
Space Ω = MZ

d , M - finite or compact set.
Local Specification {E ·Λ}Λ⊂⊂Zd ≡ Family of compatible
probability kernels.

Λ1 ⊂Λ2⇒ EωΛ2E
·
Λ1f = EωΛ2f

Let µ be a Gibbs measure i.e.

µ(EωΛf ) = µf

Dirichlet forms and Jump type Markov Generators

EX (f ) =
∑

j∈Zd
µ
(
EX+j f − f

)2

Lf =
∑

j∈Zd

(
EX+j f − f

)



Equivalence of Dirichlet forms : ∀X ,Y ⊂⊂Z
d ∃κ ∈ (0,∞)

1
κ
EX (f )≤ EY (f )≤ κEX (f )

Thm: If Complete Analyticity Condition holds, then Poincare
and Log-Sobolev inequality holds for EωΛ uniformly in ω and Λ.



Coercive Inequalities and Perturbation Theory
in Noncommutative Spaces

Some Results and Challenges



A State
ω(f )≡ Tr (ρf )

with ρ > 0 , Trρ= 1.
Modular Automorphism

αt(f )≡ ∆it(f )≡ e−itH fe itH ≡ ρit f ρ−it

with
∆s(f )≡ ρs f ρ−s .

Scalar Product
For κ ∈ [0,1] define

〈f ,g〉ω,κ ≡ Tr
((
ρ

κ
2 f ρ

1−κ
2

)∗
ρ

κ
2 gρ

1−κ
2

)
= ω

((
∆

κ
2 (f )

)∗
∆

κ
2 (g)

)

Later on κ= 1
2 and 〈f ,g〉 ≡ 〈f ,g〉ω, 12 .



Noncommutative Dirichlet Form

EX ,ρ(f )≡
∫ ∞
−∞

(
〈δXs (f ), δXs (f )〉+ 〈δXs ∗(f ), δXs ∗(f )〉

)
ds

where
δZ (f )≡ i [Z , f ].

and
Xs ≡ αs(X )ξs

with an operator X
and a function ξs s.t. ([YMP2000] )

(a) 0< ξ2
s ,

(b) 0< ξ2
s−i/4 + ξ2

s+i/4

(c) ∃β ∈ (0,∞) sup
s

(eβsξ2
s )<∞



(a) ⇒ positivity of EX ,ρ
(b) ⇒ dissipativity of the corresponding generator L

L(b∗b)−b∗L(b)−L(b∗)b =
∫ ∣∣∣∣δσt− i

4
(X)(b)

∣∣∣∣2 (ξ2
s−i/4 + ξ2

s+i/4)
)
dt

(This is for X = X ∗)
(c) is a technical assumption so Dirichlet form and the Markov
generator is well defined.
And (c) is also used in perturbation theory.



For ρ̃ , ρ, let α̃s(f )≡ ρ̃it f ρ̃−it and

X̃s ≡ α̃s(X )ξs = α̃s (α−s(Xs))

where
Xs ≡ αs(X )ξs

note that here αs is associated to ρ. With this notation we
have the following relation

X̃s = Xs + ρ̃isρ−is [Xs ,ρ
is ρ̃−is ]≡ Xs +Bs . (1)



Perturbation of Dirichlet Forms.
Given two density matrices ρ and ρ̃ we define relative modular
operator by

∆ρ,ρ̃(f )≡ ρf ρ̃−1



Theorem
Suppose the following Poincaré Inequality holds

‖f −ωρ(f )‖2
ρ, 12
≤ c0EX ,ρ(f )

Let
X̃s ≡ Xs +Bs .

(i) If

a1 ≡ 2‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ <∞

and

b1 ≡ a1

∫
ds
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)
<∞,

then
EX̃ ,ρ̃(f )≤ C · EX ,ρ(f )

with a constant

C ≡ a1 + b1c0.



(ii) If

a2 ≡ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ <∞

and

b2c0 ≡ 4c0

∫
ds
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)
< 1,

then
EX ,ρ(f )≤ C̃ EX̃ ,ρ̃(f )

with a constant

C̃ ≡
2‖
∣∣∣∣∆ 1

4
ρ,ρ̃(I)

∣∣∣∣2 ‖2ρ̃,∞
1− b2c0

.



