

Introduction to hypercomplex analysis

1st lecture

P. Cerejeiras

CIDMA and Departamento de Matemática
Universidade de Aveiro
pceres@ua.pt

Summer School *Modern Problems in PDEs and Applications*
August 23- September 02, 2023

Higher dimensional equivalent of Complex Analysis

For the initial part of these lectures I will follow the book of Gilbert and Murray (1991).

Complex analysis - combines geometric insight with analytic concepts; for example, the Laplacian Δf coincides with the Laplace-Beltrami operator $\Delta_{LB}f = \nabla \cdot (\nabla f)$.

Types of known generalisations:

- Several complex variables - \mathbb{C}^n ;
- Clifford algebras;
- more "exotic algebras".

Quadratic spaces

Let \mathbb{V} be a vectorial space of dimension n over a field \mathbb{F} (\mathbb{R} , or \mathbb{C}).

Given a quadratic form $Q : \mathbb{V} \mapsto \mathbb{F}$, that is,

- 1 $Q(\lambda x) = \lambda^2 Q(x)$, for all $\lambda \in \mathbb{F}$, $x \in \mathbb{V}$;
- 2 $Q(x) + Q(y) - Q(x - y) = 2\mathcal{B}(x, y)$, for all $x, y \in \mathbb{V}$, where \mathcal{B} is a bilinear form,

we say that (\mathbb{V}, Q) is a **quadratic space**

Some remarks:

- the quadratic form Q induces a type of norm in \mathbb{V} ;
- the bilinear form $\mathcal{B} : \mathbb{V} \times \mathbb{V} \mapsto \mathbb{F}$ induces a type of inner product in \mathbb{V} .

Quadratic spaces - real case

Examples (for $\mathbb{V} = \mathbb{R}^n$)

- "easiest example": take $Q \equiv 0$; this gives raise to [Grassmannian algebras](#);
- for $Q_{p,q}(x_1, \dots, x_n) = \sum_{j=1}^p x_j^2 - \sum_{j=p+1}^{p+q} x_j^2$, where $p + q = n$, we obtain a quadratic space with "signature" (p, q) , i.e.

$$(\mathbb{R}^n, Q_{p,q}) = \mathbb{R}^{p,q}.$$

In particular, we have

- $\mathbb{R}^{0,n}$ or $\mathbb{R}^{n,0}$ as [Euclidean spaces](#)

$$Q_{0,n}(x_1, \dots, x_n) = - \sum_{j=1}^n x_j^2 = -\|(x_1, \dots, x_n)\|^2,$$

and

- $\mathbb{R}^{1,3}$ or $\mathbb{R}^{3,1}$ as [Minkowski spaces](#) (time-space),

$$Q_{1,3}(t, x, y, z) = t^2 - (x^2 + y^2 + z^2).$$

Quadratic spaces - complex case

For $\mathbb{V} = \mathbb{C}^n$, we can assign

$$Q_n(z_1, \dots, z_n) = z_1^2 + \dots + z_n^2$$

and we obtained a (complex) quadratic space (\mathbb{C}^n, Q_n) .

In this case, both the quadratic form and the corresponding complex bilinear form \mathcal{B} ,

$$\mathcal{B}(z, w) = z_1 w_1 + \dots + z_n w_n,$$

require an additional operation (conjugation) in order to be identified with a norm or an inner product in \mathbb{C}^n .

Radical part of (\mathbb{V}, Q)

Consider now $\{\mathbf{e}_j, j = 1, \dots, n\}$ a basis for \mathbb{V} .

For $x = \sum_j x_j \mathbf{e}_j \in \mathbb{V}$ we have

$$Q(x) = \mathcal{B}(x, x) = \sum_{i,j} \mathcal{B}(\mathbf{e}_i, \mathbf{e}_j) x_i x_j = x^t \mathbb{B} x.$$

The basis $\{\mathbf{e}_j\}$ is said **\mathcal{B} -orthogonal** if $\mathcal{B}(\mathbf{e}_i, \mathbf{e}_j) = 0$ for $i \neq j$. In that case,

$$Q(x) = \sum_i \mathcal{B}(\mathbf{e}_i, \mathbf{e}_i) x_i^2 = \sum_i Q(\mathbf{e}_i) x_i^2.$$

