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The vorticity-stream formulation
ωt +∇⊥ψ · ∇ω =0 in R2 × (0,T )

ψ = (−∆)−1ω in R2 × (0,T ),

ω(·, 0) =ω0 in R2

(V 2)

ψ = (−∆)−1ω =
1

2π

∫
R2

log
1

|x − y |
ω(y , t)dy dy .

The velocity field is (Biot-Savart Law)

u(x , t) = ∇⊥ψ =

∫
R2

k(x − y)ω(y , t) dy , k(z) =
z⊥

2π|z |2

Fact: There exists a unique, globally defined weak solution of (V2)
for any bounded, integrable initial datum. Solution are class C k is
the initial datum is.



• Conservation Lp-norm. Test (V2) against p|ω|p−2ω.

∂t |ω|p + u · ∇|ω|p = 0 =⇒

∂t

∫
R2

|ω|p dx = −
∫
R2

u · ∇|ω|p dx =

∫
R2

(∇ · u)|ω|p dx = 0.

Hence

∥ω(·, t)∥Lp(R2) = ∥ω0∥Lp(R2) for all 1 ≤ p ≤ ∞.

In particular, mass is conserved in time on any component of the
support of ω.



Radial functions are steady States of (V2)

u · ∇ω = 0, u = ∇⊥(−∆)−1ω.

• If W ∈ L∞(R2) ∩ L1(R2) is radial: W = W (|y |) then

Ψ(|y |) = (−∆)−1W (y) = C +

∫ |y |

0

dr

r

∫ r

0
W (s)sds.

ω = W (|y |) is a steady state since ∇⊥Ψ · ∇W = 0.

Radial vortex steady state



• Example: The Kaufmann-Scully vortex.

W0(y) =
8

(1 + |y |2)2
, Ψ0(y) = log

8

(1 + |y |2)2
.

It satisfies
∫
R2 W0 = 8π, −∆yΨ0 = eΨ0 = W .

Wε(x) =
κ

ε2
W0

(
x − ξ

ε

)
, Ψε(x) = κΨ0

(
x − ξ

ε

)
− 4 log ε.

Steady state of (V2) with concentrated vorticity.

Wε(x)⇀ 8πκδ(x − ξ), Ψε(x)⇀ 4κ log
1

|x − ξ|
as ε→ 0.



Solutions with highly concentrated vorticies around more than one
point? Superposition:

Wε =
N∑
j=1

κj
ε2

W0

(
x − ξj
ε

)
, Ψε =

N∑
j=1

κjΨ0

(
x − ξj
ε

)
−4κj log ε.

NOT a steady state. Higher hopes if ξj = ξj(t).

Dynamics of the centers ξj(t) if a solution with that shape exists?



Analysis of solutions with highly concentrated vorticities:
A mathematical subject with a long history: it traces back to
Helmholtz (1858), Kirchhoff (1876), Routh (1881), Lagally (1921)
C.C. Lin (1941). ξ(t) = (ξ1(t), . . . , ξN(t)) centers.

W ξ
ε (x , t; ) =

N∑
j=1

κj

ε2
W0

(
x − ξj (t)

ε

)
, Ψξ

ε(x , t) =
N∑
j=1

κjΨ0

(
x − ξj (t)

ε

)
− 4κj log ε.



W ξ
ε (x , t; ) =

N∑
j=1

κj

ε2
W0

(
x − ξj (t)

ε

)
, Ψξ

ε(x , t) =
N∑
j=1

κj log
8

(ε2 + |x − ξj |2)2
.

Computation of error of approximation:

ε4
[
∂tW

ξ
ε +∇⊥Ψξ

ε · ∇W ξ
ε

]
= −

N∑
j=1

εκj∇W0

(
x − ξj
ε

)
· ξ̇j

+
N∑

i ,j=1

εκiκj∇⊥Ψ0

(
x − ξi
ε

)
· ∇W0

(
x − ξj
ε

)

= −
N∑
j=1

εκj [ξ̇j +∇⊥
x

(∑
i ̸=j

2κi log(ε
2 + |x − ξi |2)]︸ ︷︷ ︸

error reduced if imposed =0 at x=ξj , ε=0

·∇W0

(
x − ξj
ε

)
.