Proof.
(i) We start with noticing that using 1, we have

‖δX̃s
(f )‖2

ρ̃, 12
= ‖δXs+Bs (f )‖2

ρ̃, 12
≤ 2‖δXs (f )‖2

ρ̃, 12
+2‖δBs (f )‖2

ρ̃, 12

For the norm square in the first term on the right hand side,
we have

‖δXs (f )‖2
ρ̃, 12

= 〈(δXs (f ))∗ ,(δXs (f ))〉ρ̃, 12

≤ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ · ‖δXs (f )‖2
ρ, 12

For the norm square in the second term on the right hand
side, we have

‖δBs (f )‖2
ρ̃, 12

= 〈(δBs (f ))∗ ,(δBs (f ))〉ρ̃, 12
≤ 2‖Bs(f −ωρ(f ))‖2

ρ̃, 12
+2‖(f −ωρ(f ))Bs‖2ρ̃, 12



Since

‖Bsg‖2ρ̃, 12 ≤ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ · ‖Bsg‖2ρ, 12

≤ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ · ‖ ∣∣∣∣∆ 1
4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞ · ‖g‖2ρ, 12
and

‖gBs‖2ρ̃, 12 ≤ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ · ‖gBs‖2ρ, 12

≤ ‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ · ‖ ∣∣∣∣∆ 1
4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞ · ‖g‖2ρ, 12 ,
we obtain

‖δBs (f )‖2
ρ̃, 12
≤ b1

2 · ‖(f −ωρ(f ))‖2
ρ, 12

with

b1 ≡ 2‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞·∫ ds
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)
.



By a similar consideration we get an analogous bound for the
adjoint term in the Dirichlet form. Adding them together and
integrating with respect to s, we get

EX̃ ,ρ̃(f )≤ a1 · EX ,ρ(f ) + b1 · ‖(f −ωρ(f ))‖2
ρ, 12

with
a1 ≡ 2‖

∣∣∣∣∆ 1
4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞
Hence, if the following Poincaré inequality holds

‖(f −ωρ(f ))‖2
ρ, 12
≤ c0 · EX ,ρ(f )

with some constant c0 ∈ (0,∞) independent of f , we get

EX̃ ,ρ̃(f )≤ C · EX ,ρ(f )

with
C ≡ a1 + b1c0

QED(i)



(ii) The proof of this part of theorem is similar to the previous
one. Using now Xs = X̃s −Bs , we have

‖δXs (f )‖2
ρ, 12
≤ 2‖δX̃s

(f )‖2
ρ, 12

+2‖δBs (f )‖2
ρ, 12

For the first term on the right hand side we have

2‖δX̃s
(f )‖2

ρ, 12
≤ 2‖

∣∣∣∣∆ 1
4
ρ,ρ̃(I)

∣∣∣∣2 ‖2ρ̃,∞ · ‖δX̃s
(f )‖2

ρ̃, 12

On the other hand

‖δBs (f )‖2
ρ, 12
≤ 2‖Bs(f −ωρ(f ))‖2

ρ, 12
+2‖(f −ωρ(f ))Bs‖2ρ, 12

≤ 2
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)
· ‖(f −ωρ(f ))‖2

ρ, 12



Combining the above with similar relations for terms involving
adjoint operators and integrating over s, we arrive at

EX ,ρ(f )≤ a2EX̃ ,ρ̃(f ) + b2‖(f −ωρ(f ))‖2
ρ, 12

with

a2 ≡ 2‖
∣∣∣∣∆ 1

4
ρ,ρ̃(I)

∣∣∣∣2 ‖ρ̃,∞
b2 ≡ 4

∫
ds
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)

Hence, if the Poincare Inequality associated to the state ωρ
holds, we obtain

EX ,ρ(f )≤ a2EX̃ ,ρ̃(f ) + b2c0EX ,ρ(f ).
Thus if

b2c0 < 1,
we arrive at

EX ,ρ(f )≤ a2
1− b2c0

EX̃ ,ρ̃(f ).



Example.1G
Let ρ≡ e−U be a density matrix with respect to a trace. Let

∆s(f )≡ ∆s
ρ(f )≡ ρs f ρ−s .

For a bounded operator a and a (YMP) function ξs , consider

Xs ≡ ∆is(a)ξs ,

Let ρ̃≡ e−Ũ be another density matrix s.t.

2‖
∣∣∣∣∆ 1

4
ρ̃,ρ(I)

∣∣∣∣2 ‖2ρ,∞ <∞

Define
X̃s ≡ ∆̃is(a)ξs ,

with ∆̃is ≡ ∆is
ρ̃ . Then

X̃s = ∆̃is∆−is(Xs)≡ Xs +Bs

with
Bs ≡ ρ̃isρ−is [Xs ,ρ

is ρ̃−is ].



