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Plan of the lectures
1. First lecture. Some motivations; classical vs nonsymmetric

case; spectrum and Mehler kernel for the classical O.U.
semigroup.

2. Second lecture. Spectrum and Mehler kernel for a general,
nonsymmetric O.U. semigroup; orthogonality of eigenspaces.

3. Third lecture. Discussion of a problem from harmonic analysis:
functional calculus in the nonsymmetric context.
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Second lecture
In the first lecture we have dealt with the spectrum of L “ LI ,´I

and the Mehler kernel of pHtqtą0 in the classical case
( Q “ ´B “ I ).
Now we come back to the general case, that is, we consider an
Ornstein–Uhlenbeck operator LQ,B

LQ,B f “ 1
2 tr

`

Q∇2f
˘

` xBx ,∇f y , f P SpRNq,

where
‚ Q (covariance) is a real, symmetric and positive definite
N ˆ N matrix;

‚ B (drift) is a real N ˆ N matrix whose eigenvalues have
negative real parts; here N ě 1.

Here Q∇2f denotes the product of Q and the Hessian matrix of f .
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Just a remark. Between the classical case and the general one there
are some intermediate cases. For instance,

‚ one could consider the case when Q “ I and B “ ´λI , for
some λ ą 0;

‚ one could consider the symmetric framework (that is, the case
when any operator in pHtqtą0 is symmetric in L2pdγ8). This
is true if and only if QB˚ “ BQ 1. In the symmetric
framework there are sparse results.

‚ Mauceri-Noselli2 and then C.-Ciatti-Sjögren3 studied the
normal framework (where any operator in pHtqtą0 is normal).

Anyway, these intermediate cases are often troublesome, so we
might as well study the general case directly.

1A. Chojnowska-Michalik – B. Goldys, Symmetric Ornstein-Uhlenbeck semigroups and their
generators, Probab. Theory Related Fields (2002)

2 – G. Mauceri and L. Noselli, The maximal operator associated to a non symmetric
Ornstein-Uhlenbeck semigroup, J. Fourier Anal. Appl. (2009)
–Riesz transforms for a non symmetric Ornstein-Uhlenbeck semigroup, Semigroup Forum (2008)

3C.-Ciatti-Sjögren, The maximal operator of a normal Ornstein–Uhlenbeck semigroup is of weak
type p1, 1q, Annali SNS Pisa, (2020)
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– The nonsymmetric case

In the general case we define the O. U. semigroup by means of an
integral formula, as follows.

Definition. HQ,B
t is defined for all bounded continuous functions f

on RN and all t ą 0 by the Kolmogorov formula4

HQ,B
t f pxq “

ş

f petBx ´ yqdγtpyq , x P RN .

4A. N. Kolmogorov, Zufällige bewegungen, Ann. of Math. (1934).
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HQ,B
t f pxq “

ş

f petBx ´ yqdγtpyq , x P RN .

It is easy to check that
‚ the semigroup law holds for HQ,B

t (usually, we check it on the
Schwartz space, and then we deduce that it holds also in Lp

spaces with respect to Lebesgue or Gaussian measures);
‚ this semigroup is generated by LQ,B .

We call
`

HQ,B
t

˘

tą0 Ornstein–Uhlenbeck semigroup.

dγt are normalized Gaussian measures, t P p0,`8s, defined as
follows.
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We introduce the covariance matrices

Qt “

ż t

0
esB Q esB

˚

ds , t P p0,`8s,

all symmetric and positive definite. Then we define the family of
normalized Gaussian measures in RN by

dγtpxq “ p2πq´N
2 pdetQtq

´ 1
2 e´ 1

2 xQ´1
t x ,xy dx , t P p0,`8s.

Among all dγt we choose
dγ8pxq “ p2πq´N

2 pdetQ8q´ 1
2 e´ 1

2 xQ´1
8 x ,xy dx , which is the unique

invariant (probability) measure of the O.U. semigroup5, that is,
ż

HQ,B
t f pxqdγ8pxq “

ż

f pxqdγ8pxq @t ą 0.

