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The vorticity-stream formulation
we + VY - Vw =0 in R? x (0, T)
Y= (—A)"tw in R2 x (0, T), (V2)
w(-,0) =wo  in R?

1
Y =(-0) w= = | log——w(y,t)dydy.
2m Jrz 7 |x =y
The velocity field is (Biot-Savart Law)
L
e t) = V4o = [ K-yl dy k) =57
R2 27T‘Z|2

Fact: There exists a unique, globally defined weak solution of (V2)
for any bounded, integrable initial datum. Solution are class C is
the initial datum is.



e Conservation LP-norm. Test (V2) against p|w|P—2w.
OtlwlP+u-V|wP =0 =

Ot |wpdx:/ u-V|deX:/ (V- u)|w|Pdx =0.
R2 R2 R2

Hence
(s )l oy = lwolliogezy forall 1< p < oo.

In particular, mass is conserved in time on any component of the
support of w.



Radial functions are steady States of (V2)

u-Vo=0, u=V(-A)tw.
o If W € L®(R?) N LY(IR?) is radial: W = W(|y|) then
1 Wl dqr fr
W(lyl) = (~8)W(y) = C+ /O & /O W(s)sds.

w = W(|y|) is a steady state since V-V . VW = 0.

R
Radial vortex steady state



e Example: The Kaufmann-Scully vortex.

8
Wo(y) = W: Wo(y) = log W

It satisfies [, Wo = 87, —A,Wo = e¥o = W.

Y2

W.(x) = E%WO (X — f) , We(x) = kY <X;§> —4loge.

3

Steady state of (V2) with concentrated vorticity.

W.(x) — 8mkd(x — &), W (x) — 4klog as ¢ — 0.

1
x = ¢l




Solutions with highly concentrated vorticies around more than one
point? Superposition:

N
W. = Z%W <_§J) v, —Z’@%(

j=1

> 4rjloge.

NOT a steady state. Higher hopes if & = £(t).

Dynamics of the centers &;(t) if a solution with that shape exists?




Analysis of solutions with highly concentrated vorticities:

A mathematical subject with a long history: it traces back to
Helmholtz (1858), Kirchhoff (1876), Routh (1881), Lagally (1921)
C.C. Lin (1941). &(t) = (&1(¢), ..., En(t)) centers.




N Kj x —&(t) N 8
WE(x, ) = 3 W (f’) WE(, Z“J'Ogm
— J

Jj=1

Computation of error of approximation:

X — .
e* [0 WE + Ve VW] = Za&ﬁ%( 6’)-5,-

+ Z ER;| /@VL\UO < §’> - VW, <><ifj)

ij=1
:_25’@ [§ + Vi Z%,Iogs +x — &[] VW0< §J>'
J=t i#j

error reduced if imposed =0at x=§;, e=0



Thus W will be a good approximate solution of (V2) if
(&1,...,&n) solves the N-body problem

24 gff((tt)))P j=1,...,N. (K)

The Kirchhoff-Routh system (1876-1881).
(K) is the equation satisfied by formal “vortex solutions”

N
t) =Y 8rrd(x—&(t), W 24@ o8 e 5( I
j=1 ’
Orwy + VIV, -V, =
N
1
_ ZHJV(S( - &) fj —1—24/@&, ZV(s x—§&)-V—log x— g
=1 j=1 i=1 !
" —x)*
:Z"UV (x—&)- [~ gj+24 ‘2]—O<:> (K) holds.
j=1 i#]



A Natural question:

The Vortex desingularization problem. Are there (true) smooth
solutions of (V2) with vorticities highly concentrated around a
finite set of points which evolve by a dynamics approximated by
(K)?

e Marchioro and Pulvirenti (1993). Given a colissionless solution
&(t) of System (K) in [0, T] and an initial condition with supports
contained in balls of radius € around the points ;(0), there is a
solution w, of (V2) with

we(Xx, t) = wi(x, t) = 287%] (x = &i(t)),

in the distributional sense.