Estimates of norms ‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞,‖ ∣∣∣∣∆ 1
4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞.
Note that

ζs ≡ ρ
1
4 ρ̃isρ−isρ−

1
4 ,

with V ≡ Ũ −U , satisfies

d
ds ζs = iζs ·∆is+ 1

4 (V )



If
‖∆±

1
4 (V )‖< ε <∞,

then the solution is given by

ζs = I+
∑

n∈N
(−1)n

∫ s

0
ds1..

∫ sn−1

0
dsn∆

1
4−is1(V )...∆

1
4−isn(V )

and satisfies
‖ζs‖ ≤ es‖∆

1
4 (V )‖

‖ζ∗s ‖ ≤ es‖∆− 1
4 (V )‖



Thus if
‖∆±

1
4 (a)‖<∞

and ξs goes to zero at infinity exponentially sufficiently fast (or
ε ∈ (0,∞) is sufficiently small), then

∫
ds
(
‖
∣∣∣∣∆ 1

4
ρ (Bs)

∣∣∣∣2 ‖ρ,∞+ ‖
∣∣∣∣∆ 1

4
ρ (B∗s )

∣∣∣∣2 ‖ρ,∞
)
<∞.

Then conditions of our Dirichlet forms perturbation theory are
satisfied.



Perturbation of Log-Sobolev Inequality
Define

Entρ(f )≡ Tr |ρ
1
4 f ρ

1
4 |2
log

 |ρ 1
4 f ρ 1

4 |2

Tr |ρ 1
4 f ρ 1

4 |2

− logρ


and
Eρ,X (f )≡

∫ (
‖δXs (f )‖22,ρ + ‖δXs ∗(f )‖22,ρ

)
ds

with
Xs ≡ αs(X )ξ(s).

where αs(·) is the modular unitary group and ξ(s) is a (YMP)
function.
Assume Log-Sobolev inequality :

Entρ(f )≤ c0Eρ,X (f ) (LSρ,X )



Theorem: (Log-Sobolev Perturbation)
Suppose the conditions of the DFPL are satisfied and

‖ log ρ̃− logρ‖<∞

Then ∃C̃ ∈ (0,∞)

Entρ̃(g)≤ C̃Eρ̃,X̃ (g).



If (LSρ,X ) holds, then in particular for

f ≡ ρ−
1
4 ρ̃

1
4g ρ̃

1
4ρ−

1
4 ≡ γ∗gγ

we have

Entρ̃(g)≤ c0Eρ,X (γ∗gγ)−Tr
(
|ρ̃

1
4g ρ̃

1
4 |2 (log ρ̃− logρ)

)
(2)



Proposition D :
Suppose the conditions of the DFPL are satisfied.
Then ∃C2,D2 ∈ (0,∞)

Eρ̃,X̃ (γ∗gγ)≤ C2 Eρ̃,X̃ (g) +D2 ‖g‖22,ρ̃ (3)



Proof of Proposition D:
If the conditions of the DFPL are satisfied, then there is a
constant C1 ∈ (0,∞) such that

Eρ,X (f )≤ C1Eρ̃,X̃ (f ) (4)

and in particular, we have

Eρ,X (γ∗gγ)≤ C1Eρ̃,X̃ (γ∗gγ)

Using Leibnitz rule for the derivation and convexity inequality
for the norm, we have

‖δX̃s
(γ∗gγ)‖22,ρ̃ ≤

1
3‖δX̃s

(γ∗)gγ‖22,ρ̃ + 1
3‖γ

∗δX̃s
(g)γ‖22,ρ̃

+1
3‖γ

∗gδX̃s
(γ)‖22,ρ̃.



Next we note the following
Lemma

‖agb‖22,ρ̃ ≤ ‖
∣∣∣∣∆̃ 1

4 (a)
∣∣∣∣2 ‖ · ‖ ∣∣∣∣∆̃ 1

4 (b∗)
∣∣∣∣2 ‖ · ‖g‖22,ρ̃.

Proof of Lemma: One has

‖agb‖22,ρ̃ = Tr
(
ρ̃

1
2b∗g∗a∗ρ̃

1
2 agb

)
= Tr

(
ρ̃

1
2b∗g∗ρ̃

1
4

∣∣∣∣ρ̃ 1
4 aρ̃−

1
4

∣∣∣∣2 ρ̃ 1
4gb

)

= Tr
(
ρ̃

1
4g∗ρ̃

1
4

∣∣∣∣ρ̃ 1
4 aρ̃−

1
4

∣∣∣∣2 ρ̃ 1
4g ρ̃

1
4

∣∣∣∣ρ̃ 1
4b∗ρ̃−

1
4

∣∣∣∣2
)

≤
(
ρ̃

1
4g∗ρ̃

1
4

∣∣∣∣ρ̃ 1
4 aρ̃−

1
4

∣∣∣∣4 ρ̃ 1
4g ρ̃

1
4

) 1
2
·

(
ρ̃

1
4g ρ̃

1
4

∣∣∣∣ρ̃ 1
4b∗ρ̃−

1
4

∣∣∣∣4 ρ̃ 1
4g∗ρ̃

1
4

) 1
2
.

from which the lemma follows.