We define the **radical part of (\mathbb{V}, Q)** as

$$\text{Rad}(\mathbb{V}, Q) := \{x \in \mathbb{V} : \mathcal{B}(x, y) = 0, \text{ for all } y \in \mathbb{V}\}.$$

The quadratic space (\mathbb{V}, Q) is called **non-degenerated** if $\text{Rad}(\mathbb{V}, Q) = \{0\}$, and **degenerated** otherwise. In that case,

$$\mathbb{V} = \text{Rad}(\mathbb{V}, Q) \oplus_{\mathcal{B}} \text{Rad}(\mathbb{V}, Q)^{\perp}.$$

Radical part of (\mathbb{V}, Q)

Furthermore, for the non-degenerated part $\text{Rad}(\mathbb{V}, Q)^\perp$ one can construct normalised basis s.t.

$$Q(\mathbf{e}_i) = \pm 1.$$

Theorem 1.1

Let (\mathbb{V}, Q) be a quadratic space with

$$\mathbb{V} = \text{Rad}(\mathbb{V}, Q) \oplus_{\mathcal{B}} \text{Rad}(\mathbb{V}, Q)^\perp.$$

Then

- 1 $Q \equiv 0$ on $\text{Rad}(\mathbb{V}, Q)$;
- 2 $\text{Rad}(\mathbb{V}, Q)^\perp$ is isomorphic to
 - 1 $\mathbb{R}^{p,q}$ if $\mathbb{F} = \mathbb{R}$, with p, q depending only on $Q_{p,q}$ (Sylvester's Theorem)
 - 2 (\mathbb{C}^n, Q_n) if $\mathbb{F} = \mathbb{C}$,

with $p + q = n$ the dimension of $\text{Rad}(\mathbb{V}, Q)^\perp$.

Sylvester's law of inertia

Property 2.1 is called [Sylvester's law of inertia](#) since it implies for the matrix \mathbb{B}

$$\mathbb{B} := [\mathcal{B}(\mathbf{e}_i, \mathbf{e}_j)]_{i,j} = \begin{bmatrix} +1 & & & & \\ & \ddots & & & \\ & & +1 & & \\ & & & -1 & \\ & & & & \ddots \\ & & & & & -1 \end{bmatrix}$$

Clifford algebras

Let \mathbb{V} a finite dimensional vector space over \mathbb{F} and (\mathbb{V}, Q) a quadratic space.

Let \mathcal{A} be an associative algebra over \mathbb{F} with identity $1_{\mathcal{A}}$ and a $c : \mathbb{V} \mapsto \mathcal{A}$ an \mathbb{F} -linear embedding of \mathbb{V} into \mathcal{A} .

Definition 1.2

The pair (\mathcal{A}, c) is a Clifford algebra associated to (\mathbb{V}, Q) if

- 1 \mathcal{A} is generated as an algebra by $\{c(x), x \in \mathbb{V}\}$;
- 2 $\mathbb{F} \cong \{\lambda 1_{\mathcal{A}}, \lambda \in \mathbb{F}\}$;
- 3 $[c(x)]^2 = -Q(x)1_{\mathcal{A}}$.

First example: Grassmann algebra

- 1 Let $Q \equiv 0$ on \mathbb{V} .

The exterior algebra $\mathcal{A} = \wedge^*(\mathbb{V}) = \sum_{k=0}^n \wedge^k(\mathbb{V})$, with n the dimension of the vector sp. \mathbb{V} , satisfy

- $\wedge^0(\mathbb{V}) \cong \mathbb{F}$;
- $\wedge^1(\mathbb{V}) \cong \mathbb{V}$;
- let $c : \mathbb{V} \mapsto \wedge^1(\mathbb{V})$; since we have $x_1 \wedge \cdots \wedge x_k \in \wedge^k(\mathbb{V})$ then $\mathcal{A} = \wedge^*(\mathbb{V})$ is generated by $\{c(x), x \in \mathbb{V}\}$;
- $[c(x)]^2 = x \wedge x = 0 = -Q(x)1_{\mathcal{A}}$ for all $x \in \mathbb{V}$.

Hence, $\mathcal{A} = \wedge^*(\mathbb{V})$ is a (degenerated) Clifford algebra for (\mathbb{V}, Q) .

