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Introduction to hypercomplex analysis

Motivation

Higher dimensional equivalent of Complex Analysis

For the initial part of these lectures I will follow the book of Gilbert and Murray
(1991).

Complex analysis - combines geometric insight with analytic concepts; for
example, the Laplacian ∆f coincides with the Laplace-Beltrami operator
∆LB f = ∇ · (∇f ).

Types of known generalisations:

Several complex variables - Cn;

Clifford algebras;

more "exotic algebras".
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Quadratic spaces

Let V be a vectorial space of dimension n over a field F (R, or C).

Given a quadratic form Q : V 7→ F, that is,
1 Q(λx) = λ2Q(x), for all λ ∈ F, x ∈ V;
2 Q(x) + Q(y)− Q(x − y) = 2B(x , y), for all x , y ∈ V, where B is a

bilinear form,

we say that (V,Q) is a quadratic space

Some remarks:

the quadratic form Q induces a type of norm in V;
the bilinear form B : V× V 7→ F induces a type of inner product in V.
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Quadratic spaces - real case
Examples (for V = Rn)

"easiest example": take Q ≡ 0; this gives raise to Grassmannian
algebras;

for Qp,q(x1, . . . xn) =
∑p

j=1 x2
j −

∑p+q
j=p+1 x2

j , where p + q = n, we obtain a
quadratic space with "signature" (p, q), i.e.

(Rn,Qp,q) = Rp,q .

In particular, we have

R0,n or Rn,0 as Euclidean spaces

Q0,n(x1, . . . , xn) = −
n∑

j=1

x2
j = −∥(x1, . . . , xn)∥2,

and

R1,3 or R3,1 as Minkowski spaces (time-space),

Q1,3(t , x , y , z) = t2 − (x2 + y2 + z2).
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Quadratic spaces - complex case

For V = Cn, we can assign

Qn(z1, . . . , zn) = z2
1 + · · ·+ z2

n

and we obtained a (complex) quadratic space (Cn,Qn).

In this case, both the quadratic form and the corresponding complex bilinear
form B,

B(z,w) = z1w1 + · · ·+ znwn,

require an additional operation (conjugation) in order to be identified with a
norm or an inner product in Cn.
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Radical part of (V,Q)

Consider now {ej , j = 1, . . . , n} a basis for V.

For x =
∑

j xjej ∈ V we have

Q(x) = B(x , x) =
∑

i,j

B(ei , ej)xixj = x t Bx .

The basis {ej} is said B-orthogonal if B(ei , ej) = 0 for i ̸= j. In that case,

Q(x) =
∑

i

B(ei , ei)x2
i =

∑
i

Q(ei)x2
i .

We define the radical part of (V,Q) as

Rad(V,Q) := {x ∈ V : B(x , y) = 0, for all y ∈ V}.

The quadratic space (V,Q) is called non-degenerated if Rad(V,Q) = {0},
and degenerated otherwise. In that case,

V = Rad(V,Q)⊕B Rad(V,Q)⊥.
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Radical part of (V,Q)

Furthermore, for the non-degenerated part Rad(V,Q)⊥ one can construct
normalised basis s.t.

Q(ej) = ±1.

Theorem 1.1

Let (V,Q) be a quadratic space with

V = Rad(V,Q)⊕B Rad(V,Q)⊥.

Then
1 Q ≡ 0 on Rad(V,Q);

2 Rad(V,Q)⊥ is isomorphic to

1 Rp,q if F = R, with p, q depending only on Qp,q (Sylvester’s
Theorem)

2 (Cn,Qn) if F = C,
with p + q = n the dimension of Rad(V,Q)⊥.
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Sylvester’s law of inertia

Property 2.1 is called Sylvester’s law of inertia since it implies for the matrix B

B := [B(ei , ej)]i,j =



+1
. . .

+1
−1

. . .
−1


︸ ︷︷ ︸

p entries
︸ ︷︷ ︸

q entries
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Clifford algebras

Let V a finite dimensional vector space over F and (V,Q) a quadratic space.

