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Plan of the lectures
1. First lecture. Some motivations; classical vs nonsymmetric

case; spectrum and Mehler kernel for the classical O.U.
semigroup.

2. Second lecture. Spectrum and Mehler kernel for a general,
nonsymmetric O.U. semigroup; orthogonality of eigenspaces.

3. Third lecture. Discussion of a problem from harmonic analysis:
functional calculus in the nonsymmetric context.
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Third lecture

Just a remark. Between the classical case and the general one there
are some intermediate cases. For instance,

‚ one could consider the case Q “ I and B “ ´λI , λ ą 0;
‚ one could consider the symmetric framework (that is, the case

when any operator in pHtqtą0 is symmetric in L2pdγ8). This
is true if and only if QB˚ “ BQ 1 (sparse results).

‚ Mauceri-Noselli2 and then C.-Ciatti-Sjögren3 studied the
normal framework (where any operator in pHtqtą0 is normal).

Anyway, these intermediate cases are often troublesome, so we
might as well study the general case directly.

1A. Chojnowska-Michalik – B. Goldys, Symmetric Ornstein-Uhlenbeck semigroups and their
generators, Probab. Theory Related Fields (2002)

2 – G. Mauceri and L. Noselli, The maximal operator associated to a non symmetric
Ornstein-Uhlenbeck semigroup, J. Fourier Anal. Appl. (2009)
–Riesz transforms for a non symmetric Ornstein-Uhlenbeck semigroup, Semigroup Forum (2008)

3C.-Ciatti-Sjögren, The maximal operator of a normal Ornstein–Uhlenbeck semigroup is of weak
type p1, 1q, Annali SNS Pisa, (2020)
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Recently, in collaboration with P. Ciatti and P. Sjögren, we started
a program concerning harmonic analysis in a general, nonsymmetric
Ornstein–Uhlenbeck setting. We approached different problems
(maximal operators, Riesz transforms, multipliers, variational
bounds). In this third lecture we shall try to explain our general
strategy, focusing on a particular problem: the multiplier theorem.

For the sake of simplicity, we shall denote LQ,B by L.
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We are interested in mpLq. We focus on multipliers of Laplace
transform type. This class of multipliers was introduced some fifty
years ago by E. M. Stein, in the context of the Littlewood–Paley
theory for a sublaplacian on a connected Lie group G .

Def.. A function m of a real variable λ ą 0 is said to be of Laplace
transform type if

mpλq “ λ
ş`8

0 φptqe´tλ dt “ ´
ş`8

0 φptq d
dt e

´tλ dt, λ ą 0,

for some φ P L8p0,`8q. Observe that such a function m can be
extended to an analytic function in the half-plane Re z ą 0.
Example: By choosing φptq “ const. t´iγ , we obtain mpλq “ λiγ ,
with γ P Rzt0u. For other examples see

‚ B.Wróbel, Laplace Type Multipliers for Laguerre Expansions of Hermite Type, Mediterr. J.

Math. (2013).
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If L is a self-adjoint operator on L2pRN , dγ8q, and if E denotes a
spectral resolution of L on R, one can define mpLq (for many
functions m) as

mpLq “

ż

R
mpλq dE pλq.

Problem: to find minimal assumptions on the multiplier m that
will ensure the boundedness of mpLq on LppRN , dγ8q, both in a
strong and in a weak sense, when p ‰ 2.
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This machinery may be applied, for instance, in the classical case,
that is, when Q “ I and B “ ´I
In fact we recall that in this case the O. U. operator, given by
Lf “ 1

2∆f ´ xx ,∇f y , f P SpRNq, is self-adjont;
`

Ht

˘

tą0 is also
symmetric.
In the classical context (Q “ ´B “ I ) strong boundedness of mpLq

on LppRN , dγ8q, 1 ă p ă 8, follows from general results by E. M.
Stein:

‚ E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton

University Press,

Other contributions in the symmetric case:
‚ M. Kemppainen, An L1-estimate for certain spectral multipliers associated with the

Ornstein–Uhlenbeck operator, J. Fourier Anal. Appl. (2016)

‚ —, Admissible decomposition for spectral multipliers on Gaussian Lp ,Math. Z. (2018)

7 / 22



Functional calculus Idea of the proof t large t small

Weak type p1, 1q for mpLq was proved in
‚ J. García-Cuerva, G. Mauceri, P. Sjögren and J. Torrea, Spectral multipliers for the

Ornstein-Uhlenbeck semigroup, J. Anal. Math. (1999)

The nonsymmetric case

We assume:
Q real, symmetric and positive definite N ˆ N matrix;

B real N ˆ N matrix whose eigenvalues have negative real parts.

