

Some harmonic analysis in a general Gaussian setting – Lecture 1

Valentina Casarino

Università degli Studi di Padova

Summer School “Modern Problems in PDEs and Applications”

23 August – 2 September 2023

Ghent Analysis & PDE Center, Ghent University

800
1222-2022
ANNI

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Plan of the lectures

1. First lecture. Some motivations; symmetric vs nonsymmetric case; spectrum and Mehler kernel for the symmetric O.U. semigroup.
2. Second lecture. Spectrum and Mehler kernel for the nonsymmetric O.U. semigroup; orthogonality of eigenspaces.
3. Third lecture. Discussion of a problem from harmonic analysis: functional calculus in the nonsymmetric context.

FIRST LECTURE

Some history

In 1997 P. Sjögren published a survey¹ describing the state of art about the study of some operators (like maximal operators, Riesz transforms, multiplier operators,...) in \mathbb{R}^n , where Lebesgue measure was replaced by a suitable normalized Gaussian measure $d\gamma$.

Some years later, a group formed by J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren and J. L. Torrea carried out this analysis, by studying in a series of papers (the weak type (1,1)) of some operators in \mathbb{R}^n endowed with $d\gamma$.²

¹ P. Sjögren, Operators Associated with the Hermite Semigroup - A Survey, *Journal of Fourier Analysis and Applications* (1997)

² –J. García-Cuerva, G. Mauceri, P. Sjögren and J. Torrea, Higher-order Riesz operators for the Ornstein-Uhlenbeck semigroup, *Potential Anal.* (1999)
–J. García-Cuerva, G. Mauceri, P. Sjögren and J. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup, *J. Anal. Math.* (1999)

–J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren and J. L. Torrea, Maximal Operators for the Holomorphic Ornstein– Uhlenbeck Semigroup, *J. London Math.* (2003)
–J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren and J. L. Torrea, Functional calculus for the Ornstein–Uhlenbeck operator, *J. Funct. Anal.* (2001)

Their setting was **symmetric**.

To be more precise, one can associate with $d\gamma$ in a rather natural way a Laplacian L , called the Ornstein–Uhlenbeck operator, which turns out to be the infinitesimal generator of a (heat) semigroup. In the context studied by García-Cuerva, Mauceri, Meda, Sjögren and Torrea **the Laplacian was self-adjoint** and any operator in the semigroup generated by L was self-adjoint as well.

In the last years, in collaboration with P. Ciatti and P. Sjögren we generalized the results, previously obtained by García-Cuerva, Mauceri, Meda, Sjögren and Torrea, to a **nonsymmetric** context.

We will briefly explain what we mean when we talk about a **nonsymmetric** context.

First of all, the symmetric Laplacian L , introduced by García-Cuerva, Mauceri, Meda, Sjögren and Torrea, is replaced by a sort of **nonsymmetric** Laplacian.

To define a nonsymmetric Ornstein–Uhlenbeck operator \mathcal{L} we need two matrices:

- Q (covariance) is a real, symmetric and positive definite $N \times N$ matrix;
- B (drift) is a real $N \times N$ matrix whose eigenvalues have negative real parts; here $N \geq 1$.

Then

$$\mathcal{L}f = \mathcal{L}^{Q,B}f = \frac{1}{2} \operatorname{tr}(Q \nabla^2 f) + \langle Bx, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N).$$

Here $Q \nabla^2 f$ denotes the product of Q and the Hessian matrix of f .

As in the symmetric context, it is interesting to study $\mathcal{L}^{Q,B}$ and some related operators in \mathbb{R}^N endowed with a particular Gaussian measure, denoted by $d\gamma_\infty$.

We are going to motivate the choice of this particular measure and also the study of Gaussian harmonic analysis, both in a symmetric and in a nonsymmetric context.