Thus W ξ
ε will be a good approximate solution of (V2) if

(ξ1, . . . , ξN) solves the N-body problem

ξ̇j(t) =
∑
i ̸=j

4κi
(ξi (t)− ξj(t))

⊥

|ξi (t)− ξj(t)|2
, j = 1, . . . ,N. (K )

The Kirchhoff-Routh system (1876-1881).
(K ) is the equation satisfied by formal “vortex solutions”

ω∗(x , t) =
N∑
j=1

8πκjδ(x−ξj(t)), Ψ∗(x , t) =
N∑
j=1

4κj log
1

|x − ξj(t)|

∂tω∗ +∇⊥Ψ∗ · ∇ω∗ =

−
N∑
j=1

κj∇δ(x − ξj) · ξ̇j +
N∑
j=1

4κjκi

N∑
i=1

∇δ(x − ξj) · ∇⊥ log
1

|x − ξi |

=
N∑
j=1

κj∇δ(x − ξj) · [−ξ̇j +
∑
i ̸=j

4κi
(ξi − x)⊥

|x − ξi |2
] = 0 ⇐⇒ (K ) holds.



A Natural question:
The Vortex desingularization problem. Are there (true) smooth
solutions of (V2) with vorticities highly concentrated around a
finite set of points which evolve by a dynamics approximated by
(K )?

• Marchioro and Pulvirenti (1993). Given a colissionless solution
ξ(t) of System (K ) in [0,T ] and an initial condition with supports
contained in balls of radius ε around the points ξj(0), there is a
solution ωε of (V2) with

ωε(x , t)⇀ ω∗(x , t) =
N∑
j=1

8πκjδ(x − ξi (t)),

in the distributional sense.

Their proof provides very little information on the behaviour of the
solution or its velocity field near the vortices as ε becomes smaller



W ξ
ε (x , t) =

N∑
j=1

κj

ε2
W0

(
x − ξj (t)

ε

)
, W0(y) =

8

(1 + |y |2)2

Ψξ
ε(x , t) =

N∑
j=1

κj log
8

(|x − ξj (t)|2 + ε2)2

We prove that for a given colisionless solution of the system

ξ̇j(t) =
∑
i ̸=j

4κi
(ξi (t)− ξj(t))

⊥

|ξi (t)− ξj(t)|2
, j = 1, . . . ,N. (K )

∃ a solution (Ψε, ωε) of (V2) that differs little from (Ψξ
ε,W

ξ
ε ).



Theorem (Dávila, del Pino, Musso, Wei, ARMA 2020)

Let T > 0 and ξ(t) be a colisionless solution of (K) in [0,T ].
There exists a solution (ωε,Ψε) of Problem (V2) such that for all
(x , t) ∈ R2 × [0,T ].

ωε(x , t) =
k∑

j=1

κj
ε2

W0

(
x − ξj
ε

)
+ ϕ(x , t)

Ψε(x , t) =
k∑

j=1

κj log
1

(ε2 + |x − ξj |2)2
+ ψ(x , t)

|ϕ(x , t)| ≤ CT

k∑
j=1

ε2

ε2 + |x − ξj |2
,

|ψ(x , t)|+
k∑

j=1

(ε+ |x − ξj |)|Dxψ(x , t)| ≤ CT ε
2.



In particular:

ωε ⇀

k∑
j=1

8πκjδ(x − ξi )
1

| log ε|
|∇Ψε|2 ⇀

k∑
j=1

8πκ2j δ(x − ξj).

Ingredients in our construction:

• Improvement of the approximation in powers of ε using elliptic
and transport equations.

• Setting up the problem as a coupled system of inner problems
near the singularities and and an outer problem more regular (the
inner-outer gluing scheme)

• A priori estimates to solve by a continuation (degree) argument.



