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Plan of the lectures

1. First lecture. Some motivations; classical vs nonsymmetric
case; spectrum and Mehler kernel for the classical O.U.
semigroup.

2. Second lecture. Spectrum and Mehler kernel for a general,
nonsymmetric O.U. semigroup; orthogonality of eigenspaces.

3. Third lecture. Discussion of a problem from harmonic analysis:
functional calculus in the nonsymmetric context.
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THIRD LECTURE

Just a remark. Between the classical case and the general one there
are some intermediate cases. For instance,
e one could consider the case @ =/ and B = —\/, A > 0;
® one could consider the symmetric framework (that is, the case
when any operator in (H;)¢=0 is symmetric in L?(d7y). This
is true if and only if QB* = BQ ! (sparse results).
* Mauceri-Noselli? and then C.-Ciatti-Sjdgren? studied the
normal framework (where any operator in (H¢)¢~o is normal).

Anyway, these intermediate cases are often troublesome, so we
might as well study the general case directly.

1A. Chojnowska-Michalik — B. Goldys, Symmetric Ornstein-Uhlenbeck semigroups and their
generators, Probab. Theory Related Fields (2002)

— G. Mauceri and L. Noselli, The maximal operator associated to a non symmetric
Ornstein-Uhlenbeck semigroup, J. Fourier Anal. Appl. (2009)
—Riesz transforms for a non symmetric Ornstein-Uhlenbeck semigroup, Semigroup Forum (2008)

C.-Ciatti-Sjogren, The maximal operator of a normal Ornstein—Uhlenbeck semigroup is of weak
type (1,1), Annali SNS Pisa, (2020)
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Recently, in collaboration with P. Ciatti and P. Sjogren, we started
a program concerning harmonic analysis in a general, nonsymmetric
Ornstein—Uhlenbeck setting. We approached different problems
(maximal operators, Riesz transforms, multipliers, variational
bounds). In this third lecture we shall try to explain our general
strategy, focusing on a particular problem: the multiplier theorem.

For the sake of simplicity, we shall denote £L?8 by L.
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We are interested in m(L). We focus on multipliers of Laplace
transform type. This class of multipliers was introduced some fifty
years ago by E. M. Stein, in the context of the Littlewood—Paley
theory for a sublaplacian on a connected Lie group G.

Def.. A function m of a real variable A > 0 is said to be of Laplace
transform type if

m(\) = )\Saroo o(t)e N dt = — (;roo go(t)%e‘”‘ dt, A>0,

for some ¢ € L*(0, +00). Observe that such a function m can be
extended to an analytic function in the half-plane Re z > 0.
Example: By choosing ¢(t) = const. t~", we obtain m()\) = A\,
with 7 € R\{0}. For other examples see

L4 B.Wrébel, Laplace Type Multipliers for Laguerre Expansions of Hermite Type, Mediterr. J.

Math. (2013).
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If £is a self-adjoint operator on L2(RN dvy,), and if E denotes a
spectral resolution of £ on R, one can define m(L) (for many
functions m) as

m(L) = jR m(\) dE(N).

Problem: to find minimal assumptions on the multiplier m that
will ensure the boundedness of m(£) on LP(RN dvy), both in a
strong and in a weak sense, when p # 2.
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This machinery may be applied, for instance, in the classical case,
that is, when Q@ =/ and B = —/

In fact we recall that in this case the O. U. operator, given by

Lf = IAf —(x,VFf), feSRN), is self-adjont; (H:),_, is also
symmetric.

In the classical context (@ = —B = /) strong boundedness of m(L)
on LP(RN dv,), 1 < p < o, follows from general results by E. M.
Stein:

t>0

® £ M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton

University Press,
Other contributions in the symmetric case:
® . Kemppainen, An [1-estimate for certain spectral multipliers associated with the

Ornstein—Uhlenbeck operator, J. Fourier Anal. Appl. (2016)

L4 —, Admissible decomposition for spectral multipliers on Gaussian LP,Math. Z. (2018)
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Weak type (1,1) for m(L) was proved in

® . Garcia-Cuerva, G. Mauceri, P. Sjogren and J. Torrea, Spectral multipliers for the

Ornstein-Uhlenbeck semigroup, J. Anal. Math. (1999)
The nonsymmetric case
We assume:
Q real, symmetric and positive definite N x N matrix;

B real N x N matrix whose eigenvalues have negative real parts.

In this context, in general £ has no self-adjoint or normal extension
to L2(RN, dvy)) and one cannot invoke spectral theorem to define
m(L).

Self-adjointness and normality may fail also for the semigroup
(H¢),~q, generated by L.
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To define m(L), we follow the method proposed by Mclntosh
(Operators which have an H® functional calculus, Proc. Centre Math. Analysis, ANU, 1986) and
by COW||ng, DOUSt, MC|ntOSh and Yagl ( Banach space operators with a bounded

H® functional calculus, J. Austral. Math. Soc., (1996))

They give a general definition for m(T) when T is a linear operator
acting in a Banach space, one-to-one, whose spectrum lies within
some sector, and which satisfies certain resolvent bounds, and when
m is holomorphic on a larger sector.

We choose H = L3(dvyx) and T = L112(dye)-

In fact, 0 is an eigenvalue of £ and ker £ consists of the constant
functions. This eigenspace is orthogonal to all other generalized
eigenfunctions of £. We denote by L3(d7s) the orthogonal
complement of ker £ in L2(d7).
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Our main contribution concerns the weak type (1,1) of m(L). We
will prove this result with £ replaced by T. The weak type (1,1) of
m(L) then follows, since obviously £ vanishes on ker L.