Some motivations

1) Also in the general, nonsymmetric context, $\mathcal{L}^{Q,B}$ is the infinitesimal generator of a semigroup $(\mathcal{H}_t^{Q,B})_{t>0}$, called **Ornstein–Uhlenbeck semigroup**, given for all bounded continuous functions f in \mathbb{R}^N , and all $t > 0$ by the Kolmogorov formula

$$\mathcal{H}_t^{Q,B} f(x) = \int f(e^{tB}x - y) d\gamma_t(y), \quad x \in \mathbb{R}^N.$$

$d\gamma_t$ are normalized Gaussian measures, $t \in (0, +\infty]$, which will be defined in the following. For the moment, we may forget $d\gamma_t$ and focus only on $d\gamma_\infty$, given by

$$d\gamma_\infty(x) = (2\pi)^{-\frac{N}{2}} (\det Q_\infty)^{-\frac{1}{2}} e^{-\frac{1}{2} \langle Q_\infty^{-1}x, x \rangle} dx$$

(Here $Q_\infty = \int_0^\infty e^{sB} Q e^{sB^*} ds$ is a positive definite and symmetric matrix)

$$d\gamma_\infty(x) = (2\pi)^{-\frac{N}{2}} (\det Q_\infty)^{-\frac{1}{2}} e^{-\frac{1}{2}\langle Q_\infty^{-1}x, x\rangle} dx$$

It is possible to prove that $d\gamma_\infty$ is the **unique** invariant (probability) measure of the Ornstein–Uhlenbeck semigroup, that is,

$$\int \mathcal{H}_t^{Q,B} f(x) d\gamma_\infty(x) = \int f(x) d\gamma_\infty(x) \quad \forall t > 0.$$

2) The Ornstein–Uhlenbeck operator $\mathcal{L}^{Q,B}$ and the Ornstein–Uhlenbeck semigroup $\mathcal{H}_t^{Q,B}$ play the role of the Laplacian and of the heat semigroup in \mathbb{R}^N if the Lebesgue measure dx is replaced by $d\gamma_\infty$.

3) The relevance of the semigroup $(\mathcal{H}_t^{Q,B})_{t>0}$ is also due to the fact that it is associated to the Ornstein-Uhlenbeck process describing the random motion of a particle subject to friction.

Leonard Ornstein (1880-1941) and George Uhlenbeck (1900-1988)

4) Since Ornstein and Uhlenbeck's seminal work in the '30, the O.U. theory has been widely applied in quantum physics, stochastic analysis, control theory, partial differential equations.

Example. *"Evolution equations driven by Ornstein–Uhlenbeck operators are the Kolmogorov equations of linear stochastic ODEs, and they are one of the few examples of multidimensional linear parabolic equations for which a resolvent kernel is explicitly known."³*

³ Lunardi, Metafune, Pallara, The Ornstein–Uhlenbeck semigroup in finite dimension, Phil. Trans. R. Soc. A (2020).

We close this little digression and come back to the main point, the study of $\mathcal{L}^{Q,B}$ and some related operators.

We distinguish between two cases.

– The nonsymmetric case

We assume:

Q real, symmetric and positive definite $N \times N$ matrix;

B real $N \times N$ matrix whose eigenvalues have negative real parts.

In this context, in general

$$\mathcal{L}^{Q,B}f = \frac{1}{2} \operatorname{tr}(Q\nabla^2 f) + \langle Bx, \nabla f \rangle$$

has no self-adjoint or normal extension to $L^2(\mathbb{R}^N, d\gamma_\infty)$ and many problems arise.

Example. In order to study multipliers, if L is a **self-adjoint operator** on $L^2(\mathbb{R}^n, d\gamma)$, and if E denotes a spectral resolution of L on \mathbb{R} , one can define $m(L)$ (for many functions m) as

$$m(L) = \int_{\mathbb{R}} m(\lambda) dE(\lambda).$$

But in order to study $m(\mathcal{L}^{Q,B})$ one cannot invoke spectral theorem to define $m(\mathcal{L}^{Q,B})$. Some subtler tools are required.