Let A be an associative algebra over F with identity 1A and a c : V 7→ A an
F-linear embedding of V into A.

Definition 1.2

The pair (A, c) is a Clifford algebra associated to (V,Q) if
1 A is generated as an algebra by {c(x), x ∈ V};
2 F ∼= {λ1A, λ ∈ F};
3 [c(x)]2 = −Q(x)1A.
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First example: Grassmann algebra

1 Let Q ≡ 0 on V.

The exterior algebra A = ∧∗(V) =
∑n

k=0 ∧
k (V), with n the dimension of

the vector sp. V, satisfy

∧0(V) ∼= F;

∧1(V) ∼= V;

let c : V 7→ ∧1(V); since we have x1 ∧ · · · ∧ xk ∈ ∧k (V) then
A = ∧∗(V) is generated by {c(x), x ∈ V};

[c(x)]2 = x ∧ x = 0 = −Q(x)1A for all x ∈ V.

Hence, A = ∧∗(V) is a (degenerated) Clifford algebra for (V,Q).
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Realisations of R,C, and H in terms of Pauli
matrices

2 Consider the associated Pauli matrices in C2×2

e0 =

[
1 0
0 1

]
, e1 =

[
i 0
0 −i

]
, e2 =

[
0 1
−1 0

]
, e3 =

[
0 i
i 0

]
.

We have
e2

0 = I, e2
1 = e2

2 = e2
3 = e1e2e3 = −I.

Then we obtain the following Clifford algebras:
R0,0 = {λe0, λ ∈ R} ∼= R, associated to the vector space V = R;

For σ3 = −ie3 we have σ2
3 = e0 so that

R1,0 =

{
xe0 + yσ3 =

[
x y
y x

]
, x , y ∈ R

}
∼= R⊕ R, also

associated to the vector space V = R, and with

[c(yσ3)]
2 =

[
0 y
y 0

]2

= y2e0.
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Realisations of R,C, and H in terms of Pauli
matrices

R0,1 =

{
xe0 + ye2 =

[
x y
−y x

]
, x , y ∈ R

}
∼= C, also

associated to the vector space V = R, and with

[c(ye2)]
2 =

[
0 y
−y 0

]2

= −y2e0.

R0,2 = {xe0 + ye1 + x ′e2 + y ′e3, x , y , x ′, y ′ ∈ R} ∼= H, where

xe0 + ye1 + x ′e2 + y ′e3 =

[
x + iy x ′ + iy ′

−x ′ + iy ′ x − iy

]
=

[
z w

−w z

]
.

This Clifford algebra is associated to V = R2 and we have

[c(ye1 + x ′e2)]
2 =

[
iy x ′

−x ′ −iy

]2

= −(y2 + x ′2)e0.
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A complex Clifford algebra

3 For V = C2, and Q2(z,w) = z2 + w2, we take c : C2 7→ C2×2 as

c(z,w) =

[
0 z − iw

z + iw 0

]
,

so that C2 = C2×2 is a Clifford algebra associated to (C2,Q2).
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Universal Clifford algebras
Some simplifications:

1. we will make no distinction between λ1A ∈ A and λ ∈ F;

2. similarly, no distinction between c(x) ∈ A and x ∈ V.

Under these conventions, condition 3. of Definition 1.2. becomes

Q(x) = −x2, for all x ∈ V.

Lemma 1.3

For all x , y ∈ V, it holds

B(x , y) = −1
2
(xy + yx).

Immediate, since

−(x + y)2 = Q(x + y) = 2B(x , y) + Q(x) + Q(y) = 2B(x , y)− x2 − y2.
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Basis for a Clifford algebra - 1

Lemma 1.4

Let {ej , j = 1, . . . , n} be an B-orthonormal basis of V. Then,

eiej + ejei = 2e2
j δi,j , i, j = 1, . . . , n.

