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Thermoelasticity

• Isotropic thermoelastic system (of type-III) for u (displacement) and θ (temperature)

• Ω ⊂ Rd open and bounded domain with Lipschitz continuous boundary Γ,
QT = Ω× (0, T ),ΣT = Γ× (0, T ).{

ρ∂ttu − µ∆u − (λ+ µ)∇(∇ · u) + γ∇θ = p in QT

ρCs∂tθ − κ∆θ − (k ∗∆θ) + T0γ∇ · ∂tu = h in QT

(⋆)

• Convolution product

(k ∗ θ)(x, t) =
∫ t

0
k(t − s)θ(x, s) ds, (x, t) ∈ QT

with (typically) k(t) = a exp(−bt), a, b > 0.

Biot, M. A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3):240-253, 1956.
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Inverse Source Problems

• ISP 1. Let p(x, t) = g(t)f(x) + p̃(x, t) with g(t) and p̃(x, t) given. Find f(x) from the final
time measurement

u(x, T ) = ξT (x), x ∈ Ω, (M1)

or from the time-average measurement∫ T

0
u(x, t) dt = ξT (x), x ∈ Ω. (M2)

• ISP 2. Let h(x, t) = g(t)f (x) + h̃(x, t) with g(t) and h̃(x, t) given. Find f (x) from the
time-average measurement ∫ T

0
θ(x, t) dt = ψT (x), x ∈ Ω. (M3)

2



Well-posedness forward problem
Let k ∈ C2([0, T ]) be strongly positive definite,

(i) if p ∈ L2
(
(0, T), L2(Ω)

)
, h ∈ L2

(
(0, T), L2(Ω)

)
, U0 ∈ H1

0(Ω), U1 ∈ L2(Ω) and V0 ∈ L2(Ω), then there is a
unique weak solution (u, θ) to (⋆)

u ∈ C
(
[0, T ], L2(Ω)

)
∩ L2 ((0, T),H1

0(Ω)
)
, ∂t u ∈ L2 ((0, T), L2(Ω)

)
,

∂tt u ∈ L2
(
(0, T),H1

0(Ω)
∗
)
,

θ ∈ C
(
[0, T ], L2(Ω)

)
∩ L2 ((0, T),H1

0(Ω)
)
, ∂tθ ∈ L2

(
(0, T),H1

0(Ω)
∗
)

(ii) if p ∈ H1
(
(0, T), L2(Ω)

)
, h ∈ H1

(
(0, T), L2(Ω)

)
, U0 ∈ H2(Ω) ∩ H1

0(Ω), U1 ∈ H1
0(Ω) and V0 ∈ H1

0(Ω) and
the PDEs are satisfied for t = 0, then there is a unique weak solution (u, θ) to (⋆)

u ∈ C
(
[0, T ],H1

0(Ω)
)
, ∂t u ∈ C

(
[0, T ], L2(Ω)

)
∩ L2 ((0, T),H1

0(Ω)
)
,

∂tt u ∈ L2 ((0, T), L2(Ω)
)
,

θ ∈ C
(
[0, T ],H1

0(Ω)
)
, ∂tθ ∈ L2 ((0, T),H1

0(Ω)
)

3



ISP 1
• Final time measurement u(x, T ) = ξT (x)

Theorem (ISP1 with measurement M1)

Under conditions (ii), assume g ∈ C1([0, T ]) fulfills

g(t) > 0 and g′(t) > 0, ∀t ∈ [0, T ]

(or g(t) < 0, g′(t) < 0). Given ξT ∈ L2(Ω), then there exists at most one triple

(u, θ, f) ∈ C
(
[0, T ],H1

0(Ω)
)
× C

(
[0, T ],H1

0(Ω)
)
× L2(Ω)

with ∂tu ∈ C
(
[0, T ], L2(Ω)

)
∩ L2

(
(0, T ),H1

0(Ω)
)

solving (⋆) for which M1 holds.

Van Bockstal, K., Slodička, M. Recovery of a space-dependent vector source in thermoelastic systems. Inverse
Probl. Sci. Eng. 23(6):956–968, 2015

Van Bockstal, K., Marin, L. Recovery of a space-dependent vector source in anisotropic thermoelastic systems.
Comput. Methods Appl. Mech. Eng. 321:269–293, 2017
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ISP 1

• Time-average measurement
∫ T

0 u(x, t) dt = ξT (x).

