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Plan of the lectures

1. First lecture. Some motivations; classical vs nonsymmetric
case; spectrum and Mehler kernel for the classical O.U.
semigroup.

2. Second lecture. Spectrum and Mehler kernel for a general,
nonsymmetric O.U. semigroup; orthogonality of eigenspaces.

3. Third lecture. Discussion of a problem from harmonic analysis:
functional calculus in the nonsymmetric context.
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SECOND LECTURE

In the first lecture we have dealt with the spectrum of L = £/:~/
and the Mehler kernel of (H;)¢~q in the classical case
(Q=-B=1).

Now we come back to the general case, that is, we consider an
Ornstein—-Uhlenbeck operator £%-B

LOBf = Ltr (QV3f) + (Bx, Vf), f e S(RV),

where

® Q (covariance) is a real, symmetric and positive definite
N x N matrix;

e B (drift) is a real N x N matrix whose eigenvalues have
negative real parts; here N > 1.
Here QV?2f denotes the product of Q and the Hessian matrix of f.
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Just a remark. Between the classical case and the general one there
are some intermediate cases. For instance,

e one could consider the case when @ = [ and B = —\/, for
some \ > 0;

® one could consider the symmetric framework (that is, the case
when any operator in (H;)¢=0 is symmetric in L?(d7y). This
is true if and only if @B* = BQ 1 In the symmetric
framework there are sparse results.

* Mauceri-Noselli? and then C.-Ciatti-Sjogren? studied the
normal framework (where any operator in (H¢)¢~o is normal).

Anyway, these intermediate cases are often troublesome, so we
might as well study the general case directly.

1A. Chojnowska-Michalik — B. Goldys, Symmetric Ornstein-Uhlenbeck semigroups and their
generators, Probab. Theory Related Fields (2002)

— G. Mauceri and L. Noselli, The maximal operator associated to a non symmetric
Ornstein-Uhlenbeck semigroup, J. Fourier Anal. Appl. (2009)
—Riesz transforms for a non symmetric Ornstein-Uhlenbeck semigroup, Semigroup Forum (2008)

C.-Ciatti-Sjogren, The maximal operator of a normal Ornstein—Uhlenbeck semigroup is of weak
type (1,1), Annali SNS Pisa, (2020)

SPACES
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— The nonsymmetric case

In the general case we define the O. U. semigroup by means of an
integral formula, as follows.

Definition. &8 is defined for all bounded continuous functions f
on RN and all t > 0 by the Kolmogorov formula*

HEBF(x) = (f(eBx —y)dv(y), xeRN.

A. N. Kolmogorov, Zufillige bewegungen, Ann. of Math. (1934).
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HEBF(x) = (F(eBx — y)dvi(y), xeRN.

It is easy to check that

® the semigroup law holds for H?’B (usually, we check it on the
Schwartz space, and then we deduce that it holds also in LP
spaces with respect to Lebesgue or Gaussian measures);

* this semigroup is generated by £9B.

We call (’HtQ’B)DO Ornstein—Uhlenbeck semigroup.

dv: are normalized Gaussian measures, t € (0, +o0], defined as
follows.
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We introduce the covariance matrices

t
Qt:f eB Qe ds, t € (0, +o0],
0

all symmetric and positive definite. Then we define the family of
normalized Gaussian measures in RN by

N
2

dre(x) = (27) % (det Q) e 3@V g e (0, +o0].

5Prop. 9.3.1 in M. Bertoldi-L. Lorenzi, Analytical Methods for Markov semigroups, 2007, Chapman
& Hall.
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We introduce the covariance matrices

t
Qt:f eB Qe ds, t € (0, +o0],
0

all symmetric and positive definite. Then we define the family of
normalized Gaussian measures in RN by

N
2

dre(x) = (27) % (det Q) e 3@V g e (0, +o0].

Among all dv; we choose

Ay (x) = (2m) "2 (det Qu) 2~ 2(@% %% dx | which is the unique
invariant (probability) measure of the O.U. semigroup®, that is,

JH?’Bf(x)dfyoo(x) - f f(X)dvs(x)  Vt>0.

5Prop. 9.3.1 in M. Bertoldi-L. Lorenzi, Analytical Methods for Markov semigroups, 2007, Chapman
& Hall.
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In the nonsymmetric case as well, one can prove that any operator
HS’B is an integral operator, with a kernel

K:(x,u) € L?(dys % d7ys), which is called again Mehler kernel
(in fact, Mehler's computations are valid only in the case

Q=-B=1)

In other words, for all t > 0

HOBf(x) = f KB (x, u) F(u) dyeo (u).
RN

Starting from Kolmogorov's formula, we may deduce a closed
expression for the Mehler kernel K; = KtQ’B.
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Proposition 4. Let p € [1,0]. For all f € LP(dvyy), t > 0,‘
x € RN, one has

H?va(x):f Ke(x, u)f(u)dyeo(u),  where
RN

0 - ($2) e (05000

X exp [—<(Q;1 — QN (u—Dx), u— DtX>]7

with Dex = Qe 8" Q1x, teR and x € R".