Improving the approximation. Let Ψ0(y) := log 8
(1+|y |2)2 ,

Ψξ
ε =

k∑
j=1

κj log
1

(ε2 + |x − ξj |2)2
=

k∑
j=1

κjΨ0

(
x − ξj
ε

)
− κj log 8ε

4

We want to solve the equation E (ω,Ψ) = 0, where

E (ω,Ψ) := ωt +∇⊥
x Ψ · ∇xω, −∆xΨ = ω.

Near ξj(t) write y =
x−ξj (t)

ε . We look for a solution of the form

Ψ = Ψξ
ε(x , t) + κjψ(y , t), ω =

κj
ε2

W0(y) +
κj
ε2
ϕ(y , t) .



In terms of the y -variable we get the expression

ε4E (ω,Ψ) =ε2ϕt + (−εξ̇ +∇⊥
y Ψ

ξ
ε + κj∇⊥

y ψ) · ∇y (W0 + ϕ),

−∆yψ =ϕ

We have

Ψξ
ε(x , t) = κjΨ0(y) + φ(x) + O(ε2) + constant, y =

x − ξj
ε

,

φ(x) =
∑
i ̸=j

κiΓ(x − ξi ), Γ(z) = 4 log
1

|z |
.

By assumption ξ̇j = ∇⊥
x φ(ξj), hence we get

−εξ̇j +∇⊥
y Ψ

ξ
ε(ξj + εy) = κj∇⊥(Ψ0 +R)

with R = O(ε2|y |2).



ε4E (ω,Ψ) =ε2ϕt + κj∇⊥
y (Ψ0(y) +R+ ψ) · ∇y (W0 + ϕ), ,

−∆yψ =ϕ

R =O(ε2|y |2)

Let f (u) = eu. Since W0 = f (Ψ0) we find

ε4E (ω,Ψ) =ε2ϕt − κj∇⊥
y Ψ0 · ∇(∆ψ + f ′(Ψ0)ψ)

+ κj∇⊥R · ∇W0 + κj∇⊥R∇ϕ+∇⊥ψ∇ϕ.

The 0-error term:

ε4E (W ξ
ε ,Ψ

ξ
ε) = ∇⊥R · ∇W0 = O(ε2|y |−4).

We obtain a reduction in the error by solving the elliptic equation

−∇⊥
y Ψ0 · ∇(∆ψ +W0ψ) +∇⊥R · ∇W0 = 0



Polar coordinates y = ρe iθ

∇⊥Ψ0 · ∇(∆ψ +W0ψ) = E (y) ⇐⇒

1

1 + ρ2
∂

∂θ
(∆ψ +W0ψ) = E (y) = E0(ρ) +

∑
k∈Z

Ek(ρ)e
ikθ.

In order to solve for a bounded solution we need E0 = 0 and the
solvability condition (that sees only modes k = ±1)∫

R2

E (y)yldy = 0, l = 1, 2.

Main term in first error R only has mode two. Then ξ needs to be
adjusted. to solve cubic term. We need to solve transport
equations to get further decay far away.

ε2ϕt +∇Ψ0(y) · ∇ϕ = E (y , t), ϕ(y , 0) = 0.



After sufficiently improving the approximation we solve the
problem by a degree argument, which near each ξj roughly reads as

ε2ϕt −∇⊥Ψ0·∇(∆ψ +W0ψ) + Q(ϕ) + E (y , t) = 0

−∆ψ =ϕ in R2 × [0,T ]

with E = O(ε5ρ−3), Q(ϕ) = ∇⊥ψ∇ϕ, quadratic term.



A basic ingredient: A priori estimates for the linear problem
ε2ϕt −∇⊥Ψ0 · ∇(∆ψ +W0ψ) + E (y , t) = 0

−∆ψ = ϕ in R2 × [0,T ], ϕ(y , 0) = 0,∫
B(0,δε−1)

yϕdy = 0,

∫
R2

ϕdy = 0 =

∫
R2

ϕ
1− 2|y |2

1 + |y |2
W0(y)dy .