Theorem (ISP1 with measurement M2)

Under conditions (i), assume that g ∈ C([0, T ]) fulfills g(t) > 0 or g(t) < 0. Given
ξT ∈ L2(Ω), then there exists at most one triple

(u, θ, f) ∈ L2
(
(0, T ),H1

0(Ω)
)
× L2

(
(0, T ),H1

0(Ω)
)
× L2(Ω)

solving (⋆) for which M2 holds.
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ISP 2

• Time-average measurement
∫ T

0 θ(x, t) dt = ψT (x)

Theorem (ISP2 with measurement M3)

Under conditions (ii), assume that g ∈ C1([0, T ]) satisfies either

g(t) > 0 and g′(t) ≥ 0, for all t ∈ [0, T ]

(or g(t) < 0, g′(t) ≤ 0). Given ψ ∈ L2(Ω), then there exists at most one triple

(u, θ, f ) ∈ C
(
[0, T ],H1

0(Ω)
)
× C

(
[0, T ],H1

0(Ω)
)
× L2(Ω)

with ∂tu ∈ C
(
[0, T ], L2(Ω)

)
∩ L2

(
(0, T ),H1

0(Ω)
)

solving (⋆) for which M3 holds.
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Combined problem

Source functions

p(x, t) = gu(t)f u(x) + p̃(x, t)

h(x, t) = gθ(t)fθ(x) + h̃(x, t)

• Extension 1. Find f u and fθ simultaneously from the measurements M1,M3. Here we use
additional assumption that gu(t) = cgθ(t) for some c > 0.

• Extension 2. Find f u and fθ simultaneously from the measurements M2,M3 and the
additional measurement

ψ̃T (x) =

∫ T

0
tθ(x, t) dt. (M4)

Hào, D. N., Thanh, P. X., Lesnic, D., Ivanchov, M. Determination of a source in the heat equation form
integral observations. J. Comput. Appl. Math. 264:82–98, 2014
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Extension 1

• Measurements u(x, T ) = ξT (x) and
∫ T

0 θ(x, t) dt = ψT (x)

Theorem

Under conditions (ii), assume that gu, gθ ∈ C1([0, T ]) satisfy gu = cgθ for some c > 0 and
the monotonicity condition

gθ(t) > 0 and g′
θ(t) > 0, for all t ∈ [0, T ].

Given ξT ∈ L2(Ω) and ψT ∈ L2(Ω), then there exists at most one solution

(u, θ, f u, tθ) ∈ C
(
[0, T ],H1

0(Ω)
)
× C

(
[0, T ],H1

0(Ω)
)
× L2(Ω)× L2(Ω)

to (⋆), with ∂tu ∈ C
(
[0, T ], L2(Ω)

)
∩ L2

(
(0, T ),H1

0(Ω)
)

for which M1 and M3 hold.
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Extension 2

• Measurements
∫ T

0 u(x, t) dt = ξT (x),
∫ T

0 θ(x, t) dt = ψT (x) and
∫ T

0 tθ(x, t) dt = ψ̃T (x)

Theorem

Under the conditions (i), assume that gu, gθ ∈ C(]0, T ]) satisfy gu = cgθ for some c > 0.
Given ξT ∈ L2(Ω) and ψT , ψ̃T ∈ L2(Ω), then there exists at most one solution

(u, θ, f u, fθ) ∈ L2
(
(0, T ),H1

0(Ω)
)
× L2

(
(0, T ),H1

0(Ω)
)
× L2(Ω)× L2(Ω),

to (⋆) for which M2,M3 and M4 hold.
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Numerical reconstruction

• Implementation of ISP2 with measurement M3, ψT (x) =
∫ T

0 θ(x, t) dt

• Goal: find the unknown f (x) in the source term

h(x, t) = g(t)f (x) + r(x, t) with g, r known

under the time-average measurement ψT .

• FEniCSx computing platform (open-source) https://fenicsproject.org/

• Docker image with a Jupyter Lab environment with the latest stable release of DOLFINx
https://github.com/FEniCS/dolfinx#installation
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Numerical reconstruction
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