Applying the lemma, we get

‖δX̃s
(γ∗gγ)‖22,ρ̃ ≤

1
3‖δX̃s

(γ∗)gγ‖22,ρ̃ + 1
3‖γ

∗δX̃s
(g)γ‖22,ρ̃ + 1

3‖γ
∗gδX̃s

(γ)‖22,ρ̃

≤1
3‖∆̃

1
4 (γ∗)‖4 · ‖δX̃s

(g)‖22,ρ̃

+1
3

(
‖∆̃

1
4 (δX̃s

(γ∗))‖2 + ‖∆̃
1
4 (δX̃s

∗(γ∗))‖2
)
· ‖∆̃

1
4 (γ∗)‖2 · ‖g‖22,ρ̃

This together with similar result with X̃s
∗ replacing X̃s , imply

the following bound

Eρ̃,X̃ (γ∗gγ)≤ C2 Eρ̃,X̃ (g) +D2 ‖g‖22,ρ̃ (5)

with

C2 ≡
1
3‖∆̃

1
4 (γ∗)‖4

D2 ≡
2
3

∫
ds
(
‖∆̃

1
4 (δX̃s

(γ∗))‖2 + ‖∆̃
1
4 (δX̃s

∗(γ∗))‖2
)
· ‖∆̃

1
4 (γ∗)‖2



Using (2) together with (4) and (5), we obtain

Entρ̃(g)≤ C Eρ̃,X̃ (g) +D ‖g‖2ρ̃
with C ≡ c0C1C2 and D ≡ c0C1D2 + ‖ log ρ̃− logρ‖.



Now suppose the following Poincaré inequality holds

m̃ · ‖g −ωρ̃(g)‖ρ̃,2 ≤ Eρ̃,X̃ (g) (PIρ̃,X̃ )

with some constant m̃ ∈ (0,∞) independent of g .
Then using noncommutative Rothaus Lemma
(p.276 in R.Olkiewicz, B. Zegarlinski, JFA 161 (1999) 246-285 )

Entρ̃(g)≤ Entρ̃(g −ωρ̃(g)) + 2‖g −ωρ̃(g)‖ρ̃,2
we arrive at

Entρ̃(g)≤
(
C + D +2

m̃

)
Eρ̃,X̃ (g).

REM : Note that under (LSρ,X ) the corresponding Poincaré
inequality (PIρ,X ) holds. Then under the assumptions of the
DFPL the Poincaré inequality (PIρ̃,X̃ ) holds.



Log-Sobolev on CCR Algebra
R. Carbone, E. Sasso, Hypercontractivity for a quantum
Ornstein-Uhlenbeck semigroup. PTRF 140 (2008), no. 3-4,
505-522
CCR-algebra [A,A∗] = I. Particle Number Operator N = A∗A
State ω(f )≡ 1

Z Tr(e
−βN f )

Dirichlet form - Quatum OU semigroup

E = κ〈δA(f ), δA(f )〉ω, 12 + ν〈δA∗(f ), δA∗(f )〉ω, 12

Thm[R. Carbone, E. Sasso] Log-Sobolev holds.

Our Perturbation Theory provides infinitely many new
examples.

More sophisticated examples in :
• Fabio E.G. Cipriani, Boguslaw Zegarlinski, Perturbation of
Dirichlet forms and coercive inequalities, in preparation.



Poincaré Inequality in Noncommutative Setup
Assume ω is constructed with classical potential of finite range R

Φ ≡ {(ΦY )Y⊂⊂R : ∀Y ,X [ΦY ,ΦX ] = 0; & ΦY = 0 if diam(Y )≥ R}.

Let
EX (f )≡ TrX (γ∗X f γX )

with
γX ≡ γX (Φ)≡ e−

1
2 UX

(
TrX (e−UX )

)− 1
2

where
UX ≡

∑
Y3X

ΦY

and we use a partial trace

TrX f ≡
∫
UX

dνX (v)v∗fv

were we have integration with the Haar measure dνX on the
unitary group UX .