Then the following estimate holds:

∥ϕ(·, t)W− 1
2

0 ∥L2 ≲ ε−2| log ε| sup
t∈[0,T ]

∥EW− 1
2

0 ∥L2

This allows a fixed point scheme to work when E = O(ε5ρ−3).



.

ε2ϕt +∇⊥Ψ0 · ∇(∆ψ + f ′(Ψ0)ψ) + E (y , t) = 0, ϕ(y , 0) = 0

We use the test function g = ϕ
W0

− (−∆)−1ϕ, so

W0g = −(∆ψ + f ′(Ψ0)ψ).

and

ε2∂t

∫
R2

ϕg =

∫
R2

W−1
0 ∇⊥Ψ0∇(W 2

0 g
2) + 2

∫
R2

Eg

The second integral is zero for∫
R2

W−1
0 ∇⊥Ψ0∇(W 2

0 g
2) = −

∫
R2

∇ · (W−1
0 ∇⊥Ψ0)∇(W 2

0 g
2)

and since Ψ0 and W0 are radial,

∇ · (W−1
0 ∇⊥Ψ0) = 0.



Thus

ε2∂t

∫
R2

ϕg = 2

∫
R2

Eg ≤ C∥EW− 1
2

0 ∥L2∥∥gW
1
2
0 ∥L2

and integrating,

ε2
∫
R2

ϕg(·, t) ≤ max
t∈(0,T )

C∥E (·, t)W− 1
2

0 ∥L2∥∥g(·, t)W
1
2
0 ∥L2 .

Under the orthogonality conditions assumed on ϕ we can prove
the following Poincare inequality:

γ

| log ε|

∫
R2

ϕ2W−1
0 ≤

∫
R2

ϕg

while we always have∫
R2

g2W0 ≤ C

∫
R2

ϕ2W−1
0 .

From these inequalities the desired estimate follows.



To prove the Poincare inequality

γ

| log ε|

∫
R2

ϕ2W−1
0 ≤

∫
R2

ϕg

we set ϕ̃ = W−1
0 ϕ. Using stereographic projection we see that∫

S2

ϕ̃2 =

∫
R2

ϕ2W−1
0 ,

∫
S2

ϕ̃ =

∫
R2

ϕ = 0.

Besides ∫
R2

ϕg =

∫
S2

ϕ̃(ϕ̃− 2(−∆S2)−1ϕ̃).



Expanding ϕ̃ in the orthonormal basis in L2(S2) of spherical
harmonics we get

ϕ̃ =
∞∑
j=0

ϕ̃jej(z) =
3∑

j=0

ϕ̃jej + ϕ̃⊥,

where −∆S2ej = λjej .

Here λ0 = 0 and e0 is constant, while λ1 = λ2 = λ3 = 2, with
ej(z) = zj . Thus ϕ̃0 = 0 and also ϕ̃3 = 0 because of our
orthogonality condition:∫

R2

ϕ(y , t)dy =

∫
R2

ϕ(y , t)
1− 2|y |2

1 + |y |2
W0(y)dy = 0,



∫
R2

ϕg =
∞∑
j=4

(
1− 2

λj

)
ϕ̃2j ∼ ∥ϕ̃⊥∥2L2(S2)

We also have, j = 2, 3

0 =

∫
BR

ϕyj = cϕ̃j + O(∥ϕ̃⊥∥L2(S2))| logR|
1
2

with R = δε−1 which gives

ϕ̃j = O(∥ϕ̃⊥∥L2(S2))| log ε|
1
2 .

From here it follows that∫
R2

ϕg ≥ γ| log ε|−1

∫
S2

ϕ̃2

as we wanted.