J

Remark: compare with the classical Mehler kernel (corresponding
to the choice Q = —B = /), which is given by

1 1|u— etx|?
Me(xo ) = — 2 el e <_’““’>

ORTHOGONALITY OF EIGENSPACES
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Proof. The proof © follows from

e Kolmogorov's formula

H?’Bf(x) = Jf(eth —y)dv(y), xe€ RV,

e definition of dv;

_N
2

dye(x) = (27) 2 (det Q) "2~ 2(% X g

® some algebraic properties of Q;.

We now focus on the spectrum of LB in LP(d~vy) in the
nonsymmetric setting.

V.C., P. Ciatti, P. Sjégren, On the maximal operator of a general Ornstein—Uhlenbeck semigroup,
Math. Z., (2022).

ORTHOGONALITY OF EIGENSPACES
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Recall that in the classical framework (Q =/ and B = —/), the
spectrum of L in LP(d7), 1 < p < oo, consists of the negative
integers and the Hermite polynomials form a complete system of
eigenfunctions in L2(d).

In the nonsymmetric framework, the following facts are well-known:

1. the spectrum of £L9B in LP(4) is contained in
{Ae C:Re\ <0}, since (H?’B)t>0 is a contraction
semigroup in LP(~yy).

2. 0 is an eigenvalue and every eigenfunction corresponding to

the eigenvalue 0 is constant (trivial, since
LABF = 1tr (QV2f) +(Bx, VF)).
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In addition, Metafune, Pallara and Priola proved the following facts.

If A1,..., A, are the (distinct) eigenvalues of B, then
o(LYB) = {ZnJ :njeNU{0}}

(and this is true for LP(dv,,) for all 1 < p < c0); moreover,
the eigenvalues have finite multiplicity;

4. the spectrum of LB in [1(d~.) is the left half-plane and all
complex numbers A with negative real part are eigenvalues;

5. £28B admits a complete system of generalized eigenfunctions
(which are polynomials) in L2(d7e). 7

7 . . .
G.Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in LP spaces

with respect to invariant measures, J. Funct. Anal. (2002)
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We shall now define a generalized eigenfunction.
Def. A number X € C is a generalized eigenvalue of L if there
exists a nonzero u € L?(dvyy) such that

(L—=X)ru=0

for some positive integer k.
Then u is called a generalized eigenfunction, and those u span the
generalized eigenspace corresponding to .
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We shall now define a generalized eigenfunction.
Def. A number X € C is a generalized eigenvalue of L if there
exists a nonzero u € L?(dvyy) such that

(L—=X)ru=0

for some positive integer k.
Then u is called a generalized eigenfunction, and those u span the
generalized eigenspace corresponding to .

For k = 1 one has
(L=X)u=0,

that is, u is an eigenfunction.
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We shall now define a generalized eigenfunction.
Def. A number X € C is a generalized eigenvalue of L if there
exists a nonzero u € L?(d7y) such that

(L—=XD)fu=0

for some positive integer k.

Then u is called a generalized eigenfunction, and those u span the

generalized eigenspace corresponding to .

Theorem (Metafune-Pallara-Priola, 2002)

The Ornstein—-Uhlenbeck operator £ = £28 admits a complete
system of generalized eigenfunctions, that is, the linear span of
the generalized eigenfunctions is dense in L?(d7s). Moreover,
the generalized eigenfunctions are polynomials.
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An (incomplete) overview on spectra

Space o(LYB)

Lp(d’}/oo) {Zj=1 nj)\j i nje N} l<p<w
MPP (2002)

LY (dve) {z :Rez <0} p=1 FMPS (2020)

Metafune (2001),

Lp(dX) {Z : ReZ < —tr B/p} 1 < p < Q0O Fornaro-Metafune-
-Pallara-Schnaubelt (2020)
CO(]RN) some partial results Metafune (2001),

Lorenzi (2001)

Above, FMPS=Fornaro-Metafune-Pallara-Schnaubelt, and MPP=Metafune-Pallara-Priola
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ORTHOGONALITY OF EIGENSPACES

Obviously, in the classical case the eigenspaces of L = £/~ are
orthogonal, since £~/ is self-adjoint.

But in the general case, orthogonality of eigenspaces of £%8 is in
general not guaranteed. Thus, we shall investigate orthogonality of
eigenspaces of £L2B. As expected, the spectral properties of B play
a prominent role here.

Motivation

e Definition of negative powers of —L (= definition of Riesz
transforms)

e Definition of spectral multipliers for the Ornstein—Uhlenbeck
operator. We cannot invoke spectral theorem. One possibility
is to define the restriction of m(L) to each finite-dimensional
generalized eigenspace £,. Then, m(L) is determined by these
restrictions, since the £y together span L2(7y).
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We start with a positive result. 8

Proposition 1 (C.-Ciatti-Sjogren) The kernel of L8 is orthog-
onal to the other generalized eigenspaces of £L%B in [%(dvy).