For ω(f )≡ Tr (ρf ), define

〈f ,g〉ω ≡ Tr
(
ρ

1
2 f ∗ρ

1
2g
)

‖f ‖2ω ≡ 〈f , f 〉ω



Basic Properties of L2-Generalised
Conditional Expectation
• EX (I) = I

• EX (f ∗f ) ≥ EX (f )∗EX (f )

• ‖EX (f )‖2ω,2 ≤ ‖f ‖2ω,2

• ‖EX (f )‖2ω◦TrX ,2 ≤ ‖f ‖2ω,2

• 〈f ,EX (g)〉ω = 〈EX (f ),g〉ω

• 〈f ,EX (g)〉ω = 〈EX (f ),EX (g)〉ω◦TrX

◦



Markovian Forms

With E a completely positive unit preserving map, let

L = E − I .

Then

L(f ∗f )− f ∗L(f )− L(f ∗)f =−E (f ∗)f − f ∗E (f ) +E (f ∗f ) + f ∗f

≥ (E (f ∗)− f ∗)(E (f )− f )≥ 0



Dirichlet Forms and Their Properties
Definition:

EX (f )≡ EX ,ω(f )≡−〈LX (f ), f 〉ω ≡ 〈f −EX (f ), f 〉ω

◦



Proposition

:

EX (f ) = EX (f −TrX̃ f )≤ C
∑
j∈X̃
‖f −Trj f ‖2ω

≤ 4C(1+C) |X̃ |
|Y |

∑
i :Y +i3j

EY +i(f )

and so

EX (f )≤ CA
∑
j∈X̃
‖δj(f )‖2ω ≤ 4A2C(1+C) |X̃ |

|Y |
∑

i :Y +i3j
EY +i(f )

◦



Equivalence of Dirichlet Forms for Infinite Systems

For a finite set X ⊂⊂R, let

EX ,ω(f ) =
∑

j
EX+j,ω(f )

Theorem
Then ∀ Y ⊂⊂R ∃ D ∈ (0,∞)

D−1 EY ,ω(f )≤ EX ,ω(f )≤ D EY ,ω(f )

◦



Telescopic Expansion of the L2-Variance
Let (jk)k∈N be a lexicographic order in the lattice R. Set
f0 ≡ f and

fk ≡ Ejk fk−1 = EXjk
fk−1, k ∈N

Then we have the following Telescopic Expansion

〈f , f 〉ω −〈f ,I〉2ω =
n∑

k=1

(
〈fk−1, fk−1〉ωk−1 −〈fk , fk〉ωk

)
+ 〈fn, fn〉ωn −〈f ,I〉2ω

where
ωk(f )≡ ωk−1(TrXjk

f ).



We have

‖fk−1‖2ωk−1 −‖fk‖
2
ωk = Eωk−1(fk−1)

= Eωk−1(fk−1−TrX̃jk
fk−1)

≤ C |X̃jk |
∑

i∈X̃jk

‖fk−1−Tri fk−1‖2ωk−1



Lem.E1 :
For i ∈ Xk

‖δiEk f ‖2ωk = 0

For i ∈R\ X̃k

‖δiEk f ‖2ωk ≤ ‖δi(f )‖2ωk−1 fori ∈R\ X̃ .

For i ∈R\Xk , we have

‖δiEk f ‖2ωk ≤ 3‖(δi f )‖2ωk−1 +
∑

i∈X̃k

aik‖δi(f )‖2ωk−1

with

aik ≡ 3C A |X̃k |
(
‖ρ

1
4
(
δi(γ∗Xk )(γ∗Xk )−1

)
ρ−

1
4‖2 + ‖ρ−

1
4
(
δi(γXk )γ−1

Xk

)
ρ

1
4‖2

)
if 0< dist(i ,Xk)≤ R , and zero otherwise

◦



Smallness of Matrix {a}
Thm.F1 :

‖δl ,j(γX )‖ ≤ 2‖Dl ,j‖ · ‖UX‖ · e‖UX‖

◦



Conclusion: Poincare Inequality for Infinite System
with Finite Range Classical Interaction

Theorem: Let ωΦ be the Gibbs state for a classical potential
Φ. Let

LX ≡
∑
j∈R

EX+j − I

be a symmetric jump type generator.
If the potential Φ is sufficiently small then the Poincare
Inequality holds

‖f −ωΦ(f )‖2,ω ≤ c EX (f )

with a constant c ∈ (0,∞) independent of the operator f .

Reference: B. Zegarlinski, Poincaré Inequality For Infinite
Quantum System with Classical Potential, 2018 manuscript in
progress.