The inner-outer gluing scheme
Let us assume κj = 1. We consider smooth cut-off functions

ηj(x , t) = η0

(
|x − ξj(t)|

δ

)
where η0(s) = 1 if s < 1, η0(s) = 0 for s > 2. We look for a
solution the form

ω(x , t) =ω∗
ε(x , t) + ε−2

k∑
j=1

ηj ϕj

(
x − ξj(t)

ε
, t

)
+ ϕout(x , t)

Ψ(x , t) =Ψ∗
ε(x , t) +

k∑
j=1

ηj ψj

(
x − ξj(t)

ε
, t

)
+ ψout(x , t)



The inner-outer gluing system

(I )


ε2∂tϕj +∇⊥

y Ψ0 · ∇(∆ψj + f ′(Ψ0)ψj)

+∇⊥
y ψ

out · ∇W0 + Qj + Ej = 0 in R2 × [0,T ]

−∆yψj = ϕj ,

for j = 1, . . . , k , coupled with ϕout(·, 0) = 0 and

(O)



∂tϕ
out +∇⊥

x [Ψ∗ + ηjψj + ψout)] · ∇xϕ
out

+ ε−2ϕj∂tηj +∇⊥
x (ηjψj + ψout) · ∇xηj

+ Qout + Eout = 0 in R2 × [0,T ]

∆xψ
out + ϕout + ψj∆xηj + 2∇xηj · ∇ψj = 0.

We solve System (I)-(O) by a continuation (degree) argument
extablishing uniform a priori estimates for small solutions of its
solutions.



For the inner problem we need to solve in R2

ε2ϕt −∇⊥Ψ0·∇(∆ψ + f ′(Ψ0)ψ) + E (y , t) = 0, ϕ(y , 0) = 0

−∆ψ =ϕ in R2 × [0,T ]

with E = O(ε5(1 + |y |)−3).

The central ingredient is the L2-a priori estimate assuming∫
B(0,δε−1)

yϕdy = 0,

∫
R2

ϕdy = 0 =

∫
R2

ϕ
1− 2|y |2

1 + |y |2
W0(y)dy .

which yields

∥ϕ(·, t)W− 1
2

0 ∥L2(R2) ≤ Cε−2| log ε| sup
t∈[0,T ]

∥E (·, t)W− 1
2

0 ∥L2(R2)

These conditions are achieved by adjusting parameters in the basic
ansatz (in particular small remainders in the ξj ’s).



The generalized surface quasigeostrophic equation (SQG)

A model for Earth’s atmosphere, rotating sphere. 0 < s < 1.{
θt +∇⊥ψ · ∇θ = 0 in R2 × (0,T )

ψ = (−∆)−sθ in R2 × (0,T ),



Locally approximating the sphere by the plane z = 0, velocity field
without vertical component is given for a stream function
ψ(x , y , z , t) by v(x , y , t) = (ψy (x , y , 0),−ψx(x , y , 0)). −1 < a < 1

∂2xψ + ∂2yψ + ∂z(z
a∂zψ) = 0, (x , y , z) ∈ R3, z > 0

θ(x , y .t) := za∂zψ(x , y , z)|z=0,

∂tθ + v · ∇θ = 0.

θ = (−∆)sψ, s = 1−a
2



Let 0 < s < 1.{
θt +∇⊥ψ · ∇θ = 0 in R2 × (0,T )

ψ = (−∆)−sθ in R2 × (0,T ),

(−∆)−s f (y) = cs

∫
R2

1

|x − y |2−2s
f (y) dy

• Visually similar to Euler but harder to treat.

• No Yudovich global well-posedness theory for the initial value
problem is available.

• s = 1/2 carries similar features as Euler 3d



Vortex evolution in this case ?

Formal asymptotics for

θ(x , t) =
N∑
j=1

kjδ(x − ξj(t))

leads to the law

ξ̇j(t) =
∑
i ̸=j

κids
(ξi (t)− ξj(t))

⊥

|ξi (t)− ξj(t)|4−2s
, j = 1, . . . ,N. (Ks)



The generalized Kaufmann-Scully vortex solves the fractional
Yamabe equation in R2,

(−∆)sΨ0(y) = Ψ0(y)
2+2s
2−2s = W0(y).

Ψ0(y) =
ds

(1 + |y |2)1−s
, W0(y) =

cs
(1 + |y |2)1+s

.