Theorem 1.5

Let (A, c) be a Clifford algebra associated to the quadratic space (V,Q), and
{ej , j = 1, . . . , n} be an B-orthonormal basis of V. Then,

1 A is spanned by all products

eα1
1 · · · eαn

n , αj = 0, 1;

2 dim(A) is at most 2dim(V).
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Basis for a Clifford algebra - 2
Since for an B-orthonormal basis we have eiej = −ejei , i ̸= j, we can
re-order these basis elements as

e∅ = 1, eA = ei1 · · · eik , 1 ≤ i1 < · · · < ik ≤ n = dim(V).

By convention, A = {i1, . . . , ik} ⊂ {1, . . . , n} := N.

Remark: as a Clifford algebra, Cℓ0,2 has dimension 4 = 22 although
associated to V = R3. (Recall, e1e2 = e1,2 = e3).

Theorem 1.5

The dimension of a Clifford algebra Rp,q = (A, c) associated to
Rp,q = (Rn,Qp,q) is

1 dim(Rp,q) = 2p+q−1 if

p − q − 1 ≡ 0 (mod 4);
p + q is odd;
eN = e1 · · · en ∈ R.

2 dim(Rp,q) = 2p+q , otherwise.
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Universal Clifford algebras

Whenever dim(A) = 2dim(V) we say A is a universal Clifford algebra. This
implies that each product

eiej

is a new element in the basis of the algebra.

H is not a universal Clifford algebra as e1e2 = e3.

For every quadratic space (V,Q) there exists a universal Clifford algebra
(A, c) (i.e., dim(A) = 2n).
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Z2-grading
We have for x ∈ A that

x =
∑
A⊂N

xAeA, xA ∈ F.

We now decompose A into

A+ :
∑

|A| even

xAeA, A− :
∑

|A| odd

xAeA.

Then

A+ is again a Clifford algebra, with dim(A+) = 2n−1. Furthermore,
F ⊂ A+;

A+ is not anymore an algebra but V ⊂ A−;

A = A+ ⊕A− and the following multiplication rules hold

A+A+ = A−A− = A+, A+A− = A−A+ = A−;

x =
∑2n

k=0[x ]k , where [x ]k :=
∑

|A|=k xAeA.
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Universal real Clifford algebra Rp,q

In what follows, let Rp,q be the universal real Clifford algebra associated to
the quadratic space Rp,q .

Rn,0,R0,n are real Clifford algebras associated to the Euclidean space
Rn;

Rp,q , (p, q ̸= 0) are called Lorentzian algebras;

H is not a universal Clifford algebra, since

H ∼= R0,2 ∼= R+
0,3.
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Witt basis in R2n (Sommen’s trick)

We use a quadratic form Qn,n and associate an B-orthonormal basis
{ej , ϵj , j = 1, . . . , n}, that is

e2
j = −1, ϵ2

j = +1,

eiej + ejei , ϵiϵj + ϵjϵi , i ̸= j

eiϵj + ϵjei .

Construct
fj =

1
2
(ϵj + ej), f†j =

1
2
(ϵj − ej).

Then

f2j = (f†j )
2 = 0;

fj + f†j = ϵj , fj − f†j = ej ;

Usage:

Super-algebras: ∂zj fj + ∂z j f
†
j , zj = xjϵj + yej ;

Factorisation of the heat operator ∂t −∆ in terms of 1st order operators.
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Ideas of other (future) applications

Lemma 1.6

R1,n+1 = R0,n ⊗R R1,1,

where R1,1 is spanned by {1, e+, e−, e+e−}.

This allows for the imbedding of the vectorial space Rn into the quadratic sp.
R1,n+1 :

(x1, · · · , xn) 7→
(

x1, · · · , xn,
1 − |x |2

2
,

1 + |x |2

2

)
with

ds2 =
∑

j

dx2
j ↔ dT 2 =

∑
j

dX 2
j

Euclidean metric hyperbolic metric

whereas Xj = xj , Xn+1 = 1−|x|2
2 , and T = 1+|x|2

2 .
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