

Introduction to hypercomplex analysis

3rd lecture

P. Cerejeiras

CIDMA and Departamento de Matemática
Universidade de Aveiro
pceres@ua.pt

Summer School *Modern Problems in PDEs and Applications*
August 23- September 02, 2023

Right Clifford modules

- Analysis in terms of 1st order operators

Dirac (\mathbb{R}^n)

$$\partial = \sum_j \mathbf{e}_j \partial_{x_j}$$

Cauchy – Riemann (\mathbb{R}^{n+1})

$$D = \partial_{x_0} + \partial$$

- Linearity w.r.t. $\mathbb{R}_{p,q}$ -scalars: if $f(x) = \sum_A f_A(x) \mathbf{e}_A$, $x \in \Omega \subset \mathbb{R}^n$ then

$$\partial f = 0 \quad \Rightarrow \quad \partial(\lambda f) = \sum_{j,i,A} \mathbf{e}_i \mathbf{e}_j \mathbf{e}_A \lambda_i \partial_{x_j} f_A = (?).$$

Definition 3.1.

A right unitary module over $\mathbb{R}_{p,q}$ (**right Clifford module**) is a vector space \mathbb{V} with an algebra morphism $R : \mathbb{R}_{p,q} \rightarrow \text{End}(\mathbb{V})$, $a \mapsto R(a)$, s.t.

- $R(ab + c) = R(b)R(a) + R(c)$;
- $R(1) = \text{Id}$;

Examples

1 $\mathbb{V} = \mathbb{C}_n$;

$$R(a)x = xa, \quad x, a \in \mathbb{C}_n.$$

2 \mathbb{V} is a vector space of functions $f : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}_{p,q}$;

$$R(a)f = g \quad x \mapsto R(a)f(x) = f(x)a =: g(x), \quad x \in \Omega, a \in \mathbb{R}_{p,q}.$$

Functions spaces of $\mathbb{R}_{p,q}$ -valued functions are [right Clifford modules](#).

Banach right Clifford modules

Definition 3.2.

A function space \mathbb{V} is a **Banach right Clifford module** when

- \mathbb{V} is right Clifford module;
- \mathbb{V} is a Banach space endowed with a norm $\|\cdot\|$;
- there exists a constant $C > 0$ s.t. for all $f \in \mathbb{V}$, $a \in \mathbb{R}_{p,q}$,

$$\|R(a)f\| = \|fa\| \leq C|a|\|f\|,$$

where $|a|^2 = \sum_A |a_A|^2$.

Example: $L^p(\Omega, \mathbb{C}_n)$ spaces, $1 \leq p < \infty$, with norm

$$\|f\|_p := \left(\sum_A \left(\int_{\Omega} |f_A(x)|^p dx \right)^{1/p} \right) < \infty$$

Hilbert right Clifford modules

Definition 3.3.

Given a Hilbert space \mathcal{H} endowed with a inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, we say that

$$\mathbb{V} := \mathcal{H} \otimes_{\mathbb{R}} \mathbb{R}_{0,n}$$

is a **Hilbert right Clifford module**.

Two types of "inner products" on \mathbb{V} :

- Hermitean form

$$\langle\langle f, g \rangle\rangle = \langle\langle \sum_A f_A \mathbf{e}_A, \sum_B g_B \mathbf{e}_B \rangle\rangle := \sum_{A,B} \langle f_A, g_B \rangle_{\mathcal{H}} \bar{\mathbf{e}}_A \mathbf{e}_B.$$

Remark that this form is sesquilinear, linear on the 2nd argument, **but** not positive definite;

- Inner product

$$\langle f, g \rangle := [\langle\langle f, g \rangle\rangle]_0 = \sum_A \langle f_A, g_A \rangle_{\mathcal{H}} \in \mathbb{C}.$$

Functionals

Lemma 3.4. (Schwarz' formula)

For all $f, g \in \mathbb{V} = L^2(\Omega) \otimes \mathbb{R}_{0,n}$, a Hilbert right Clifford module, then

$$|\langle\langle f, g \rangle\rangle| \leq 2^{n/2} \|f\|_2 \|g\|_2.$$

Given a Banach right Clifford module \mathbb{V} we obtain its dual \mathbb{V}^* as the set of all $\varphi : \mathbb{V} \rightarrow \mathbb{C}_n$ for which

$$f = \sum_A f_A \mathbf{e}_A \mapsto \varphi(f) := \int_{\Omega} \overline{\varphi(x)} f(x) dx.$$

Theorem 3.5. (Riesz' representation theorem - BDS, 1982)

For every continuous linear functional $\varphi \in \mathbb{V}^*$ there exists a unique $g_{\varphi} \in \mathbb{V}$ such that

$$f \mapsto \varphi(f) := \langle\langle g_{\varphi}, f \rangle\rangle = \sum_{A,B} \overline{\mathbf{e}_A \mathbf{e}_B} \left[\int_{\Omega} \overline{\varphi_A(x)} f_B(x) dx \right].$$

Reproducing kernels in Hilbert right Clifford modules

Let $K = K(\cdot, \cdot)$ be a reproducing kernel of $\mathcal{H} \otimes \mathbb{R}_{0,n}$, i.e.