Notice that self-adjointness and normality may fail also for the semigroup $(\mathcal{H}_t^{Q,B})_{t>0}$, generated by $\mathcal{L}^{Q,B}$.

The nonsymmetric case has been largely studied in PDE's setting

- Chill, Da Prato, Fašangová, Lunardi, Metafune, Pallara, Priola, Prüss, Rhandi, Schnaubelt,...

much less in harmonic analysis.

In the field of harmonic analysis the focus has been on the **classical case**, which was studied, in particular, by J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren and J. L. Torrea.

– The classical (symmetric) case:

$$Q = I \text{ and } B = -I$$

(here $I = I_N$ is the identity matrix of order N)

Recall that the invariant measure $d\gamma_\infty$ is

$$d\gamma_\infty(x) = (2\pi)^{-\frac{N}{2}} (\det Q_\infty)^{-\frac{1}{2}} e^{-\frac{1}{2}\langle Q_\infty^{-1}x, x\rangle} dx.$$

Since in this case

$$Q_\infty = \int_0^\infty e^{sB} Q e^{sB^*} ds = \int_0^\infty e^{-sI} e^{-sI} ds = \frac{1}{2}I,$$

one has

$$d\gamma_\infty(x) = \pi^{-\frac{N}{2}} e^{-\langle x, x\rangle} dx.$$

Recall that $\mathcal{L}^{Q,B}$ is given by

$$\mathcal{L}^{Q,B}f = \frac{1}{2} \operatorname{tr}(Q \nabla^2 f) + \langle Bx, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N),$$

and therefore

$$\mathcal{L}^{I,-I}f = \frac{1}{2}\Delta f - \langle x, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N).$$

For the sake of simplicity, we denote

$$d\gamma = d\gamma_\infty(x) = \pi^{-\frac{N}{2}} e^{-\langle x, x \rangle} dx$$

and

$$Lf = \mathcal{L}^{I,-I}f = \frac{1}{2}\Delta f - \langle x, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N).$$

For a while, we will work with $d\gamma$ and L .

The operator given by

$$L := \mathcal{L}^{I,-I} f = \frac{1}{2} \Delta f - \langle x, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N),$$

is self-adjoint **with respect to** $d\gamma = d\gamma_\infty$; $(\mathcal{H}_t)_{t>0}$ is also **symmetric**.

We will prove this fact.

Lemma 1. The symmetric Ornstein–Uhlenbeck operator $L = \mathcal{L}^{I,-I}$ is self-adjoint **with respect to** $d\gamma$.

Proof. We denote ∂_{x_k} by ∂_k .

We shall compute the adjoint operator ∂_k^* in $L^2(d\gamma)$. Let $f, g \in \mathcal{C}_c^\infty(\mathbb{R}^N)$. Then

$$\begin{aligned}\langle \partial_k f, g \rangle_{L^2(d\gamma)} &= \int_{\mathbb{R}^N} \partial_k f(x) g(x) d\gamma(x) \\ &= -\pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} f(x) \partial_k (g(x) e^{-|x|^2}) dx \\ &= -\pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} f(x) (\partial_k g(x) e^{-|x|^2} - 2x_k g(x) e^{-|x|^2}) dx \\ &= -\pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} f(x) (\partial_k g(x) - 2x_k g(x)) e^{-|x|^2} dx \\ &= \pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} f(x) (2x_k g(x) - \partial_k g(x)) e^{-|x|^2} dx \\ &= \int_{\mathbb{R}^N} f(x) (2x_k - \partial_k) g(x) d\gamma(x).\end{aligned}$$