Realisations of \mathbb{R} , \mathbb{C} , and \mathbb{H} in terms of Pauli matrices

2 Consider the associated Pauli matrices in $\mathbb{C}^{2 \times 2}$

$$\mathbf{e}_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{e}_1 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

We have

$$\mathbf{e}_0^2 = \mathbb{I}, \quad \mathbf{e}_1^2 = \mathbf{e}_2^2 = \mathbf{e}_3^2 = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 = -\mathbb{I}.$$

Then we obtain the following Clifford algebras:

- $\mathbb{R}_{0,0} = \{\lambda \mathbf{e}_0, \lambda \in \mathbb{R}\} \cong \mathbb{R}$, associated to the vector space $\mathbb{V} = \mathbb{R}$;
- For $\sigma_3 = -i\mathbf{e}_3$ we have $\sigma_3^2 = \mathbf{e}_0$ so that

$$\mathbb{R}_{1,0} = \left\{ x\mathbf{e}_0 + y\sigma_3 = \begin{bmatrix} x & y \\ y & x \end{bmatrix}, x, y \in \mathbb{R} \right\} \cong \mathbb{R} \oplus \mathbb{R}, \text{ also}$$

associated to the vector space $\mathbb{V} = \mathbb{R}$, and with

$$[c(y\sigma_3)]^2 = \begin{bmatrix} 0 & y \\ y & 0 \end{bmatrix}^2 = y^2 \mathbf{e}_0.$$

Realisations of \mathbb{R} , \mathbb{C} , and \mathbb{H} in terms of Pauli matrices

- $\mathbb{R}_{0,1} = \left\{ x\mathbf{e}_0 + y\mathbf{e}_2 = \begin{bmatrix} x & y \\ -y & x \end{bmatrix}, x, y \in \mathbb{R} \right\} \cong \mathbb{C}$, also

associated to the vector space $\mathbb{V} = \mathbb{R}$, and with

$$[c(y\mathbf{e}_2)]^2 = \begin{bmatrix} 0 & y \\ -y & 0 \end{bmatrix}^2 = -y^2\mathbf{e}_0.$$

- $\mathbb{R}_{0,2} = \{ x\mathbf{e}_0 + y\mathbf{e}_1 + x'\mathbf{e}_2 + y'\mathbf{e}_3, x, y, x', y' \in \mathbb{R} \} \cong \mathbb{H}$, where

$$x\mathbf{e}_0 + y\mathbf{e}_1 + x'\mathbf{e}_2 + y'\mathbf{e}_3 = \begin{bmatrix} x + iy & x' + iy' \\ -x' + iy' & x - iy \end{bmatrix} = \begin{bmatrix} z & w \\ -\bar{w} & \bar{z} \end{bmatrix}.$$

This Clifford algebra is associated to $\mathbb{V} = \mathbb{R}^2$ and we have

$$[c(y\mathbf{e}_1 + x'\mathbf{e}_2)]^2 = \begin{bmatrix} iy & x' \\ -x' & -iy \end{bmatrix}^2 = -(y^2 + x'^2)\mathbf{e}_0.$$

A complex Clifford algebra

3 For $\mathbb{V} = \mathbb{C}^2$, and $Q_2(z, w) = z^2 + w^2$, we take $c : \mathbb{C}^2 \mapsto \mathbb{C}^{2 \times 2}$ as

$$c(z, w) = \begin{bmatrix} 0 & z - iw \\ z + iw & 0 \end{bmatrix},$$

so that $\mathbb{C}_2 = \mathbb{C}^{2 \times 2}$ is a Clifford algebra associated to (\mathbb{C}^2, Q_2) .

Universal Clifford algebras

Some simplifications:

1. we will make no distinction between $\lambda 1_{\mathcal{A}} \in \mathcal{A}$ and $\lambda \in \mathbb{F}$;
2. similarly, no distinction between $c(x) \in \mathcal{A}$ and $x \in \mathbb{V}$.