Proof Proposition 1

This property will play an essential role in the definition of
multiplier operators m(L£L?B).

8C.—Ciatti»5j6gren, On the orthogonality of generalized eigenspaces for the Ornstein—Uhlenbeck
operator, Archiv Math. (2021)
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Anyway, the question of orthogonality between generalized
eigenspaces associated to nonzero eigenvalues is more delicate and
strongly depends on the spectral properties of B.

We distinguish between two cases:

1) B has only one eigenvalue 2) B has at least two
distinct eigenvalues
U U
Orthogonality 77 (It depends)

17 /23



INTRODUCTION MEHLER KERNEI I'ue spECTRUM oF L£L@°B ORTHOGONALITY OF EIGENSPACES

00000 000 0000 000@00000

The case when B has only one eigenvalue

Proposition 2 (C.-Ciatti-Sjogren) If the drift matrix B has only
one eigenvalue \, then any two generalized eigenfunctions of L
with different eigenvalues are orthogonal with respect to .

Proof
First, one proves the following fact.
Lemma. Let u be a generalized eigenfunction of £ which is a

polynomial of degree n > 0. Then the corresponding eigenvalue is
nA.

Proof. Let u be a generalized eigenfunction of £, that is,

(L — p)*u =0 for some e C and k € N.

We shall prove that u € H,, (space of Hermite polynomials of
degree n in suitable coordinates).
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By the classical Hermite expansion,
u = Z uj,
J
with uj € H; and convergence in L?(7). This sum is finite. Then

u=2uj = Z(L—,u)kujzo
J J

Since H; is invariant under £, each term (£ — u)ku; € H;.
Thus all the terms are 0, that is, for all j

(£ —p)ku; = 0.

But this is compatible with the lemma only if there is only one
nonzero term in the decomposition of u. Since u is a polynomial of
degree n, ue H,.

By the lemma two generalized eigenfunctions with different
eigenvalues are of different degrees and thus belong to different H,,.
The desired orthogonality now follows from that of the H,,. O]
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The case when B has two distinct eigenvalues

Example 1

Generalized eigenspaces of the Ornstein—Uhlenbeck operator may be
orthogonal even in the case when B has more than one eigenvalue.
In two dimensions, we let

-1 1
Q:IZ and BZ(—]. _1>

whose eigenvalues are —1 + /.

Proposition 3 (C.-Ciatti-Sjogren) With N =2, let Q and B be
as above. Then each generalized eigenfunction of L is an eigen-
function. Moreover, any two eigenfunctions of £ with different
eigenvalues are orthogonal with respect to Yoo.
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The case when B has has two distinct eigenvalues

Example 2

We exhibit a class of drift matrices B with two different eigenvalues
(which, in contrast with those in the previous example, are real),
but such that the generalized eigenspaces associated to the
corresponding Ornstein—Uhlenbeck operator £ are not orthogonal.
In R? we consider @ = k and

B:<—)\ 0>’
c —u

with A\, u > 0, A # pu, and ¢ # 0.
We rewrite B as
—a+d 0
B_< c —a—d>’

with a > d > 0 and ¢ # 0.
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The invariant measure v, is thus proportional to

a+d
c? 4 422

exp(—(a—d)x7) exp < (cx1 — 2ax2)2> dx.

To find some eigenfunctions of £, we consider polynomials in xy, xo
of degree 2. One finds that

1% _X2_71
1= X1 2(a_d)7
5 2d 1
V2:X:|_*7X1X2*2737
4d 4d%? , 2 +4d?

2
V=X ——X1X2+ —5 X — 55—~
BT AR 2 T 02(a 1 d)
are eigenfunctions, with eigenvalues —2(a — d), —2a and
—2(a+ d), respectively.
Any two of these polynomials turn out not to be orthogonal with
respect to the invariant measure (straightforward computations).
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Remark. Given B = (_)\ 0 ) , it is easily seen that the

c —p

eigenspaces corresponding to —\, — are not orthogonal in R2.
This turns out to be related to the non-orthogonality of the
eigenspaces of L, at least in dim. 2.

Proposition 5 (C.-Ciatti-Sjogren) Let N = 2 and Q = /, and
assume that B has two different, real eigenvalues. Then the gen-
eralized eigenspaces of £ are orthogonal in L?(dv) if and only if
the two eigenspaces of B are orthogonal in R?.

The “if" part easily extends to arbitrary dimension N.

Proposition 6 (C.-Ciatti-Sjogren) Let Q = /, and assume that
B has N different, real eigenvalues, with mutually orthogonal

eigenspaces. Then the generalized eigenspaces of L are orthogo-
nal in L?(dvs).
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