In this context, in general L has no self-adjoint or normal extension
to L2pRN , dγ8qq and one cannot invoke spectral theorem to define
mpLq.
Self-adjointness and normality may fail also for the semigroup
pHtqtą0, generated by L.
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To define mpLq, we follow the method proposed by McIntosh
(Operators which have an H8 functional calculus, Proc. Centre Math. Analysis, ANU, 1986) and
by Cowling, Doust, McIntosh and Yagi ( Banach space operators with a bounded

H8 functional calculus, J. Austral. Math. Soc., (1996))

They give a general definition for mpT q when T is a linear operator
acting in a Banach space, one-to-one, whose spectrum lies within
some sector, and which satisfies certain resolvent bounds, and when
m is holomorphic on a larger sector.

We choose H “ L2
0pdγ8q and T “ L|L2

0pdγ8q.

In fact, 0 is an eigenvalue of L and kerL consists of the constant
functions. This eigenspace is orthogonal to all other generalized
eigenfunctions of L. We denote by L2

0pdγ8q the orthogonal
complement of kerL in L2pdγ8q.
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Our main contribution concerns the weak type p1, 1q of mpLq. We
will prove this result with L replaced by T . The weak type p1, 1q of
mpLq then follows, since obviously L vanishes on kerL.

In this nonsymmetric context strong boundedness of mpLq on
LppRN , dγ8q for 1 ă p ă 8 follows, also for more general
multipliers m, from

‚ A. Carbonaro and O. Dragičević, Bounded holomorphic functional calculus for nonsymmetric

Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2019)
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Theorem (C.-Ciatti-Sjögren, arXiv:2202.01547)
If

‚ Q is a real, symmetric and positive definite N ˆ N matrix
‚ B is a real N ˆ N matrix whose eigenvalues have negative

real parts,
and if the function m is of Laplace transform type, then the mul-
tiplier operator mpLq associated to a general Ornstein–Uhlenbeck
operator L is of weak type p1, 1q with respect to the invariant
measure dγ8.

In other words, we proved the inequality

γ8tx P RN : mpLq f pxq ą αu ď
C

α
}f }L1pγ8q, α ą 0,

for all functions f P L1pγ8q, with C “ C pN,Q,Bq.
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An idea of the proof. Recall that m satisfies

mpλq “ λ

ż `8

0
φptqe´tλ dt “ ´

ż `8

0
φptq

d

dt
e´tλ dt, λ ą 0,

for some φ P L8p0,`8q.
Replacing λ by L we obtain

mpLq “ ´

ż `8

0
φptq

d

dt
etL dt

The integral kernel of Ht is the Mehler kernel Ktpx , uq, that is, for
each f P LppRNq and all t ą 0

Ht f pxq “

ż

Ktpx , uq f puq dγ8puq .

This makes it plausible that the off-diagonal kernel of mpLq is

Mφpx , uq “ ´

ż `8

0
φptq

d

dt
Ktpx , uq dt.
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In the proof, first of all we verify this heuristic deduction of the
kernel of mpLq, proving that the off-diagonal kernel of mpLq is

Mφpx , uq “ ´

ż `8

0
φptq

d

dt
Ktpx , uq dt,

where

Ktpx , uq “

´detQ8

detQt

¯1{2
exp

´1
2

@

Q´1
8 x , x

D

¯

ˆ exp
”

´
@

pQ´1
t ´ Q´1

8 qpu ´ Dtxq , u ´ Dtx
D

ı

for x , u P RN . Here

Dtx “ Q8e´tB˚

Q´1
8 x , t P R and x P RN .
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Then we look for an explicit expression the kernel of mpLq, given by

Mφpx , uq “ ´

ż `8

0
φptq

d

dt
Ktpx , uq dt,

When computing d
dt Ktpx , uq, we find bounds which are very

different for small and large times. Thus, to prove the theorem, we
distinguish between t ě 1 and t ď 1.