Their proof provides very little information on the behaviour of the
solution or its velocity field near the vortices as £ becomes smaller



j=1
N 8
Vi(x,t) = Kjlog ——m—————
: 258 T

We prove that for a given colisionless solution of the system

() -&@)* . _
§4H'f,t— YOI j=1...,N. (K)

3 a solution (V_,w.) of (V2) that differs little from (W&, W&).




Theorem (D4vila, del Pino, Musso, Wei, ARMA 2020)

Let T > 0 and &(t) be a colisionless solution of (K) in [0, T].
There exists a solution (w., V.) of Problem (V2) such that for all
(x,t) € R2 x [0, T].

o) =30 G (X2 ) + o0
=1
Jk 1

V. (x,t) =) kjlog + (x, t)
2119 G gy
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In particular:

1
|log &

k k
We — ZSWHj(s(X — &) VW, |? — ZS,R—K/_]?(S(X - ).
j=1 =t

Ingredients in our construction:

e Improvement of the approximation in powers of ¢ using elliptic
and transport equations.

e Setting up the problem as a coupled system of inner problems
near the singularities and and an outer problem more regular (the
inner-outer gluing scheme)

e A priori estimates to solve by a continuation (degree) argument.



Improving the approximation. Let Wy(y) := log W,

K
wE= ; 52+\x ZKJWO(

> — Kjlog 8e*

We want to solve the equation E(w, V) = 0, where

E(w, V) i =w: + ViV .V, —-AV=uw.

Near §(t) write y = %J(t) We look for a solution of the form

R Kj
V=WE(x, t) + Kjb(y, t), w= ;éWO(Y) + Té¢(y7 t) |




In terms of the y-variable we get the expression

e E(w, V) =?¢: + (—e€ + Vy Ve + 1,V ) - V, (Wo + ),

—Ayp =9
We have
¢ 2 x =&
Vi (x, t) = kjVo(y) + ¢(x) + O(e®) + constant, ==

o(x) = Z kil (x = &), T(z) =4log s

i 12
By assumption Sj = Vip(&), hence we get

—e&j + VyVE(E +ey) = KV (Vo + R)
with R = O(2|y?).



' E(w, V) =20 + 1V, (Wo(y) + R +4) -V, (Wo + ¢),,
A =¢
R =0(*|y|?)

Let f(u) = e". Since Wy = f(Vy) we find

e*E(w, V) =%y — k;V, Vo - V(AP + f/(Vo)y)
+ 1 VIR - VW + 5, VIRV G + V5V .

The 0-error term:
P E(WE,WE) = VIR - VW = O(%)y| ™).
We obtain a reduction in the error by solving the elliptic equation

—V, Vo V(AY + Woh) + VIR - VWp =0



Polar coordinates y = pe'®

VW, - V(AY + Wor) = E(y) <—

1 0

T3 2 g BV + Wov) = E() = Eo(p) + D _ Eulp)e™.

kEZ

In order to solve for a bounded solution we need Eg = 0 and the
solvability condition (that sees only modes k = +1)

/ E(y)ydy =0, I =1,2.
R2
Main term in first error R only has mode two. Then & needs to be

adjusted. to solve cubic term. We need to solve transport
equations to get further decay far away.

52¢t—|—V\U0(Y)V¢: E(y7 t)7 d)(y,O)ZO



After sufficiently improving the approximation we solve the
problem by a degree argument, which near each §; roughly reads as

29 — Vo V(AP + Wor) + Q(¢) + E(y, 1) = 0
~AY=¢ inR?x[0,T]

with E = 0(°p73), Q(¢) = V¢V ¢, quadratic term.



A basic ingredient: A priori estimates for the linear problem

e2¢r — Vo - V(AY + Woyh) + E(y,t) =0
~AYy=¢ inR?*x[0,T], &(y,0)=0,

' 1-2)yP
/ yédy = 0, / </>dy0/ o2 ().
B(0,6c1) 1+ |yl

Then the following estimate holds:

_1 _1
lp( )W 22 S e ?[loge| sup [[EWG 2|2
tel0,T]

This allows a fixed point scheme to work when E = O(s%p73).