Theorem ( M. del Pino, Antonio Fernandez )

Let 0.937 ≤ s < 1. For a colisionless solution ξ(t) of the N-body
problem (Ks) in [0,T ] there exists a smooth solution of (SQG)
such that

θ(x , t) =
N∑
j=1

kj
ε2

W0

(
x − ξj
ε

)
+ o(1)



• Special case: A travelling wave solution for a vortex pair: Ao,
Dávila, del Pino, Musso, Wei (TAMS, 2021).

• Previous partial results Cavallaro,Garra and Marchioro (2013)
Geldhauser-Romito (2020). Rosenzweig, (2020). Unlike Euler,
those constructions are conditional to the existence of regular
solutions.

• Similar scheme as in Euler, but technically harder.



Long-time asymptotics. An open problem: Stability of a radially
stationary vortex as t → +∞: If ω(x , t) = W0(x) + ϕ(x , t). For
small ϕ(x , 0), do we have ∥ϕ(·, t)∥ small at all times?
Partial answers:
• Arnold (1998) A form of L2 orbital Stability

• Bedrossian, Coti-Zelati and Vicol (2019) Linear L2-stability

• Ionescu-Jia (2022) Linear, Gevrey spaces.



Multiple-vortex configurations:
Simplest example steady solutions known: Vortex pair
travelling-wave solution ω(x , t) = W (x1 − ct, x2)

−∆xψ(x) = f (ψ(x)− cx2) = W (x)

W (y) = ε−2W0((x1, x2 − d)/ε)− ε−2W0((x1, x2 + d)/ε) + o(1)

• Existence: Norbury (1975)

• Orbital stability results: Burton-Lopes-Nussenweig (2013).



An infinite-time construction. Two vortex pair travelling in
opposite directions glued: there exists a solution or (V2) that
follows this configuration as t → +∞. (J. Dávila, M. del Pino, M.
Musso, Shrish Parmeshwar )

ω(x , t) =
4∑

j=1

(−1)j
1

ε2
W0

(
x − ξj(t)

ε

)
+ o(1).



Nearly singular solutions for Euler in R3?

Open question: Solutions with concentrated vorticities near
curves (filaments): the Vortex filament conjecture (Helmholtz, Da
Rios, Levi-Civita 1858-1906-1931).



We consider the Euler equation in R3 in stream-vorticity
formulation

ωt + (u · ∇)ω − (ω · ∇)u = 0 ,

u = ∇× ψ, ψ(x , t) =
1

4π

∫
R3

x − y

|x − y |2
× ω(y , t)dy .

(V 3)

(ω = ∇× u in R3). We want to find solutions with vorticity
concentrated on a time evolving curve (filament) Γ(t) parametrized
by arclength as γ(s, t) in R3.



Vortex filament dynamics. (After Helmholtz and Kelvin) is a
solution ωε(x , t) of (V) concentrated in a tube radius ε so that

ωε(·, t) ≈ cδΓ(t)tΓ(t) as ε→ 0,

tΓ(t) tangent vector field, δΓ(t) the uniform curve Dirac measure.
1904, Da Rios formal law: Letting τ = t| log ε|, γ(s, τ)
parametrization by arclength of Γ(τ), κ curvature, then

γτ =
c

4π
(γs × γss) =

c

4π
κbΓ(τ) ,

bΓ(τ) binormal vector. This is the binormal flow of curves.

tΓ(τ)

nΓ(τ)

bΓ(τ)

Γ(τ)γ(s, τ)



The vortex filament conjecture:

Let Γ(τ) be a solution curve of the binormal flow defined in [0,T ]
for some c > 0, T > 0. For each ε > 0 there exists a smooth
solution ωε(x , t) to (V3) satisfying in the distributional sense,

ωε(·,
τ

| log ε|
)⇀ cδΓ(τ)tΓ(τ) as ε→ 0, for all 0 ≤ τ ≤ T .

Natural: To look for a solution of the form

ωε(x , τ) =
1

ε2
W0

(z
ε

)
tΓ(τ)+o(1), x = γ(τ, s)+z1bΓ(τ)+z2nΓ(τ),

This statement is only known for special curves associated to
travelling wave solutions: the thin vortex ring first found by
Fraenkel, and recently a helicoidal filament.