Remark. The same distinction between small and large times is
necessary also in the study of maximal operators, Riesz transforms
and variational bounds.
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t ě 1
We use a method developed by C.-Ciatti-Sjögren in the study of
O.U. maximal operator, based on a suitable system of polar
coordinates.
More precisely, any x P RN , x ‰ 0, can be written uniquely as

x “ Ds x̃ ,

for some s P R and x̃ belonging to some ellipsoidal surface Eα

(recall that

Dsx “ Q8e´sB˚

Q´1
8 x , s P R and x P RNq.

Here,
Eα “

!

x P RN : xQ´1
8 x , xy “ logα

)

.

We call x̃ and s the polar coordinates of x .
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We denote by m1pLq the part of the multiplier operator
corresponding to t ě 1, with kernel

M1px , uq “ ´

ż `8

1
φptq

d

dt
Ktpx , uq dt.

By writing x “ Ds x̃ and u “ Dσ ũ, for some s, σ P R and
x̃ , ũ P Eα, by means of some estimates we prove that

ˇ

ˇM1px , uq
ˇ

ˇ À e
1
2xQ´1

8 x ,xy exp
`

´ c
ˇ

ˇx̃ ´ ũ
ˇ

ˇ

2˘

.

Lemma (C.-Ciatti-Sjögren, 2020)

Let f ě 0 be normalized in L1pγ8q. For α ą 2

γ8

!

x “ Ds x̃ : e
1
2xQ´1

8 x ,xy
ż

exp
`

´ c
ˇ

ˇx̃ ´ ũ
ˇ

ˇ

2˘

f puq dγ8puq

ą α
)

À
C

α
?
logα

.
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The estimate in this lemma means that for large α one has a
slightly stronger estimate than the classical weak type p1, 1q bound.
In fact, by means of the lemma, we obtain for t ě 1

γ8tx P RN : m1pLq f pxq ą αu ď
C

α
?
logα

}f }L1pγ8q, α ą 0,

for all functions f P L1pγ8q, with C “ C pn,Q,Bq.
This stronger estimate does not hold for the full multiplier operator.

This phenomenon (a stronger bound for t ě 1) was already
observed for the Ornstein–Uhlenbeck maximal operator, for the
first-order Riesz transforms and for variational bounds for the
Ornstein–Uhlenbeck semigroup in previous works by
C.-Ciatti-Sjögren.
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t ď 1 The multiplier operator corresponding to small values of
t is more involved and requires a further distinction between local
and global regions, according that the Mehler kernel Ktpx , uq lives
close to or away from the diagonal tpx , uq P RN ˆ RN : x “ uu.
We only recall that the decomposition in local and global parts in a
Gaussian context was used by B. Muckenhoupt in

‚ B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243–260.
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The local part is the region where the Mehler kernel Ktpx , uq is
close to the diagonal tpx , uq P RN ˆ RN : x “ uu.
The idea is that the local part of mpLq behaves precisely as classical
operators on Lebesgue spaces, since in the local region dγ8 » dx .
This is true for many operators related to Ornstein–Uhlenbeck
operator (like maximal operators, Riesz transforms of any order,
variation operators,...) and was verified by S. Pérez in

‚ S. Pérez, The local part and the strong type for operators related to the Gaussian measure, J.

Geom. Anal. 11, 491–507 (2001)

Bearing in mind this idea, we prove the weak type p1, 1q by means
of standard Calderón–Zygmund techniques.
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The remaining, global part is more delicate (and much more
technical). For its kernel, that is, for

m0pLq “ ´

ż 1

0
φptq

d

dt
Ktpx , uq dt, (φ P L8p0,`8q)

with px , uq far from the diagonal, we have a bound

ˇ

ˇm0pLq
ˇ

ˇ ď

ż 1

0
|
d

dt
Ktpx , uq| dt ď

ÿ

ˇ

ˇ

ˇ

ˇ

ż

d

dt
Ktpx , uq dt

ˇ

ˇ

ˇ

ˇ

,

where the integrals in the sum are taken between consecutive zeros
of d

dt Kt .
Therefore, we need an estimate of the number of zeros of
d
dt Ktpx , uq as t runs through the interval p0, 1s.
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Proposition (C.-Ciatti-Sjögren)
For px , uq P RN ˆ RN , the number of zeros in I “ p0, 1s of

the function t ÞÑ d
dt Ktpx , uq is bounded by a positive integer

depending only on N and B .

The proof is quite long and divided in several steps.
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