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Plan of the lectures

1. First lecture. Some motivations; symmetric vs nonsymmetric
case; spectrum and Mehler kernel for the symmetric O.U.
semigroup.

2. Second lecture. Spectrum and Mehler kernel for the
nonsymmetric O.U. semigroup; orthogonality of eigenspaces.

3. Third lecture. Discussion of a problem from harmonic analysis:
functional calculus in the nonsymmetric context.
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FIRST LECTURE

Some history

In 1997 P. Sjégren published a survey! describing the state of art
about the study of some operators (like maximal operators, Riesz
transforms, multiplier operators,...) in R”, where Lebesgue measure
was replaced by a suitable normalized Gaussian measure dvy.

Some years later, a group formed by J. Garcia-Cuerva, G. Mauceri,
S. Meda, P. Sjogren and J. L. Torrea carried out this analysis, by
studying in a series of papers (the weak type (1,1)) of some
operators in R” endowed with d~.2

1P. Sjdgren, Operators Associated with the Hermite Semigroup - A Survey, Journal of Fourier
Analysis and Applications (1997)

—J. Garcia-Cuerva, G. Mauceri, P. Sjdgren and J. Torrea, Higher-order Riesz operators for the
Ornstein-Uhlenbeck semigroup, Potential Anal. (1999)
—J. Garcia-Cuerva, G. Mauceri, P. Sjégren and J. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck
semigroup, J. Anal. Math. (1999)
—J. Garcia-Cuerva, G. Mauceri, S. Meda, P. Sjégren and J. L. Torrea, Maximal Operators for the
Holomorphic Ornstein— Uhlenbeck Semigroup, J. London Math. (2003)
—J. Garcia-Cuerva, G. Mauceri, S. Meda, P. Sjégren and J. L. Torrea, Functional calculus for the
Ornstein—Uhlenbeck operator, J. Funct. Anal. (2001)

L.l
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Their setting was symmetric.

To be more precise, one can associate with d~ in a rather natural
way a Laplacian L, called the Ornstein—Uhlenbeck operator, which
turns out to be the infinitesimal generator of a (heat) semigroup.
In the context studied by Garcia-Cuerva, Mauceri, Meda, Sjogren
and Torrea the Laplacian was self-adjoint and any operator in the
semigroup generated by L was self-adjoint as well.

In the last years, in collaboration with P. Ciatti and P. Sjogren we
generalized the results, previously obtained by Garcia-Cuerva,
Mauceri, Meda, Sjégren and Torrea, to a nonsymmetric context.

We will briefly explain what we mean when we talk about a
nonsymmetric context.

First of all, the symmetric Laplacian L, introduced by
Garcia-Cuerva, Mauceri, Meda, Sjogren and Torrea, is replaced by a
sort of nonsymmetric Laplacian.
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To define a nonsymmetric Ornstein—Uhlenbeck operator £ we need
two matrices:
® Q (covariance) is a real, symmetric and positive definite
N x N matrix;
e B (drift) is a real N x N matrix whose eigenvalues have
negative real parts; here N > 1.

Then

OF

Lf = L£9Bf = 1tr (QV2f) +(Bx,Vf),  feSERM).

Here QV?2f denotes the product of Q and the Hessian matrix of f.

L‘/ 1
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As in the symmetric context, it is interesting to study £98 and
some related operators in RN endowed with a particular Gaussian
measure, denoted by dvq.