- $K_x = K(x, \cdot) \in \mathcal{H} \otimes \mathbb{R}_{0,n}$;
- for all $f \in \mathcal{H} \otimes \mathbb{R}_{0,n}$,

$$x \mapsto f(x) = \langle\langle K_x, f \rangle\rangle = \int_{\Omega} \overline{K(x, y)} f(y) dy, \quad \text{for all } x \in \Omega.$$

Reconstruction via interpolation spaces

1 $\mathbb{V}_M := \text{Span}\{K_{x_j}, \quad x_j \in \Omega, j = 1, \dots, M\}$ with

$$\mathbb{V}_M \ni u = \sum_j K_{x_j} c_j, \quad \underline{c} = (c_1, \dots, c_M) \in (\mathbb{C}_n)^M.$$

2 $\mathbb{K} := [\langle\langle K_{x_i}, K_{x_j} \rangle\rangle]_{i,j=1}^M$

- allows for $\langle\langle u, u \rangle\rangle = \underline{c}^* \mathbb{K} \underline{c}$;
- but what does it mean \mathbb{K} positive define?

Quasi-determinants and Schur complements

The Gram matrix \mathbb{K} is hermitean and we have the positivity of the all sub-matrices $\mathbb{K}_m = [\langle\langle K_{x_i}, K_{x_j} \rangle\rangle]_{i,j=1}^m$ where $m \leq M$.

This positiviness condition implies that the corresponding [Schur complements](#)

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} 1 & -A^{-1}B \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ CA^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & \underbrace{D - CA^{-1}B}_{\text{quasi-determinant}} \end{pmatrix}.$$

are positive and, consequently, so are their quasi-determinants; further, they satisfy the heredity principle.

This ensures that the quasi-determinant of the \mathbb{K} is non-zero and the system

$$\mathbb{K}\underline{c} = \underline{f}$$

has a unique solution.

Kreĭn spaces

What about the case of signature spaces (real case)? $\mathbb{R}_{p,q}$ ($p, q \neq 0$).

Quadratic space $\mathbb{R}^{p,q}$ can be split into $\mathbb{R}^{p,q} = \mathbb{R}^{p,0} \oplus \mathbb{R}^{0,q}$.

Definition 3.6.

Given a right-linear module $(\mathbb{V}, \langle\!\langle \cdot, \cdot \rangle\!\rangle)$, that is, \mathbb{V} endowed with a sesquilinear form $\langle\!\langle \cdot, \cdot \rangle\!\rangle$, we define its anti-module as $(\mathbb{V}, -\langle\!\langle \cdot, \cdot \rangle\!\rangle)$.

- Obviously, if $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ is a positive form, i.e.

$$[\langle\!\langle x, x \rangle\!\rangle]_0 > 0, \quad \text{for all non-zero } x \in \mathbb{V},$$

then its anti-module is endowed with a negative form

$$[\langle\!\langle x, x \rangle\!\rangle]_0 < 0, \quad \text{for all non-zero } x \in \mathbb{V}.$$

Clifford-Krein modules

Definition 3.7.

A right-linear module $(\mathbb{V}, \langle\langle \cdot, \cdot \rangle\rangle)$, (where $\langle\langle \cdot, \cdot \rangle\rangle$ is a sesquilinear form) is called a **Clifford-Krein right-module** if

- (a) it admits a decomposition into a **positive** and a **negative Hilbert modules**

$$\mathbb{V} = \mathbb{V}_+ \oplus \mathbb{V}_-; \quad (1)$$

- (b) the decomposition is **orthogonal** with respect to the sesquilinear form, i.e.

$$\langle\langle v_+, v_- \rangle\rangle = 0, \quad \text{for every } (v_+, v_-) \in \mathbb{V}_+ \times \mathbb{V}_-. \quad (2)$$

- The decomposition (1) is called a **fundamental decomposition**.
- The positivity is induced from the secondary linear form $\langle \cdot, \cdot \rangle := [\langle\langle \cdot, \cdot \rangle\rangle]_0$;
- A Clifford-Krein module is an inner product space which is non-degenerate, decomposable, and complete. In general the positive and negative modules \mathbb{V}_\pm are infinite-dimensional right Hilbert modules which are orthogonal to each other w.r.t. $\langle\langle \cdot, \cdot \rangle\rangle$.

A word of caution

Theorem 3.8. (Moore-Aronszajn Theorem)

A $K : \Omega \times \Omega \rightarrow \mathbb{R}_{0,n}$ be a Hermitean positive kernel. Then there exists a unique reproducing kernel Hilbert module which has K as its reproducing kernel.

In general, a Hermitean kernel is not a reproducing kernel of a Clifford-Krein module.

Also, a given reproducing kernel may be associated to different Clifford-Krein modules.