5Prop. 9.3.1 in M. Bertoldi-L. Lorenzi, Analytical Methods for Markov semigroups, 2007, Chapman
& Hall.
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In the nonsymmetric case as well, one can prove that any operator
HQ,B

t is an integral operator, with a kernel
Ktpx , uq P L2pdγ8 ˆ dγ8q, which is called again Mehler kernel
(in fact, Mehler’s computations are valid only in the case
Q “ ´B “ I ).

In other words, for all t ą 0

HQ,B
t f pxq “

ż

RN

KQ,B
t px , uq f puq dγ8puq.

Starting from Kolmogorov’s formula, we may deduce a closed
expression for the Mehler kernel Kt “ KQ,B

t .
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Proposition 4. Let p P r1,8s. For all f P Lppdγ8q, t ą 0,
x P RN , one has

HQ,B
t f pxq “

ż

RN

Ktpx , uqf puqdγ8puq, where

Ktpx , uq “

´detQ8

detQt

¯1{2
exp

´1
2

@

Q´1
8 x , x

D

¯

ˆ exp
”

´
@

pQ´1
t ´ Q´1

8 qpu ´ Dtxq , u ´ Dtx
D

ı

,

with Dtx “ Q8e´tB˚

Q´1
8 x , t P R and x P Rn.

Remark: compare with the classical Mehler kernel (corresponding
to the choice Q “ ´B “ I ), which is given by

Mtpx , uq “
1

p1 ´ e´2tq
n
2
e |x |2{2 exp

ˆ

´
1
2

|u ´ etx |2

1 ´ e´2t

˙

,
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Proof. The proof 6 follows from
‚ Kolmogorov’s formula

HQ,B
t f pxq “

ż

f petBx ´ yqdγtpyq , x P RN ,

‚ definition of dγt

dγtpxq “ p2πq´N
2 pdetQtq

´ 1
2 e´ 1

2 xQ´1
t x ,xy dx ,

‚ some algebraic properties of Qt .

We now focus on the spectrum of LQ,B in Lppdγ8q in the
nonsymmetric setting.

6 V.C., P. Ciatti, P. Sjögren, On the maximal operator of a general Ornstein–Uhlenbeck semigroup,
Math. Z., (2022).
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Recall that in the classical framework (Q “ I and B “ ´I ), the
spectrum of L in Lppdγq, 1 ă p ă 8, consists of the negative
integers and the Hermite polynomials form a complete system of
eigenfunctions in L2pdγq.

In the nonsymmetric framework, the following facts are well-known:
1. the spectrum of LQ,B in Lppγ8q is contained in

tλ P C : Reλ ď 0u, since
`

HQ,B
t

˘

tą0 is a contraction
semigroup in Lppγ8q.

2. 0 is an eigenvalue and every eigenfunction corresponding to
the eigenvalue 0 is constant (trivial, since
LQ,B f “ 1

2 tr
`

Q∇2f
˘

` xBx ,∇f y).
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In addition, Metafune, Pallara and Priola proved the following facts.
3. If λ1, . . . , λr are the (distinct) eigenvalues of B , then

σpLQ,Bq “ t

r
ÿ

j“1

njλj : nj P N Y t0uu

(and this is true for Lppdγ8q for all 1 ă p ă 8q; moreover,
the eigenvalues have finite multiplicity;

4. the spectrum of LQ,B in L1pdγ8q is the left half-plane and all
complex numbers λ with negative real part are eigenvalues;

5. LQ,B admits a complete system of generalized eigenfunctions
(which are polynomials) in L2pdγ8q. 7

7 G.Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in Lp spaces
with respect to invariant measures, J. Funct. Anal. (2002)
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We shall now define a generalized eigenfunction.
Def. A number λ P C is a generalized eigenvalue of L if there
exists a nonzero u P L2pdγ8q such that

pL ´ λI qk u “ 0

for some positive integer k .
Then u is called a generalized eigenfunction, and those u span the
generalized eigenspace corresponding to λ.
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pL ´ λI qk u “ 0
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generalized eigenspace corresponding to λ.

