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Introduction to hypercomplex analysis
Motivation

Higher dimensional equivalent of Complex Analysis

For the initial part of these lectures | will follow the book of Gilbert and Murray
(1991).

Complex analysis - combines geometric insight with analytic concepts; for
example, the Laplacian Af coincides with the Laplace-Beltrami operator
Agf =V - (VF).
Types of known generalisations:

@ Several complex variables - C”;

@ Clifford algebras;

@ more "exotic algebras".
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Quadratic spaces

Let V be a vectorial space of dimension n over a field F (R, or C).

Given a quadratic form Q : V — F, that is,
@ Q(O\x) = XQ(x),forall A€ F, x €V;

Q Q(X)+Q(y) — Q(x —y) =2B(x,y), forall x,y € V, where Bis a
bilinear form,

we say that (V, Q) is a quadratic space

Some remarks:
@ the quadratic form Q induces a type of norm in V;
@ the bilinear form B : V x V — F induces a type of inner product in V.
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Quaderatic spaces - real case

Examples (for V = R")

@ "easiest example": take Q = 0; this gives raise to Grassmannian
algebras;

@ for Qp,g(X1,...Xn) = 27:1 xF — f*lfﬁ i, where p 4 q = n, we obtain a

quadratic space with "signature” (p, q), i.e.
(R”, Qp,q) = R”7.

In particular, we have
@ R%" or R™? as Euclidean spaces

Qon(Xi5 -, Xn Zx, = —|(x1,..., %)%,

and
@ R'® or R*' as Minkowski spaces (time-space),

Qia(t,x,y,2) == (X +y*+2%).
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Quadratic spaces - complex case

For V = C", we can assign
Qu(zt,...,20) =24+ 2
and we obtained a (complex) quadratic space (C", Q).

In this case, both the quadratic form and the corresponding complex bilinear
form B,
B(z,w) = zywq + -+ - + ZnWh,

require an additional operation (conjugation) in order to be identified with a
norm or an inner product in C".
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Radical part of (V, Q)

Consider now {e;,j = 1,...,n} a basis for V.

For x =%, xe; € V we have

Q(x) = = B(ei, e)xx = x' Bx.

i

The basis {e;} is said B-orthogonal if B(e;,e;) = 0 for i # j. In that case,
ZB(e,,e, xF = Z Q(e)x?.

We define the radical part of (V, Q) as
Rad(V,Q) :={x e V: B(x,y)=0,forall y € V}.

The quadratic space (V, Q) is called non-degenerated if Rad(V, Q) = {0},
and degenerated otherwise. In that case,

V = Rad(V, Q) @5 Rad(V, Q)™*.
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Radical part of (V, Q)

Furthermore, for the non-degenerated part Rad(V, Q)* one can construct
normalised basis s.t.
Q(e,-) = 41.

Let (V, Q) be a quadratic space with
V = Rad(V, Q) @5 Rad(V, Q).

Then
@ Q=0o0nRad(V,Q);
@ Rad(V, Q) is isomorphic to

Q@ RPIIfF =R, with p, g depending only on Q.4 (Sylvester’s
Theorem)
Q (C",QyifF=C,

with p + g = n the dimension of Rad(V, Q).
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Sylvester’s law of inertia

Property 2.1 is called Sylvester’s law of inertia since it implies for the matrix B

-1 -

+1
B := [B(ei, &)l =

p entries q entries
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Clifford algebras

Let V a finite dimensional vector space over F and (V, Q) a quadratic space.

Let A be an associative algebra over F with identity 14 andac: V— A an
F-linear embedding of V into A.

Definition 1.2

The pair (A, c) is a Clifford algebra associated to (V, Q) if
@ A s generated as an algebra by {c(x),x € V};
Q Fx= {4 )T}
Q [c(x)? = -Q()1 4.
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First example: Grassmann algebra

@ LetQ=00nV.

The exterior algebra A = A*(V) = 3°7_, A¥(V), with n the dimension of
the vector sp. V, satisfy

o AY(V) =T,
o A' (V)2

o letc: Vi AY(V); since we have x; A --- A xk € AK(V) then
A = N*(V) is generated by {c(x), x € V};

o [c(X)P=xAx=0=-Q(x)1forall x € V.

Hence, A = A*(V) is a (degenerated) Clifford algebra for (V, Q).
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Realisations of R, C, and H in terms of Pauli
matrices

@ Consider the associated Pauli matrices in C2*2

[1 0 [0 oo 1] _ [0
©=lo 1] ®T o —i|" T 1 0] BT o]

Then we obtain the following Clifford algebras:
@ Roo = {\eg, A € R} @R, associated to the vector space V = R;

o For o3 = —ies we have o5 = e so that
Xy ~
RLO: X€q + Yoz = y x ,X,yGR :R@Ralso
associated to the vector space V = R, and with

[e(yos)) = [3 5 r=y290-
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Realisations of R, C, and H in terms of Pauli
matrices