Examples: a helix whose horizontal section rotates at a constant
angular speed or a vertically translating circle are solutions of the
bi-normal flow of curves.

Thin Vortex ring travelling-wave solution: Fraenkel, 1970
(Axisymmetric, no swirl, problem reduces to an elliptic equation)



Solutions ω(x , y , z , t) of 3d-Euler with Helicoidal symmetry can be
obtained from a scalar function w(x + iy , t) in the form

ω(x , y , z , t) = w(e−iz(x + iy), t/| log ε|)
[
i(x + iy)

b

]
where w(x , τ) solves{

| log ε|wτ +∇⊥ψ · ∇w = 0

−∇ · (K∇ψ) = w

K (x , y) =
1

κ2 + x2 + y2

(
κ2 + y2 −xy
−xy κ2 + x2

)
Rotating helicoidal solutions:

w(x + iy , τ) = w(e iατ (x + iy)), ψ((x + iy), τ) = ψ(e iατ (x + iy)).

−∇ · (K∇ψ) = f (ψ − α

2
| log ε|(x2 + y2)) = w in R2



Special case f (u) = ε2eu. we prove:

Theorem (Dávila, del Pino, Musso, Wei (2022))

There exists a solution ψε to the equation

−∇ · (K∇ψ) = ε2eψ+λ(x
2+y2) in R2

such that ε2eψ−
α
2
| log ε|(x2+y2) ⇀ 8πδ(x0,0), x0 > 0, for a suitable

choice of α.

α is precisely the number that makes the ”rotating helix”

γ(s, τ) =

e
i( s√

b2+x2
0

−ατ)
(x0 + iy0)

bs√
b2+x20


a solution of the binormal flow



Axisymmetric Euler no-swirl:

ω(r , z , τ) = W (r , z , τ)(−y , x).

After rescaling time t = τ/| log ε|, we get

(AN)


| log ε|rWτ +∇⊥(r2ψ)∇W = 0

−(ψrr +
3
r ψr + ψzz) := −∆5ψ = W

ψr (0, z , τ) = 0.

Interaction of multiple vortex rings:



Leapfrogging Vortex-Rings Helmholtz 1858: predicted the way
two identical, coaxial vortex rings interact.

• The rings travel in the same direction. Due to their mutual
interaction, the rear ring shrinks and accelerates, and the leading
ring widens and decelerates. The rear ring then passes through the
leading ring, with this process of leapfrogging then repeating again
and again.

Aim: To justify rigorously the leapfrogging dynamics for the 3d
axisymmetric Euler flow without swirl.

r1

r2

z



• The leapfrogging motion was justified in the Gross-Pitaievskii
equation iut = ∆u + ε−2(1− |u|2)u = 0 by Jerrard and Smets
(2018)

Incompressible Euler: Outstanding open problem.



Theorem (Dávila, del Pino, Musso, Wei (2023))
Let b(τ) = (b1(τ), . . . , bN(τ)) be a colisionless solution of the system

ḃi (τ) =
∑
j ̸=i

(bi − bj)
⊥

|bi − bj |2
− b1i

r20

(
0
1

)
in (0,T ).

ai (τ) =
(
r0, z0

)
+

1√
| log ε|

bi (τ)

Then there exists a solution Wε of the form W0(y) =
8

(1+|y |2)2

Wε(x , τ) =
N∑
j=1

1

ε2
W0

 (r , z − r−1
0 τ)− aj(τ)

ε
√

a1j (τ)

+ o(1)

r1

r2

z



Restricting ourselves to b1 = −b2 = b = (b1, b2)

ḃ(τ) =
1

2

b(τ)⊥

|b(τ)|2
− b1(τ)

r20

(
0
1

)
=⇒ log |b|+ |b1|2 = constant

r1

r2

z

Wε(x , t) =
2∑

j=1

1

ε2
W0

(
(r , z − r−1

0 τ)− aj(τ)

ε
√
a1(τ)

)
+ o(1)

aj(τ) = (r0, z0) + (−1)j
b(τ)√
| log ε|



Thanks for your attention