We have obtained

$$\begin{aligned}
 \langle \partial_k f, g \rangle_{L^2(d\gamma)} &= \int_{\mathbb{R}^N} f(x) (2x_k - \partial_k) g(x) d\gamma(x) \\
 &= \langle f, (2x_k - \partial_k) g \rangle_{L^2(d\gamma)} \\
 &= \langle f, \partial_k^* g \rangle_{L^2(d\gamma)}
 \end{aligned}$$

where

$$\partial_k^* = 2x_k - \partial_k;$$

the first term here is a multiplication operator. We observe that

$$\begin{aligned}
 -\frac{1}{2} \sum_{k=1}^N \partial_k^* \partial_k &= -\frac{1}{2} \sum_{k=1}^N (2x_k - \partial_k) \partial_k \\
 &= \frac{1}{2} \sum_{k=1}^N (\partial_k) \partial_k - \frac{1}{2} \sum_{k=1}^N 2x_k \partial_k \\
 &= \frac{1}{2} \Delta - \langle x, \nabla \rangle = \mathcal{L}^{I,-I},
 \end{aligned}$$

that is, $L = \mathcal{L}^{I,-I}$ is a negative operator.

Moreover, $L = \mathcal{L}^{I,-I}$ is self-adjoint in $L^2(\gamma)$, since

$$\begin{aligned}\langle Lf, g \rangle &= -\frac{1}{2} \sum_{k=1}^N \langle \partial_k^* \partial_k f, g \rangle \\ &= -\frac{1}{2} \sum_{k=1}^N \langle \partial_k f, \partial_k g \rangle = -\frac{1}{2} \sum_{k=1}^N \langle f, \partial_k^* \partial_k g \rangle \\ &= \langle f, Lg \rangle.\end{aligned}$$

Remark. Since, in particular,

$$L = -\frac{1}{2} \sum_{k=1}^N \partial_k^* \partial_k,$$

$L = \mathcal{L}^{I,-I}$ plays the role of the Laplacian in $L^2(d\gamma)$.

In the general case, when

$$\mathcal{L}^{Q,B}f = \frac{1}{2} \operatorname{tr}(Q \nabla^2 f) + \langle Bx, \nabla f \rangle, \quad f \in \mathcal{S}(\mathbb{R}^N),$$

an analogous result does not hold and $\mathcal{L}^{Q,B}$ is in general not self-adjoint.

Example.

In \mathbb{R}^2 consider $Q = I_2$ and

$$B = \begin{pmatrix} -1 & 0 \\ 1 & -3 \end{pmatrix}. \quad (3.1)$$

Exercise 1. Prove that the corresponding O.U. operator is not self-adjoint.

The spectrum of L

We are going to study the spectrum of $\mathcal{L}^{Q,B}$, first of all in the classical case $Q = I$ and $B = -I$.

A little digression about Hermite polynomials is necessary.

Hermite polynomials

Definition. The n^{th} Hermite polynomial H_n is defined by

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}, \quad x \in \mathbb{R}.$$

By differentiation, we see that H_n is of the form

$$H_n(x) = 2^n x^n + \text{lower order terms.}$$

It also holds $H_0(x) \equiv 1$.

Moreover,

$$\frac{d}{dx} H_n(x) = 2n H_{n-1} \quad n \geq 1.$$

The following result is well-known.

Proposition 2. The polynomials H_n , $n \in \mathbb{N}$, form a complete orthogonal system in $L^2(\mathbb{R}, d\gamma_1)$. Moreover,

$$\|H_n\|_{L^2(\mathbb{R}, d\gamma_1)} = 2^{n/2} \sqrt{n!}, \quad n \in \mathbb{N}.$$

(Here $d\gamma_1(x) = \pi^{-\frac{1}{2}} e^{-|x|^2} dx$)

Hermite polynomials exist also in dimensione $N > 1$.

Definition. The Hermite polynomial H_α on \mathbb{R}^N , with $\alpha \in \mathbb{N}^N$ multiindex, is defined by the tensor product

$$H_\alpha = \bigotimes_{j=1}^N H_{\alpha_j},$$

that is, $H_\alpha(x) = \prod_{j=1}^N H_{\alpha_j}(x_j)$, $x = (x_1, \dots, x_N) \in \mathbb{R}^N$.

Then H_α is a polynomial of degree $|\alpha| = \sum_{j=1}^N \alpha_j$.