Under these conventions, condition 3. of Definition 1.2. becomes

$$Q(x) = -x^2, \quad \text{for all } x \in \mathbb{V}.$$

Lemma 1.3

For all $x, y \in \mathbb{V}$, it holds

$$\mathcal{B}(x, y) = -\frac{1}{2}(xy + yx).$$

Immediate, since

$$-(x + y)^2 = Q(x + y) = 2\mathcal{B}(x, y) + Q(x) + Q(y) = 2\mathcal{B}(x, y) - x^2 - y^2.$$

Basis for a Clifford algebra - 1

Lemma 1.4

Let $\{\mathbf{e}_j, j = 1, \dots, n\}$ be an \mathcal{B} -orthonormal basis of \mathbb{V} . Then,

$$\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i = 2\mathbf{e}_j^2 \delta_{i,j}, \quad i, j = 1, \dots, n.$$

Theorem 1.5

Let (\mathcal{A}, c) be a Clifford algebra associated to the quadratic space (\mathbb{V}, Q) , and $\{\mathbf{e}_j, j = 1, \dots, n\}$ be an \mathcal{B} -orthonormal basis of \mathbb{V} . Then,

- 1 \mathcal{A} is spanned by all products

$$\mathbf{e}_1^{\alpha_1} \cdots \mathbf{e}_n^{\alpha_n}, \quad \alpha_j = 0, 1;$$

- 2 $\dim(\mathcal{A})$ is at most $2^{\dim(\mathbb{V})}$.

Basis for a Clifford algebra - 2

Since for an \mathcal{B} -orthonormal basis we have $\mathbf{e}_i \mathbf{e}_j = -\mathbf{e}_j \mathbf{e}_i$, $i \neq j$, we can re-order these basis elements as

$$\mathbf{e}_\emptyset = 1, \quad \mathbf{e}_A = \mathbf{e}_{i_1} \cdots \mathbf{e}_{i_k}, \quad 1 \leq i_1 < \cdots < i_k \leq n = \dim(\mathbb{V}).$$

By convention, $A = \{i_1, \dots, i_k\} \subset \{1, \dots, n\} := N$.

Remark: as a Clifford algebra, $\mathcal{C}\ell_{0,2}$ has dimension $4 = 2^2$ although associated to $\mathbb{V} = \mathbb{R}^3$. (Recall, $\mathbf{e}_1 \mathbf{e}_2 = \mathbf{e}_{1,2} = \mathbf{e}_3$).

Theorem 1.5

The dimension of a Clifford algebra $\mathbb{R}_{p,q} = (\mathcal{A}, c)$ associated to $\mathbb{R}^{p,q} = (\mathbb{R}^n, Q_{p,q})$ is

- 1 $\dim(\mathbb{R}_{p,q}) = 2^{p+q-1}$ if
 - $p - q - 1 \equiv 0 \pmod{4}$;
 - $p + q$ is odd;
 - $\mathbf{e}_N = \mathbf{e}_1 \cdots \mathbf{e}_n \in \mathbb{R}$.
- 2 $\dim(\mathbb{R}_{p,q}) = 2^{p+q}$, otherwise.

Universal Clifford algebras

Whenever $\dim(\mathcal{A}) = 2^{\dim(\mathbb{V})}$ we say \mathcal{A} is a **universal Clifford algebra**. This implies that each product

$$\mathbf{e}_i \mathbf{e}_j$$

is a new element in the basis of the algebra.

\mathbb{H} is **not** a universal Clifford algebra as $\mathbf{e}_1 \mathbf{e}_2 = \mathbf{e}_3$.

For every quadratic space (\mathbb{V}, Q) there exists a universal Clifford algebra (\mathcal{A}, c) (i.e., $\dim(\mathcal{A}) = 2^n$).

\mathbb{Z}_2 -grading

We have for $x \in \mathcal{A}$ that

$$x = \sum_{A \subset N} x_A \mathbf{e}_A, \quad x_A \in \mathbb{F}.$$

We now decompose \mathcal{A} into

$$\mathcal{A}^+ : \sum_{|A| \text{ even}} x_A \mathbf{e}_A, \quad \mathcal{A}^- : \sum_{|A| \text{ odd}} x_A \mathbf{e}_A.$$

Then

- \mathcal{A}^+ is again a Clifford algebra, with $\dim(\mathcal{A}^+) = 2^{n-1}$. Furthermore, $\mathbb{F} \subset \mathcal{A}^+$;
- \mathcal{A}^+ is not anymore an algebra but $\mathbb{V} \subset \mathcal{A}^-$;
- $\mathcal{A} = \mathcal{A}^+ \oplus \mathcal{A}^-$ and the following multiplication rules hold

$$\mathcal{A}^+ \mathcal{A}^+ = \mathcal{A}^- \mathcal{A}^- = \mathcal{A}^+, \quad \mathcal{A}^+ \mathcal{A}^- = \mathcal{A}^- \mathcal{A}^+ = \mathcal{A}^-;$$

- $x = \sum_{k=0}^{2^n} [x]_k$, where $[x]_k := \sum_{|A|=k} x_A \mathbf{e}_A$.