We are going to motivate the choice of this particular measure and
also the study of Gaussian harmonic analysis, both in a symmetric
and in a nonsymmetric context.
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Some motivations
1) Also in the general, nonsymmetric context, L2 is the
infinitesimal generator of a semigroup (H?’B)t>0, called
Ornstein—Uhlenbeck semigroup, given for all bounded continuous

functions f in RN, and all t > 0 by the Kolmogorov formula

HEBF(x) = (f(eBx —y)dv(y), xeRN.

dv: are normalized Gaussian measures, t € (0, +00], which will be
defined in the following. For the moment, we may forget dv; and
focus only on d~v, given by

N
2

Ao (x) = (27) 72 (det Q) "2 e~ (% X dx

(Here Qy = SSO esBQeB*ds is a positive definite and symmetric
matrix)

1
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N
2

Ao (x) = (27) 72 (det Q) "2 e~ (% X dx

It is possible to prove that dvy, is the unique invariant (probability)
measure of the Ornstein—Uhlenbeck semigroup, that is,

(HIBF(x)dyoo(x) = S F(x)dyn(x)  VE>0.

2)The Ornstein—Uhlenbeck operator £L28 and the
Ornstein—Uhlenbeck semigroup H?’B play the role of the Laplacian
and of the heat semigroup in R" if the Lebesgue measure dx is
replaced by dv..
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3) The relevance of the semigroup (H?’B)t>0 is also due to the

fact that it is associated to the Ornstein-Uhlenbeck process
describing the random motion of a particle subject to friction.

Leonard Ornstein (1880-1941) and George Uhlenbeck (1900-1988)
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4) Since Ornstein and Uhlenbeck’s seminal work in the '30, the
0O.U. theory has been widely applied in quantum physics, stochastic
analysis, control theory, partial differential equations.

Example. “Evolution equations driven by Ornstein—Uhlenbeck
operators are the Kolmogorov equations of linear stochastic ODEs,
and they are one of the few examples of multidimensional linear
parabolic equations for which a resolvent kernel is explicitly
known."3

3 Lunardi, Metafune, Pallara, The Ornstein—Uhlenbeck semigroup in finite dimension, Phil. Trans.

R. Soc. A (2020).
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We close this little digression and come back to the main point, the
study of LB and some related operators.
We distinguish between two cases.

— The nonsymmetric case

We assume:
Q real, symmetric and positive definite N x N matrix;

B real N x N matrix whose eigenvalues have negative real parts.

In this context, in general
1
LOBf = 5 tr (QV?f) + (Bx, Vf)

has no self-adjoint or normal extension to L?(RM, dvy) and many
problems arise.
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Example. In order to study multipliers, if L is a self-adjoint
operator on L?(R", dv), and if E denotes a spectral resolution of L
on R, one can define m(L) (for many functions m) as

m(L) = JR m(X\) dE(N).

But in order to study m(£?B) one cannot invoke spectral theorem
to define m(L%B). Some subtler tools are required.

Notice that self-adjointness and normality may fail also for the
semigroup <7-th’8) K generated by £L9B,
t>
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The nonsymmetric case has been largely studied in PDE's setting
° Chill, Da Prato, Fasangova, Lunardi, Metafune, Pallara, Priola, Priiss, Rhandi, Schnaubelt,...

much less in harmonic analysis.

In the field of harmonic analysis the focus has been on the classical
case, which was studied, in particular, by J. Garcia-Cuerva, G.
Mauceri, S. Meda, P. Sjégren and J. L. Torrea.
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— The classical (symmetric) case:
Q=1/and B=—I
(here | = Iy is the identity matrix of order N)

Recall that the invariant measure dv, is

_N
2

dre(x) = (27) 2 (det Q) 2™ 2¢Q0 " dix.

Since in this case

0

*© s 1
OO—J e QeB ds—J e e ds = =1,
0 0 2

one has

dVoo(x) = 72 e dx.
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Recall that £98 is given by
LYBf — %tr (QV3f) +(Bx, Vf), f e S(RV),

and therefore

L£h1f = LAf —(x, V), f e S(RV).

For the sake of simplicity, we denote
dy = dvyo(x) = T2 e 0 dx

and
Lf =l = %Af—<x,Vf>, f e S(RN).

For a while, we will work with d~ and L.

oF L

1 1
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The operator given by

‘ L:= LM = LAF — (x,VF), f e S(RV),

is self-adjoint with respect to dvy = dvq; (Ht)t>0 is also
symmetric.