52¢t + VJ_\I’!O : V(Aw + f/(WO)qvb) + E(y~ t) - 07 (.y7 O) 0

We use the test function g = %0 —(=A)"1g, so

Wog = —(Av + '(Wo)¥)).

25, / bg = / Wy 'V WV (W2g2) + 2 / Eg
R2 R2 R2

The second integral is zero for

and

Wy Wiy v(w, / V- (W Vo) V(WEe?)
R

and since Wy and Wy are radial,

V- (W tvhwg) = 0.



Thus
_1 1
20, [ g =2 / Eg < CIIEW 2 |lu,llllgWe |12
R2 R2

and integrating,

1 1
2 1) < CllE W, 2 S E)YW2R 2.
R2¢g(7)._t&§§ 1EC, )W N, llllg (- t)Wa Il 2

Under the orthogonality conditions assumed on ¢ we can prove
the following Poincare inequality:

L[ ewets [ o
JR2

|loge| Jre

while we always have

/ﬁmgg/&mﬂ
R2 R2

From these inequalities the desired estimate follows.



To prove the Poincare inequality

/ ¢>2W01§/ bg
||Og€|.R2 JRR2

we set ¢ = Wo_l(b. Using stereographic projection we see that

sg= | 36— 2A-0s)1d).
[ 0 /52>(¢ (~As)9)

Besides



Expanding ¢ in the orthonormal basis in L2(S?) of spherical
harmonics we get

where —Aszej = )\jej.

Here Ao = 0 and €o is constant, While A1 = Ao = A3 = 2, with
ej(z) = zj. Thus ¢g = 0 and also ¢3 = 0 because of our
orthogonality condition:

/asy, )y = /¢y, ‘y’z Woly)dy = 0,



00 2\ - y
. TEDY (1 - )\j> 37 ~ 10" 1 72(s2)

j=4

We also have, j =2,3
~ ~ 1
O‘LQMC@+ON¢HH9MbgMQ
R

with R = e~ which gives

i = O |l 2(s2))| log el 7.

From here it follows that

[ ezl [ 7
JRR2? S2

as we wanted.



The inner-outer gluing scheme
Let us assume x; = 1. We consider smooth cut-off functions

o) = (250

where ng(s) =1 if s < 1, no(s) = 0 for s > 2. We look for a
solution the form

w(x, t) =’ 2ZJ¢J< —50) >+¢O”t(x,t)

W(x, t) =WE(x, £) + Z nj <X_ff(t) t> + 9% (x, 1)
j=1




The inner-outer gluing system

e20epj + Vy Vo - V(A + f/(Wo)yy)
(N +V M VWo+ Qi+ E =0 inR*x[0,T]
Ay = ¢,

for j=1,..., k, coupled with ¢°“!(-,0) = 0 and

0:¢°"t + V|V, + njj + )] - Vgt
+&72;0m; + Vi (mj + ) - Vi
(O) + Qout + Eout =0 in R2 X [O, T]

AX’QZJOUt + (pout + ijXTIJ’ + 2vx77j . quj =0.

We solve System (1)-(O) by a continuation (degree) argument
extablishing uniform a priori estimates for small solutions of its
solutions.



For the inner problem we need to solve in R?

— Vo V(AY + f(Vo)y) + E(y, t) =0, ¢(y,0) =0
—AYp=¢ inR*x|0,T]

with £ = O(5(1 + |y])73).

The central ingredient is the L2-a priori estimate assuming

1-2y|?
yody =0, cbdy =0= ¢ > Wo(y)dy.
B(0,6=-1) L+ 1yl

which yields

_1 _1
l6(-, )Wo 2[l 22y < Ce?|loge| sup [|E(, )Wy *[| ()
te[0,T]

These conditions are achieved by adjusting parameters in the basic
ansatz (in particular small remainders in the ¢'s).