In this nonsymmetric context strong boundedness of m(L) on
LP(RN, dvy) for 1 < p < oo follows, also for more general
multipliers m, from

® A Carbonaro and O. Dragicevi¢, Bounded holomorphic functional calculus for nonsymmetric

Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2019)
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Theorem (C.-Ciatti-Sjogren, arXiv:2202.01547)
If

® (@ is a real, symmetric and positive definite N x N matrix

e Bisareal N x N matrix whose eigenvalues have negative
real parts,

and if the function m is of Laplace transform type, then the mul-
tiplier operator m(L) associated to a general Ornstein—Uhlenbeck
operator L is of weak type (1,1) with respect to the invariant
measure dvq.

\ J

In other words, we proved the inequality

'yoo{xeRN:m(ﬁ)f(x)>a}<§HfHL1( a>0,

Yoo )

for all functions f € L}(vy), with C = C(N, @, B).
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An idea of the proof. Recall that m satisfies

m(A) = AJ p(t)e ™ dt = _J

0 0

+00 +00

d
o(t) o e ™dt,  A>0,

for some ¢ € L*(0, +00).
Replacing A by £ we obtain

oy +00 itﬁd
m(e) =~ | () e

The integral kernel of H; is the Mehler kernel K¢(x, u), that is, for
each f € LP(RV) and all t > 0

H.f(x) = JKt(x, u) f(u) dyeo(u).

This makes it plausible that the off-diagonal kernel of m(L) is
+00

Mo (x,u) = —L o(t) % Ke(x, u) dt.
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In the proof, first of all we verify this heuristic deduction of the
kernel of m(L), proving that the off-diagonal kernel of m(L) is

+00
Mo(x,u) = — f o(0) % Ku(x, u) dt,
0 d
where
det Qy\ 1/2 1 _
= (492) 7 (07000

xexp [ (@it = @) (u — Dex), u = D)
for x,u e RN. Here

Dix = Qpe B Qlx, teRand x e RV.
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Then we look for an explicit expression the kernel of m(L), given by

+00 d

Mt == | () G Kilx. e,

When computing % K:(x, u), we find bounds which are very
different for small and large times. Thus, to prove the theorem, we
distinguish between t > 1 and t < 1.

Remark. The same distinction between small and large times is
necessary also in the study of maximal operators, Riesz transforms
and variational bounds.
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t>1
We use a method developed by C.-Ciatti-Sjégren in the study of

0O.U. maximal operator, based on a suitable system of polar
coordinates.

More precisely, any x € RN, x # 0, can be written uniquely as
x = Ds X,

for some s € R and X belonging to some ellipsoidal surface E,
(recall that

Dsx = Que*B* Q3x, seR and x e RV).

Here,
E, = {XGRN: Qi x, x) = Ioga}.

We call X and s the polar coordinates of x.
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We denote by m; (L) the part of the multiplier operator
corresponding to t > 1, with kernel

+00 d

Ma(x, 1) = —L o(t) < Kl u)

By writing x = Ds X and u = D, ii, for some s,0 € R and
X, i € E,, by means of some estimates we prove that

(Mai(x, u)| < 2{@s" X2 exp (—c|x— L7|2).
Lemma (C.-Ciatti-Sjogren, 2020)
Let f > 0 be normalized in L!(7). For a > 2

700{X — Dy%: e3(Q X’X>Jexp (—clx—al") F(u) dyeo(v)

C
< —.
- a} ~ a/loga
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The estimate in this lemma means that for large o one has a

slightly stronger estimate than the classical weak type (1,1) bound.

In fact, by means of the lemma, we obtain for t > 1

Yoo{x € RN my(L) f(x) > a} < a>0,

—
av/log o L (ye0)»
for all functions f € L1(vy), with C = C(n, @, B).

This stronger estimate does not hold for the full multiplier operator.

This phenomenon (a stronger bound for t > 1) was already
observed for the Ornstein—Uhlenbeck maximal operator, for the
first-order Riesz transforms and for variational bounds for the
Ornstein—Uhlenbeck semigroup in previous works by
C.-Ciatti-Sjogren.
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t<1 The multiplier operator corresponding to small values of
t is more involved and requires a further distinction between local
and global regions, according that the Mehler kernel K:(x, u) lives
close to or away from the diagonal {(x,u) e RV x RN : x = u}.
We only recall that the decomposition in local and global parts in a
Gaussian context was used by B. Muckenhoupt in

® B Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243—260.
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The local part is the region where the Mehler kernel Ki(x, u) is
close to the diagonal {(x,u) e RV x RN : x = u}.

The idea is that the local part of m(L) behaves precisely as classical
operators on Lebesgue spaces, since in the local region dv, ~ dx.
This is true for many operators related to Ornstein—Uhlenbeck
operator (like maximal operators, Riesz transforms of any order,
variation operators,...) and was verified by S. Pérez in

® 5. Pérez, The local part and the strong type for operators related to the Gaussian measure, J.

Geom. Anal. 11, 491-507 (2001)

Bearing in mind this idea, we prove the weak type (1,1) by means
of standard Calderén—-Zygmund techniques.
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The remaining, global part is more delicate (and much more
technical). For its kernel, that is, for

1
mo(L) — —L (1) % Kix,u) dt, (€ L2(0, +0))

with (x, u) far from the diagonal, we have a bound

9

1 d d
Imo(L)] <L | Kelxu)| dt < ZUdtm(X, u) dt

where the integrals in the sum are taken between consecutive zeros
f 2K

(0] at Nt

Therefore, we need an estimate of the number of zeros of

% K:(x, u) as t runs through the interval (0, 1].
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Proposition (C.-Ciatti-Sjogren)

For (x,u) € RN x RN, the number of zeros in | = (0,1] of
the function t +— % K:(x, u) is bounded by a positive integer
depending only on N and B.

The proof is quite long and divided in several steps.
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