Universal real Clifford algebra $\mathbb{R}_{p,q}$

In what follows, let $\mathbb{R}_{p,q}$ be the universal real Clifford algebra associated to the quadratic space $\mathbb{R}^{p,q}$.

- $\mathbb{R}_{n,0}, \mathbb{R}_{0,n}$ are real Clifford algebras associated to the Euclidean space \mathbb{R}^n ;
- $\mathbb{R}_{p,q}$, ($p, q \neq 0$) are called **Lorentzian algebras**;
- \mathbb{H} is not a universal Clifford algebra, since

$$\mathbb{H} \cong \mathbb{R}_{0,2} \cong \mathbb{R}_{0,3}^+$$

Witt basis in \mathbb{R}^{2n} (Sommen's trick)

We use a quadratic form $Q_{n,n}$ and associate an \mathcal{B} -orthonormal basis $\{\mathbf{e}_j, \epsilon_j, j = 1, \dots, n\}$, that is

$$\mathbf{e}_j^2 = -1, \quad \epsilon_j^2 = +1,$$

$$\mathbf{e}_i \mathbf{e}_j + \mathbf{e}_j \mathbf{e}_i, \quad \epsilon_i \epsilon_j + \epsilon_j \epsilon_i, \quad i \neq j$$

$$\mathbf{e}_i \epsilon_j + \epsilon_j \mathbf{e}_i.$$

Construct

$$\mathbf{f}_j = \frac{1}{2}(\epsilon_j + \mathbf{e}_j), \quad \mathbf{f}_j^\dagger = \frac{1}{2}(\epsilon_j - \mathbf{e}_j).$$

Then

- $\mathbf{f}_j^2 = (\mathbf{f}_j^\dagger)^2 = 0$;
- $\mathbf{f}_j + \mathbf{f}_j^\dagger = \epsilon_j, \quad \mathbf{f}_j - \mathbf{f}_j^\dagger = \mathbf{e}_j$;

Usage:

- Super-algebras: $\partial_{z_j} \mathbf{f}_j + \partial_{\bar{z}_j} \mathbf{f}_j^\dagger, \quad z_j = x_j \epsilon_j + y \mathbf{e}_j$;
- Factorisation of the heat operator $\partial_t - \Delta$ in terms of 1st order operators.

Ideas of other (future) applications

Lemma 1.6

$$\mathbb{R}_{1,n+1} = \mathbb{R}_{0,n} \otimes_{\mathbb{R}} \mathbb{R}_{1,1},$$

where $\mathbb{R}_{1,1}$ is spanned by $\{1, \mathbf{e}_+, \mathbf{e}_-, \mathbf{e}_+ \mathbf{e}_-\}$.

This allows for the imbedding of the vectorial space \mathbb{R}^n into the quadratic sp. $\mathbb{R}^{1,n+1}$:

$$(x_1, \dots, x_n) \mapsto \left(x_1, \dots, x_n, \frac{1 - |x|^2}{2}, \frac{1 + |x|^2}{2} \right)$$

with

$$ds^2 = \sum_j dx_j^2 \leftrightarrow dT^2 = \sum_j dX_j^2$$

Euclidean metric

hyperbolic metric

whereas $X_j = x_j$, $X_{n+1} = \frac{1 - |x|^2}{2}$, and $T = \frac{1 + |x|^2}{2}$.

References

- [1] Gilbert, J. E., and Murray, M., *Clifford algebras and Dirac operators in harmonic analysis*, Cambridge University Press, **26**, 1991.
- [2] Delanghe R., Sommen, F., and Souček, V., *Clifford Algebra and Spinor-Valued Functions*, Kluwer Academic Publishers Dordrecht, **83**, 1992.

Acknowledgments

Thank you for your attention!

This work was supported by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), reference UIDB/04106/2020.