We will prove this fact.

Lemma 1. The symmetric Ornstein—Uhlenbeck operator L =
£~ is self-adjoint with respect to d-.

Proof. We denote 0y, by 0.
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We shall compute the adjoint operator J; in L?(d). Let

f,g € C°(RN). Then
(O &)12(0n) = j 04f(x) g(x) dr(x)
’zvf f(x
RN
QJNf

=

) (Okg(x
) (Okg(x

e_lx‘z)dx
e7|X‘2 — 2xx g(x) e*|X|2)dx

— 2x,g(x)) e P dx
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We have obtained
OF o) = | F) (25— 84) () ()

= {f, (2 — 0k) &) 12(a)
= <f’ a;<kg>L2(d7)

where
(9?: = 2Xk — 8k;
the first term here is a multiplication operator. We observe that
1 1
_E Z a:(}k = —5 (2Xk - 5;()(9;(
k=1 k=1
1N N
=5 D100 — = Y. 2xkdk
k=1 k=1
1
= EA — <X, V> = £I7_I,

that is, L = £/"~! is a negative operator.

oF L

1 1
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Moreover, L = £/~ is self-adjoint in L?(¥), since

N
]‘ *
(Lf.g)=— §1<akakf,g>

1Y 1Y
) > (0kf, k) = ) > (F,0fokg)
k=1 k=1

= (f, Lg).
Remark. Since, in particular,

1 N
_ - *
L=-3 ;1: 0%,

L = £~ plays the role of the Laplacian in L2(d~).
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In the general case, when
1
LBf — St (QV?f) + (Bx, Vf), f e S(RN),

an analogous result does not hold and £98 is in general not
self-adjoint.

Example.
In R? consider Q = I, and

B = <_11 _O3> : (3.1)

Exercise 1. Prove that the corresponding O.U. operator is not
self-adjoint.

1
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The spectrum of L

We are going to study the spectrum of L2, first of all in the
classical case Q =/ and B = —1I.

A little digression about Hermite polynomials is necessary.
Hermite polynomials

Definition. The n®" Hermite polynomial H,, is defined by

<2 d” efxz7 x € R.

dx"

By differentiation, we see that H, is of the form

Hp(x) = (—=1)"e

Hn(x) = 2"x" + lower order terms.

It also holds Hp(x) = 1.
Moreover,
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The following result is well-known.

Proposition 2. The polynomials H,, n € N, form a complete
orthogonal system in L2(R, d~;). Moreover,

IHnll 2w dyy) = 272+/nl, neN.

(Here dy1(x) = 2 XP dx)

Hermite polynomials exist also in dimensione N > 1.
Definition. The Hermite polynomial H, on RN, with o € NV
multiindex, is defined by the tensor product

H(l = ®J,'V:1Haj7
that is, Ho(x) = I_IszlHaj(Xj), x = (x1,...,xy) e RN,

Then H, is a polynomial of degree |a| = ZJN:1 a;.

Proposition 3.  (H,),cnwv is @ complete orthogonal system in
L2(RN, dv).
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We are interested in Hermite polynomials because of the following
result.

[ Theorem 4. The Hermite polynomials are eigenvectors for the
classical Ornstein—Uhlenbeck operator L. Moreover, for any multi-
index v € NV,

LH, = —|a| H,.

\ J

Sketch of the proof in dimension 1. In this case, we have to prove
that £'~!'H, = —nH,, for all ne N.
Recall that

)Cl,fl

LY

I\.)\l—l

If N =1, in particular,

1,—1 _ _1 i * d

a .
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Keeping in mind that

d
aHn(X) =2nH,1  n=>1

)

we shall compute the operator (dif()>X< on the Hermite polynomials.
We have:
d " _
<(a) n—1, J> <Hn 1, ( ) J> 2_] <Hn_]_, "IJ_1>

and the last term is # 0 if and only if n = j. In this case one has

d —
()" Ha1, Hu) = 2n(Hn-1, Hy1) = 202" (n = 1)!