For k “ 1 one has
pL ´ λI q u “ 0,

that is, u is an eigenfunction.

13 / 23



Introduction Mehler kernel The spectrum of LQ,B Orthogonality of eigenspaces

We shall now define a generalized eigenfunction.
Def. A number λ P C is a generalized eigenvalue of L if there
exists a nonzero u P L2pdγ8q such that

pL ´ λI qk u “ 0

for some positive integer k .
Then u is called a generalized eigenfunction, and those u span the
generalized eigenspace corresponding to λ.

13 / 23



Introduction Mehler kernel The spectrum of LQ,B Orthogonality of eigenspaces
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Def. A number λ P C is a generalized eigenvalue of L if there
exists a nonzero u P L2pdγ8q such that

pL ´ λI qk u “ 0

for some positive integer k .
Then u is called a generalized eigenfunction, and those u span the
generalized eigenspace corresponding to λ.

Theorem (Metafune-Pallara-Priola, 2002)
The Ornstein–Uhlenbeck operator L “ LQ,B admits a complete
system of generalized eigenfunctions, that is, the linear span of
the generalized eigenfunctions is dense in L2pdγ8q. Moreover,
the generalized eigenfunctions are polynomials.
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An (incomplete) overview on spectra

Space σpLQ,Bq

Lppdγ8q t
řr

j“1 njλj : nj P Nu 1 ă p ă 8

MPP (2002)

L1pdγ8q tz : Re z ď 0u p “ 1 FMPS (2020)

Metafune (2001),

Lppdxq tz : Re z ď ´ trB{pu 1 ď p ă 8 Fornaro-Metafune-

-Pallara-Schnaubelt (2020)

C0pRNq some partial results Metafune (2001),

Lorenzi (2001)

Above, FMPS=Fornaro-Metafune-Pallara-Schnaubelt, and MPP=Metafune-Pallara-Priola
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Orthogonality of eigenspaces
Obviously, in the classical case the eigenspaces of L “ LI ,´I are
orthogonal, since LI ,´I is self-adjoint.
But in the general case, orthogonality of eigenspaces of LQ,B is in
general not guaranteed. Thus, we shall investigate orthogonality of
eigenspaces of LQ,B . As expected, the spectral properties of B play
a prominent role here.

Motivation
‚ Definition of negative powers of ´L (ñ definition of Riesz

transforms)
‚ Definition of spectral multipliers for the Ornstein–Uhlenbeck

operator. We cannot invoke spectral theorem. One possibility
is to define the restriction of mpLq to each finite-dimensional
generalized eigenspace Eλ. Then, mpLq is determined by these
restrictions, since the Eλ together span L2pγ8q.

15 / 23



Introduction Mehler kernel The spectrum of LQ,B Orthogonality of eigenspaces

We start with a positive result. 8

Proposition 1 (C.-Ciatti-Sjögren) The kernel of LQ,B is orthog-
onal to the other generalized eigenspaces of LQ,B in L2pdγ8q.

Proof Proposition 1

This property will play an essential role in the definition of
multiplier operators mpLQ,Bq.

8C.-Ciatti-Sjögren, On the orthogonality of generalized eigenspaces for the Ornstein–Uhlenbeck
operator, Archiv Math. (2021)
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Anyway, the question of orthogonality between generalized
eigenspaces associated to nonzero eigenvalues is more delicate and
strongly depends on the spectral properties of B .
We distinguish between two cases:

1) B has only one eigenvalue 2) B has at least two
distinct eigenvalues

ó ó

Orthogonality ?? (It depends)
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The case when B has only one eigenvalue

Proposition 2 (C.-Ciatti-Sjögren) If the drift matrix B has only
one eigenvalue λ, then any two generalized eigenfunctions of L
with different eigenvalues are orthogonal with respect to γ8.

