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In this talk we present some applications to the analysis of PDEs
by introducing suitable metrics on the phase-space.



PROBLEM 1: WELL-POSEDNESS FOR A
DEGENERATE SCHRODINGER EQUATION

We consider a class of degenerate Schrodinger equations corre-
sponding to a Hamiltonian: Hy = ax(x, D)+ V/(x), where ax(x, D)
is a second order degenerate elliptic operator on R” and the po-
tential V' is a real-valued measurable function of quadratic order
at oo.

iOru = Hyu,
{ u0) — . (1)

But in which setting??



PROBLEM 2: ANHARMONIC OSCILLATORS

We consider a class of anharmonic oscillators on R” of the form

Hy = (=0)" + [x*

for k, ¢ integers > 1.



The ¢ =1 context

In the study of the Schrodinger equation
0 = =Dt + V(x)1,

the analysis of energy levels E; is reduced to the corresponding
eigenvalue problem for the operator —A + V/(x).

Herein we will be interested in the rate of growth of
eigenvalues for our anharmonic oscillators.



More generally, our prototype includes:

d2 2k
A2k = _ﬁ + x

In particular, the quartic oscillator
d2

_ 4
A4——ﬁ+x



Despite the intensive research on the quartic oscillator in the last

50 years, the exact solution for the corresponding eigenvalue prob-
lem is unknown. This fact is a further motivation for the research
in approximative and qualitative methods around this problem.



ALUMINIUM TRICHLORIDE: AkLCls — 572 + x*




CYCLOBUTANE: GiHy  — &5 4 x*







General idea

From the Hamiltonian Hy we can introduce a suitable
pseudo-differential calculus on R” by mean of a Hormander metric
on the phase-space, and then make use of this powerful machinery.
In particular, one can define Sobolev spaces adapted to the metric

and therefore to the Hamiltonian.



Weyl-Hormander Calculus, Lars Hormander 1979

Let X € R?", gx positive definite quadratic form on R?". We say
that g is an Hormander metric if:

1. Continuity:

3C>0,gx(X - Y)<C ! = <§)Y‘E:§>ﬂ <C

2. Uncertainty principle: We define g% (T) = supyy .o %,

g<g’.

3. Temperateness: We say that g is temperate if
3C > 0, J € N such that

+1
(50) <t epx -y,



Some definitions

g—weight
We say that a strictly positive function M is a g—admissible
weight if:
1. M is g—continuous: 3C > 0 such that and N € N
1 M)\ -
X-Y)< = — <C.
gx( )_C = <I\/I(Y)) <
2. M is temperate: 3C > 0 and 3N € N such that

M(Y)

+1 N N
(M(X)) < E(1+g9(X — V)V



Classes S(M, g)

For a metric g and a weight M, we shall denoted by S(M, g) the
set of smooth functions a on R?” such that for every integer k
there exists C, > 0, such that if X, Ty, ..., Tx € R?" then

120 (X)(Tq, ..., To)| < CM X)Hg1/2
i=1



Examples of Classes S(M, g)

gl =< £ 5P dP+ < £ > de? X = (x,£) e R?",

is a Hormander's metric.



Examples of Classes S(M, g)

gl =< £ 5P dP+ < £ > de? X = (x,£) e R?",

is a Hormander’'s metric. The function
X =(x,&) »< &>,
is a weight for the Hérmander metric g?° and

oy = S(< &>7,g7).



Metrics adapted to the Hamiltonians: PROBLEM 1

Theorem
Let a, € S?(R" x R") be non-negative (> 0). We define the
following Riemannian metric on R" x R”,

gx(dx, d€) == m™ (x, E)((€) + [x*)ax® + m™(x, §)d€?
where
m(x, &) = a(x,§) + (X),
and the symbol a is given by
a(Xag) = 32(X7€) + ’X‘2 .

Then g is a Hormander metric.



Definition

Let C;°(IR") be the class of C* functions over R” with bounded
derivatives of any order. We denote by Diff 3 (R") the class of
differential operators of order 2 on R"” with C;°(R") coefficients
and non-negative symbol.

Lemma B Let ax(x, D) € Diff 2 (R"). We consider a(x, &) =
az(x, &) + |x|? and the corresponding Hérmander metric g and the
weight m as in (2) and (3), respectively. Then a, m € S(m, g).



Some applications to well-posedness for degenerate
Schrodinger equations

We are now going to establish some implications in the L? and
Sobolev spaces H(M, g) context. Indeed, the construction of the
metric g and the class S(m, g) adapted to our degenerate har-

monic oscillators has other consequences, regarding the well-posedness
for degenerate Schrodinger equations in the L2-setting. We intro-
duce the following appropriate class of potentials on R”".

Definition
We will denote by P>(R"), the class of Borel functions
V : R” — R satisying the following conditions:

(V1) There exist C, C; > 0 such that |V(x)| < C|x|?, for a.e. |x| > C;
(V2) There exists C; > 0 such that V(x) > —(,, for a.e. x € R".



Theorem

Let ax(x, D) € Diff%(R") be formally self-adjoint, V € P»(R"), g
the Hormander metric and m the g-weight associated to ax(x, D)
as in (2). Then, —iHy is the infinitesimal generator of a
Co—group of unitary operators. Consequently, the following

Cauchy problem for the corresponding degenerate Schrodinger
equation is well-posed on L?:

iy = Hyu,
{ u0) —f. ®)



Problem 2: The metric associated to our anharmonic
oscillators

We associate to the Hamiltonian Hy/, the following metric

dx? de?
g = . ST
(1+ [x|2k + €2k (14 |x|2k + [€]26)%




Corollary

Let1 <r<oo, k,l > 1, where k, ¢ are integers > 1.

1. Ifu> (I;J,:fzn, then

(=0)"+ [ + 1) € S (L*(R).

2. Letv>nandac S(\;¥,g). Then a(x,D) is trace class and

Tr(a(x, D)) = / / a(x, €)dxde. (7)

R R"



RATE OF GROWTH OF EIGENVALUES

We now derive an immediate consequence on the rate of growth
of the eigenvalues of the anharmonic oscillators.

Summarising we have obtained the following: Let k, ¢ be integers
>1landr > (k;(?". Then, for every L € N there exists Lg € N
such that

LiT < N((=A)" + [x[2K)), for j > Lo. (8)

Thus, the eigenvalues \;((—A)* + |x|2¢)) have a growth of order

at least
.1 .
Jr, as j — oo. (9)
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