Proposition 3. $(H_\alpha)_{\alpha \in \mathbb{N}^N}$ is a complete orthogonal system in $L^2(\mathbb{R}^N, d\gamma)$.

We are interested in Hermite polynomials because of the following result.

Theorem 4. The Hermite polynomials are eigenvectors for the classical Ornstein–Uhlenbeck operator L . Moreover, for any multi-index $\alpha \in \mathbb{N}^N$,

$$LH_\alpha = -|\alpha| H_\alpha.$$

Sketch of the proof in dimension 1. In this case, we have to prove that $\mathcal{L}^{I,-I} H_n = -n H_n$ for all $n \in \mathbb{N}$.

Recall that

$$\mathcal{L}^{I,-I} = -\frac{1}{2} \sum_{k=1}^N \partial_k^* \partial_k.$$

If $N = 1$, in particular,

$$\mathcal{L}^{I,-I} f(x) = -\frac{1}{2} \left(\frac{d}{dx} \right)^* \frac{d}{dx} f.$$

Keeping in mind that

$$\frac{d}{dx} H_n(x) = 2n H_{n-1} \quad n \geq 1,$$

we shall compute the operator $(\frac{d}{dx})^*$ on the Hermite polynomials.

We have:

$$\left\langle \left(\frac{d}{dx}\right)^* H_{n-1}, H_j \right\rangle = \left\langle H_{n-1}, \left(\frac{d}{dx}\right) H_j \right\rangle = 2j \left\langle H_{n-1}, H_{j-1} \right\rangle$$

and the last term is $\neq 0$ if and only if $n = j$. In this case one has

$$\begin{aligned} \left\langle \left(\frac{d}{dx}\right)^* H_{n-1}, H_n \right\rangle &= 2n \left\langle H_{n-1}, H_{n-1} \right\rangle = 2n 2^{n-1} (n-1)! \\ &= 2^n n! = \left\langle H_n, H_n \right\rangle. \end{aligned}$$

Thus

$$\left(\frac{d}{dx}\right)^* H_{n-1} = H_n.$$

We may now compute $\mathcal{L}^{I,-I} H_n$. We have

$$\begin{aligned}\mathcal{L}^{I,-I} H_n &= -\frac{1}{2} \left(\frac{d}{dx} \right)^* \frac{d}{dx} H_n = -\frac{1}{2} 2n \left(\frac{d}{dx} \right)^* H_{n-1} \\ &= -n \left(\frac{d}{dx} \right)^* H_{n-1} = -n H_n.\end{aligned}$$

This concludes the proof in dimension 1.

To prove the assertion in dimension $N > 1$, we shall use the following result.

Exercise 2. Taking into account that

$$\frac{\partial}{\partial x_k} H_\alpha(x) = 2\alpha_k H_{\alpha-e_k}(x) \quad n \geq 1,$$

with $\{e_j\}$ canonical basis of vectors in R^N , prove that

$$\left(\frac{\partial}{\partial x_k} \right)^* H_{\alpha-e_k} = H_\alpha.$$

We may now compute $\mathcal{L}^{I,-I} H_\alpha$. Recall that

$$\mathcal{L}^{I,-I} = -\frac{1}{2} \sum_{k=1}^N \partial_k^* \partial_k.$$

Then

$$\begin{aligned} \mathcal{L}^{I,-I} H_\alpha &= -\frac{1}{2} \sum_{k=1}^N \partial_k^* \partial_k H_\alpha = -\frac{1}{2} \sum_{k=1}^N 2\alpha_k \partial_k^* H_{\alpha - e_k} \\ &= -- \sum_{k=1}^N \alpha_k H_\alpha = -|\alpha| H_\alpha. \end{aligned}$$

This concludes the proof in dimension $N > 1$. □

One can prove more. In fact, the $L^2(d\gamma)$ spectrum of $L = \mathcal{L}^{I,-I}$ is

$$\sigma(L) = \{-n : n \in \mathbb{N}\}$$

and the eigenfunctions for arbitrary N are tensor products

$H_\alpha = \bigotimes_{j=1}^N H_{\alpha_j}$, where α is a multiindex, and the corresponding eigenvalue is the length $|\alpha|$.