@ Ro,1 = {Xeo+yez = { _Xy i } ,x,yeR} >~ C, also

associated to the vector space V = R, and with

2
evear=| 5, 4| = v

@ Roo = {xeg + yer + x'e2 + y'es, x,y,x', ¥y’ € R} = H, where

x+iy X +iy ] _{ z

—x'"+iy x-liy -w

NI S

xeo + ye; + x'ex + y'ez = {

This Clifford algebra is associated to V = R? and we have

[c(yes -I—X/ez)]2 = { _Iy/ X

2
_ (42 2
X —iy} =—(y" +x")eq.
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A complex Clifford algebra

@ ForV=C2? and Qx(z, w) = 22 + w?, we take ¢ : C2 — C2*2 as

0 z—iw

o(z,w) = zZ+iw 0 ’

so that C; = C2*2 is a Clifford algebra associated to (C2, Qz).
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Universal Clifford algebras

Some simplifications:
1. we will make no distinction between \1 4 € Aand ) € F;

2. similarly, no distinction between ¢(x) € Aand x € V.

Under these conventions, condition 3. of Definition 1.2. becomes

Q(x) = —x?, forallxeV.

For all x, y € V, it holds

B(x,¥) = — (5 + )

Immediate, since
—(x+y)? = Q(x+y) =2B(x,y)+ Q(x) + Qy) = 2B(x, y) — x* — y*.
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Basis for a Clifford algebra - 1

Let {e;,j =1,...,n} be an B-orthonormal basis of V. Then,

2 2 g
ee +eje = 29]5,',]', Lj=1,...,n.

Let (A, c¢) be a Clifford algebra associated to the quadratic space (V, Q), and
{e;,j=1,...,n} be an B-orthonormal basis of V. Then,

@ A is spanned by all products

el ep”, a;=0,1;

Q dim(A) is at most 24,
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Basis for a Clifford algebra - 2

Since for an B-orthonormal basis we have e;e; = —eje;, i # j, we can
re-order these basis elements as

ep=1, es=e, -, 1<i< - <ik<n=dim(V).

By convention, A= {is,...,ik} C {1,...,n} :=N.

Remark: as a Clifford algebra, Cl, » has dimension 4 = 22 although
associated to V = R®. (Recall, eje; = e = e3).

The dimension of a Clifford algebra R, q = (A, ¢) associated to
RP9 = (R", Qp,q) is
o dim(Rp,q) = 2P+CI—1 |f
@ p—qg—1=0(mod4);
@ p+ gis odd;
eey=es---e,cR

Q dim(Ryq) = 2°79, otherwise.
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Universal Clifford algebras

Whenever dim(A) = 29™(") we say A is a universal Clifford algebra. This
implies that each product

e;e;
is a new element in the basis of the algebra.

H is not a universal Clifford algebra as e1e, = es.

For every quadratic space (V, Q) there exists a universal Clifford algebra
(A, c) (i.e., dim(A) = 27).
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Z»-grading

We have for x € A that

X = ZXAGA, Xa € F.
ACN

We now decompose A into
.A+ : Z Xpla, A™ Z XaeA.
|A| even |A| odd

Then
@ A" is again a Clifford algebra, with dim(A*) = 2"~". Furthermore,
FcC A"
@ A* is not anymore an algebra but Vv .c A~;
@ A= A" A" and the following multiplication rules hold
ATAT = A" A” = AT, ATAT = A AT = A7,

@ x=X2" [x], where [x]x := Ak XA€A.
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Universal real Clifford algebra R, 4

In what follows, let R, 4 be the universal real Clifford algebra associated to
the quadratic space R”9.

@ R0, Ry, are real Clifford algebras associated to the Euclidean space
R™

@ Ry g, (p, g # 0) are called Lorentzian algebras;

@ H is not a universal Clifford algebra, since

~ ~ ot
H = ]Ro’g = R0,3.
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Witt basis in R?” (Sommen'’s trick)

We use a quadratic form Q,,, and associate an B-orthonormal basis
{ej,¢j, j=1,...,n}, thatis

e =-1, &=+1,

ee; +ee;, ¢ +ee, |IF]
ej¢j + €je;.
Construct

—_

fi = %(6/+e/)7 ff = 5 (e —ej).
Then
o jf=(i))*=0
°fi+i=q fi—f =e;
Usage:
© Super-algebras: 0;f; + 97§/, 2z = xj¢; + yey;
@ Factorisation of the heat operator 9; — A in terms of 1st order operators.

20/23



Introduction to hypercomplex analysis
Clifford algebras

Ideas of other (future) applications

Ri nt1 = Ro,n ®r Ry 1,
where Ry 1 is spanned by {1,e,.,e_,e e_}.

This allows for the imbedding of the vectorial space R" into the quadratic sp.
R1,n+1 .

1—[x? 1+ \XIZ)

(X17"'7Xn) = (X17"'7Xf7 D) P

with

ds* =) axf & dT?P =) dX}
) i

Euclidean metric hyperbolic metric

2 2
whereas X; = x;, Xpi1 = X and T = HXE
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