The generalized surface quasigeostrophic equation (SQG)

{et+viw-v9:o in R? x (0, T)

Y= (-A)"°0 inR?>x(0,T),




Locally approximating the sphere by the plane z = 0, velocity field
without vertical component is given for a stream function

Y(x,y,2,t) by v(x,y,t) = (¢, (x,y,0), =1hx(x,y,0)). -1 <a<1
O3 + 051 + 0-(2°0:9) = 0, (x,y,2) €R?, 2> 0

0(X7_)/.t) = Za zw(XLy?Z)‘Z:O’
00 +v-VO =0.




Let 0 < s < 1.
0 + Vi -VO=0 inR>x(0,7)
Y= (-A)"0 inR>x(0,T),

(~A)*F(y) = ¢ / ;HSf(y) dy

R2 |X —
e Visually similar to Euler but harder to treat.

e No Yudovich global well-posedness theory for the initial value
problem is available.

e s = 1/2 carries similar features as Euler 3d



Vortex evolution in this case ?

// A &lt) \\

Formal asymptotics for
N
0(x,t) = > kio(x — (1))
j=1

leads to the law

- (G0 -5y
()= kids e J=1 N (Ks)
0= 2wk ) g (-




The generalized Kaufmann-Scully vortex solves the fractional
Yamabe equation in R?,

242s

(—A)*Wo(y) = Vo(y)22 = Wo(y).

ds
(1+[y[)t==

Cs

Wo(y) = Ay

Wo(y) =

Theorem (M. del Pino, Antonio Fernandez )

Let 0.937 < s < 1. For a colisionless solution £(t) of the N-body
problem (Ks) in [0, T] there exists a smooth solution of (SQG)

such that N
ki _
-3 Sw <X 51) +o(1)
€

J=1




e Special case: A travelling wave solution for a vortex pair: Ao,
Daévila, del Pino, Musso, Wei (TAMS, 2021).

e Previous partial results Cavallaro,Garra and Marchioro (2013)
Geldhauser-Romito (2020). Rosenzweig, (2020). Unlike Euler,
those constructions are conditional to the existence of regular
solutions.

e Similar scheme as in Euler, but technically harder.



Long-time asymptotics. An open problem: Stability of a radially
stationary vortex as t — +o0: If w(x, t) = Wo(x) + &(x, t). For
small ¢(x,0), do we have ||¢(-, t)|| small at all times?

Partial answers:

e Arnold (1998) A form of L? orbital Stability

e Bedrossian, Coti-Zelati and Vicol (2019) Linear L2-stability

e lonescu-Jia (2022) Linear, Gevrey spaces.

Y2




Multiple-vortex configurations:
Simplest example steady solutions known: Vortex pair

travelling-wave solution w(x, t) = W(x1 — ct, x2)

SCNUIC))

—Asp(x) = F(¥(x) — o) = W(x)

W(y) = e 2Wo((x1,x2 — d)/e) — e 2Wo((x1, x2 + d) /) + o(1)

e Existence: Norbury (1975)
e Orbital stability results: Burton-Lopes-Nussenweig (2013).




An infinite-time construction. Two vortex pair travelling in
opposite directions glued: there exists a solution or (V2) that
follows this configuration as t — +o00. (J. Davila, M. del Pino, M.
Musso, Shrish Parmeshwar )

4 .
w(x, t) = Z(—l)jg%Wo <X_§J(t)) + o(1).
=1

e
J
)

&s &2

—oeo—1] +To—
X1

—o+1 —]e —

&4 &1

- ﬁ E4(t) J IN0) —_—
n ‘
o

-~ & &0 a0 &
U




Nearly singular solutions for Euler in R3?

Open question: Solutions with concentrated vorticities near
curves (filaments): the Vortex filament conjecture (Helmholtz, Da
Rios, Levi-Civita 1858-1906-1931).



We consider the Euler equation in R? in stream-vorticity
formulation

wr+(u-Vw—(w-V)u=0

1 [ x—vy (V3)
u= Vo wat) = o [ Ity .

(w=V x uin R®). We want to find solutions with vorticity
concentrated on a time evolving curve (filament) [(t) parametrized
by arclength as (s, t) in R3.