Proof
First, one proves the following fact.
Lemma. Let u be a generalized eigenfunction of L which is a
polynomial of degree n ě 0. Then the corresponding eigenvalue is
nλ.

Proof. Let u be a generalized eigenfunction of L, that is,
pL ´ µqk u “ 0 for some µ P C and k P N.
We shall prove that u P Hn (space of Hermite polynomials of
degree n in suitable coordinates).
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By the classical Hermite expansion,

u “
ÿ

j

uj ,

with uj P Hj and convergence in L2pγ8q. This sum is finite. Then

u “
ÿ

j

uj ùñ
ÿ

j

pL ´ µqkuj “ 0

Since Hj is invariant under L, each term pL ´ µqkuj P Hj .
Thus all the terms are 0, that is, for all j

pL ´ µqkuj “ 0.

But this is compatible with the lemma only if there is only one
nonzero term in the decomposition of u. Since u is a polynomial of
degree n, u P Hn.
By the lemma two generalized eigenfunctions with different
eigenvalues are of different degrees and thus belong to different Hn.
The desired orthogonality now follows from that of the Hn.
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The case when B has two distinct eigenvalues

Example 1
Generalized eigenspaces of the Ornstein–Uhlenbeck operator may be
orthogonal even in the case when B has more than one eigenvalue.
In two dimensions, we let

Q “ I2 and B “

ˆ

´1 1
´1 ´1

˙

.

whose eigenvalues are ´1 ˘ i .

Proposition 3 (C.-Ciatti-Sjögren) With N “ 2, let Q and B be
as above. Then each generalized eigenfunction of L is an eigen-
function. Moreover, any two eigenfunctions of L with different
eigenvalues are orthogonal with respect to γ8.
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The case when B has has two distinct eigenvalues

Example 2
We exhibit a class of drift matrices B with two different eigenvalues
(which, in contrast with those in the previous example, are real),
but such that the generalized eigenspaces associated to the
corresponding Ornstein–Uhlenbeck operator L are not orthogonal.
In R2 we consider Q “ I2 and

B “

ˆ

´λ 0
c ´µ

˙

,

with λ, µ ą 0, λ ‰ µ, and c ‰ 0.
We rewrite B as

B “

ˆ

´a ` d 0
c ´a ´ d

˙

,

with a ą d ą 0 and c ‰ 0.
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The invariant measure γ8 is thus proportional to

exp
`

´ pa ´ dq x2
1

˘

exp

ˆ

´
a ` d

c2 ` 4a2 pcx1 ´ 2ax2q
2
˙

dx .

To find some eigenfunctions of L, we consider polynomials in x1, x2
of degree 2. One finds that

v1 “ x2
1 ´

1
2pa ´ dq

,

v2 “ x2
1 ´

2d
c

x1x2 ´
1
2a

,

v3 “ x2
1 ´

4d
c

x1x2 `
4d2

c2 x2
2 ´

c2 ` 4d2

2c2pa ` dq

are eigenfunctions, with eigenvalues ´2pa ´ dq, ´2a and
´2pa ` dq, respectively.
Any two of these polynomials turn out not to be orthogonal with
respect to the invariant measure (straightforward computations).
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Remark. Given B “

ˆ

´λ 0
c ´µ

˙

, it is easily seen that the

eigenspaces corresponding to ´λ,´µ are not orthogonal in R2.
This turns out to be related to the non-orthogonality of the
eigenspaces of L, at least in dim. 2.

Proposition 5 (C.-Ciatti-Sjögren) Let N “ 2 and Q “ I , and
assume that B has two different, real eigenvalues. Then the gen-
eralized eigenspaces of L are orthogonal in L2pdγ8q if and only if
the two eigenspaces of B are orthogonal in R2.

The “if" part easily extends to arbitrary dimension N.

Proposition 6 (C.-Ciatti-Sjögren) Let Q “ I , and assume that
B has N different, real eigenvalues, with mutually orthogonal
eigenspaces. Then the generalized eigenspaces of L are orthogo-
nal in L2pdγ8q.
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