— 2"l = (Hp, Hy.

Thus J
* —
(dx) H, 1= H,.
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We may now compute £~'H,. We have

1 d.s d 1 d
(dx) dx _52,1(&

= —n (%)*Hn—l = —nN H,-,.

£ H, =

This concludes the proof in dimension 1.

To prove the assertion in dimension N > 1, we shall use the
following result.

Exercise 2. Taking into account that

0
a—XkHa(x) = 2axHy—e, (X) n=1,

with {e;} canonical basis of vectors in RV, prove that

<aaxk)*H“‘ek — H,.
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We may now compute £/"~'H,. Recall that

T
l77I —
c -5 g
Then
1N
L' H, = 52 FOcHo = — Z 200k O Ho—e
k=1 k=1
N
= Z = —|a|Ha-
This concludes the proof in dimension N > 1. O
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One can prove more. In fact, the L?(d~) spectrum of L = £ is
o(Ll) ={—n:neN}

and the eigenfunctions for arbitrary N are tensor products

H, = ®j’\’:1Haj, where « is a multiindex, and the corresponding
eigenvalue is the length |o].

It may be proved that the L?(d~y) spectrum of L coincides with the
LP(d~) spectrum of L for p > 1.

The L' (dv) spectrum of L is different (it coincides with the left
half-plane).

Results are known also for the spectrum of L in LP(dx)*.

This spectral information may be used to define in a rigorous way
the O.U. semigroup in the classical case.

4 For results, also holding in the nonsymmetric case, see:
— G. Metafune, LP-spectrum of Ornstein-Uhlenbeck operators. Ann. Sc. Norm. Sup. Pisa 30, (2001)
— S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt, LP-spectrum of degenerate hypoelliptic
Ornstein-Uhlenbeck operators. J. Funct. Anal., (2022).
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For each nonnegative integer k, we denote by Py the orthogonal
projection of L?(dv) onto the subspace generated by the Hermite
polynomials of degree k.

We define the Ornstein-Uhlenbeck semigroup (Ht) 0 — (etL) e
in a spectral sense as

Its infinitesimal generator is the operator L = £/,
In other words, H; = et is the bounded operator on L?(d~) which
maps

Hy, — e tlolH,,
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In order to study harmonic analysis, it is a very useful fact that any
operator of the semigroup H; = e’ may be written in integral
form, as

Hif (x) = §pn Me(x, u)f (u)dy(u), t>0,

for some function M; € L?(d~ x d~y) known as Mehler kernel
(since it was found already already in 1866 by Mehler®).

5F. G. Mehler, Uber die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen
Funktionenh héherer Ordnung, J. reine angew. Math. 66, 161-176, (1866).
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The Mehler kernel My, that is, the function M; € L2(d'y X dv) such
that
Hf() = [ Mol 0) () (0), (41)
R
may be expressed in different ways.
Exercise 3. Prove that

M;(x, u) Z et by (x) ha(u),

aeN"
where h, = a/HHaHLZ(d'yw)'
Anyway, we shall use in particular the closed expression
1 2 1|u—efx|?
M S S PN _ P EA
t(Xa U) (1*672t)§ xp 2 1—6_2t )

(integration is meant with respect to Gaussian measure dv).
Remark. Integration against M; is well defined for f € L1(d~), so
we use (4.1) to extend the domain of et = H, to L'(d~), which

of course contains LP(dv) for 1 < p < .
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In fact, we have the following result.

rProposition 4, Let 1 < p < . For all f e LP(dy), t > 0,\
x € RN, one has
() = [ Melx, ) () (),
R
where
1 2 1|u— etx|?
— Ix[2/2 _= L
My (x,u) = (1*67%)%6 exp( 51 o2

Notice that M;(x, u) is symmetric, that is,

My (x, u) = M¢(u, x).
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