Vortex filament dynamics. (After Helmholtz and Kelvin) is a
solution w.(x, t) of (V) concentrated in a tube radius ¢ so that

we(-, t) ~ C(sr(t)tr(t) ase — 0,

tr(¢) tangent vector field, dr(;) the uniform curve Dirac measure.

1904, Da Rios formal law: Letting 7 = t|loge|, v(s, T)
parametrization by arclength of ['(7), k curvature, then
c c
Yr = E(’\/s X '7’55) = E"@br(r) )

br(;) binormal vector. This is the binormal flow of curves.




The vortex filament conjecture:

Let () be a solution curve of the binormal flow defined in [0, T]
for some ¢ >0, T > 0. For each € > 0 there exists a smooth
solution w.(x, t) to (V3) satisfying in the distributional sense,

w::(', T

) = cor(ntr(ry ase—0, forall 0<7<T.
log €|
Natural: To look for a solution of the form

1 z
we(x,7) = W (g) tr(y+o(l), x=7(r,s)+z1br)+20r),

This statement is only known for special curves associated to
travelling wave solutions: the thin vortex ring first found by
Fraenkel, and recently a helicoidal filament.



Examples: a helix whose horizontal section rotates at a constant
angular speed or a vertically translating circle are solutions of the
bi-normal flow of curves.

d

Thin Vortex ring travelling-wave solution: Fraenkel, 1970
(Axisymmetric, no swirl, problem reduces to an elliptic equation)




Solutions w(x, y, z, t) of 3d-Euler with Helicoidal symmetry can be
obtained from a scalar function w(x + iy, t) in the form
(x4
ol y,2.0) = wle = (x+ i)t/ logel) | 7 V)

where w(x, 7) solves

-V - (KVY)=w
1 K2 4+ y2 —X
K(Xay)_w< . Y 2 y2>

+xc+y Xy  K°+X

{||0g€|WT+VJ'1/J°VW=0

Rotating helicoidal solutions:

wix+iy,7) = w(eT(x+iy)), U((x+iy),7) = (e (x +iy)).

—V - (KVY) = f(¢ — %\ loge|(x* +y?))=w inR?




2

Special case f(u) = e°e". we prove:

Theorem (Dévila, del Pino, Musso, Wei (2022))

There exists a solution 1. to the equation
—V - (KVY) = 26?7 jp R?

such that €2e¢—%| log e|(x*+y?) _ 87T5(X070), Xo > 0, for a suitable
choice of «.

« is precisely the number that makes the "rotating helix"

a solution of the binormal flow



Axisymmetric Euler no-swirl:

w(r,z,7) = W(r,z,7)(—y, x).

After rescaling time t = 7/| log e|, we get

| log e|rW; + VA (r2y)VW =0
(AN) _(wrr + %wr + Q;Z)zz) =—Asp =W

¥r(0,z,7) = 0.

Interaction of multiple vortex rings:




Leapfrogging Vortex-Rings Helmholtz 1858: predicted the way
two identical, coaxial vortex rings interact.

e The rings travel in the same direction. Due to their mutual
interaction, the rear ring shrinks and accelerates, and the leading
ring widens and decelerates. The rear ring then passes through the
leading ring, with this process of leapfrogging then repeating again
and again.

Aim: To justify rigorously the leapfrogging dynamics for the 3d
axisymmetric Euler flow without swirl.




e The leapfrogging motion was justified in the Gross-Pitaievskii
equation ju; = Au+ e 2(1 — |u|?*)u = 0 by Jerrard and Smets
(2018)

Incompressible Euler: Outstanding open problem.



Theorem (D4vila, del Pino, Musso, Wei (2023))

Let b(1) = (b1(7),...,bn(T)) be a colisionless solution of the system
L~ (bi—b)*t b (0 .
bi(r) = Zi\b; —F 2l meD
J#i

1
oga ")

Then there exists a solution W, of the form

ai(r) = (ro,zo) +

W.(xr) =3 W ((”Z‘ o T)“"f(”) +o(1)




Restricting ourselves to by = —by = b = (b, b?)

. )+ Yr
b(ry _ LB B()

<0> — log |b| + |b'|? = constant

21b(r)? g




Thanks for your attention