It may be proved that the $L^2(d\gamma)$ spectrum of L coincides with the $L^p(d\gamma)$ spectrum of L for $p > 1$.

The $L^1(d\gamma)$ spectrum of L is different (it coincides with the left half-plane).

Results are known also for the spectrum of L in $L^p(dx)$ ⁴.

This spectral information may be used to define in a rigorous way the O.U. semigroup in the classical case.

⁴ For results, also holding in the nonsymmetric case, see:

- G. Metafune, L^p -spectrum of Ornstein-Uhlenbeck operators. Ann. Sc. Norm. Sup. Pisa 30, (2001)
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt, L^p -spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal., (2022).

For each nonnegative integer k , we denote by P_k the orthogonal projection of $L^2(d\gamma)$ onto the subspace generated by the Hermite polynomials of degree k .

We define the Ornstein-Uhlenbeck semigroup $(H_t)_{t>0} = (e^{tL})_{t>0}$ in a spectral sense as

$$H_t = \sum_{k=0}^{\infty} e^{-tk} P_k.$$

Its infinitesimal generator is the operator $L = \mathcal{L}^{I,-I}$.

In other words, $H_t = e^{tL}$ is the bounded operator on $L^2(d\gamma)$ which maps

$$H_{\alpha} \quad \mapsto \quad e^{-t|\alpha|} H_{\alpha}.$$

In order to study harmonic analysis, it is a very useful fact that any operator of the semigroup $H_t = e^{tL}$ may be written in integral form, as

$$H_t f(x) = \int_{\mathbb{R}^N} M_t(x, u) f(u) d\gamma(u), \quad t > 0,$$

for some function $M_t \in L^2(d\gamma \times d\gamma)$ known as **Mehler kernel** (since it was found already in 1866 by Mehler⁵).

⁵ F. G. Mehler, Über die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höherer Ordnung, J. reine angew. Math. 66, 161-176, (1866)

The Mehler kernel M_t , that is, the function $M_t \in L^2(d\gamma \times d\gamma)$ such that

$$H_t f(x) = \int_{\mathbb{R}^N} M_t(x, u) f(u) d\gamma(u), \quad (4.1)$$

may be expressed in different ways.

Exercise 3. Prove that

$$M_t(x, u) = \sum_{\alpha \in \mathbb{N}^n} e^{-t|\alpha|} h_\alpha(x) h_\alpha(u),$$

where $h_\alpha = H_\alpha / \|H_\alpha\|_{L^2(d\gamma_\infty)}$.

Anyway, we shall use in particular the closed expression

$$M_t(x, u) = \frac{1}{(1 - e^{-2t})^{\frac{n}{2}}} e^{|x|^2/2} \exp\left(-\frac{1}{2} \frac{|u - e^t x|^2}{1 - e^{-2t}}\right),$$

(integration is meant with respect to Gaussian measure $d\gamma$).

Remark. Integration against M_t is well defined for $f \in L^1(d\gamma)$, so we use (4.1) to extend the domain of $e^{-tL} = H_t$ to $L^1(d\gamma)$, which of course contains $L^p(d\gamma)$ for $1 \leq p \leq \infty$.

In fact, we have the following result.

Proposition 4. Let $1 \leq p \leq \infty$. For all $f \in L^p(d\gamma)$, $t > 0$, $x \in \mathbb{R}^N$, one has

$$H_t f(x) = \int_{\mathbb{R}^N} M_t(x, u) f(u) d\gamma(u),$$

where

$$M_t(x, u) = \frac{1}{(1 - e^{-2t})^{\frac{n}{2}}} e^{|x|^2/2} \exp\left(-\frac{1}{2} \frac{|u - e^t x|^2}{1 - e^{-2t}}\right)$$

Notice that $M_t(x, u)$ is symmetric, that is,

$$M_t(x, u) = M_t(u, x).$$