A counter-example (courtesy of L. Schwartz)

Let \mathbb{V} be a Banach bi-module that does not allow for a Hilbert structure, and consider $\mathbb{V}' \times \mathbb{V}$.

Then the kernel acting on $(\mathbb{V}' \times \mathbb{V}) \times (\mathbb{V}' \times \mathbb{V})$ as

$$k((\mathbf{e}'_1, \mathbf{e}_1), (\mathbf{e}'_2, \mathbf{e}_2)) = \mathbf{e}'_1(\mathbf{e}_2) + \mathbf{e}'_2(\mathbf{e}_1)$$

cannot be written as $k = k_+ - k_-$.

If it would be possible, then $\mathbb{V} \times \mathbb{V}' = \mathcal{H}_+ \oplus \mathcal{H}_-$ and \mathbb{V} could be endowed with a Hilbert structure.

This means that a sesquilinear form can only induces a kernel if it can be written as $k = k_1 - k_2$ with k_1, k_2 positive kernels.

Kolmogorov decomposition

When does a Hermitean kernel **is** a reproducing kernel of a Clifford-Krein module?

Definition 3.9.

A Hermitean kernel $K = [K_{i,j}]_{i,j \in \mathbb{J}}$, $K_{i,j} \in \mathcal{L}(\mathbb{V}_i, \mathbb{V}_j)$, with $K_{i,j} = K_{j,i}^*$, admits a **Kolmogorov decomposition** if there exists a Clifford Krein-module \mathcal{K} and operators $V_j \in \mathcal{L}(\mathbb{V}_j, \mathcal{K})$, $j \in \mathbb{J}$, such that

- 1 $K_{i,j} = V_i^* V_j$, $i, j \in \mathbb{J}$;
- 2 $\mathcal{K} = \vee_j V_j \mathbb{V}_j$.

Theorem 3.10.

Let K be a Hermitean kernel then the following statements are equivalent

- 1 K has a Kolmogorov decomposition;
- 2 K has a nonnegative majorant;
- 3 $K = K_+ - K_-$ for some Hermitean kernels $K_+ \geq 0$, $K_- \geq 0$.

In this case, the decomposition in point (3) can be chosen such that the only Hermitean kernel M such that $0 \leq M \leq M_{\pm}$ is $M = 0$.

Unique factorisation property

Definition 3.11.

A self-adjoint operator $C \in \mathcal{L}(\mathcal{K})$ on a Clifford-Krein module has the unique factorisation property if for any two factorisations

$$C = A_1 A_1^* = A_2 A_2^*,$$

where $A_j \in \mathcal{L}(\mathcal{K}_j, \mathcal{K})$, with $\ker A_j = \{0\}$, for Clifford-Krein modules $\mathcal{K}_j, j = 1, 2$, there exists an isomorphism $U \in \mathcal{L}(\mathcal{K}_1, \mathcal{K}_2)$ such that $A_1 = A_2 U$.

Theorem 3.12.

Let K be a Hermitean kernel with nonnegative majorant ℓ and Gram operator \mathbb{K} . Any two ℓ -continuous Kolmogorov decompositions are equivalent if and only if K has the unique factorisation property.

Evaluations mappings

Theorem 3.12.

Let \mathcal{K} be a Clifford-Krein module of functionals defined on a set Ω and taking values in a Clifford-Krein module \mathbb{V} . Then

- 1 \mathcal{K} has a reproducing kernel if and only if all evaluation mappings $E(x)$, $x \in \Omega$ belong to $\mathcal{L}(\mathcal{K}, \mathbb{V})$;
- 2 the reproducing kernel is given by

$$K(x, y) = E(x)E(y)^*, \quad x, y \in \Omega,$$

and uniquely determined by the module \mathcal{K} .

Remarks:

- the existence of a reproducing kernel is equivalent to the existence of a Kolmogorov decomposition with $V_j = E_j^*$.
- The reproducing kernel Clifford-Krein module is not necessarily unique, i.e. we can have two Clifford-Krein modules with the same reproducing kernel.

Uniqueness

Uniqueness of the RK Clifford-Krein module is obtained by imposing that the Krein module has an essentially unique Kolmogorov decomposition.

Theorem 3.13.

If $K(x, y), x, y \in \Omega$ is a Hermitean kernel with values in $\mathcal{L}(\mathcal{K})$ (where \mathcal{K} is a Krein module), then the following statements are equivalent:

- ① $K(x, y)$ is the RK for some Krein module \mathbb{V} of functions on Ω .
- ② $K(x, y)$ has a nonnegative majorant $\ell(x, y)$ on $\Omega \times \Omega$.
- ③ $K(x, y) = K_+(x, y) - K_-(x, y)$ for some nonnegative kernels $K_{\pm}(x, y)$ on $\Omega \times \Omega$.

Furthermore, under the above conditions we have

- ① For a given nonnegative majorant $\ell(x, y)$ for $K(x, y)$ there is a Krein module \mathbb{V} with RK $K(x, y)$ which is contained continuously in the Hilbert module \mathcal{H}_{ℓ} where K has a nonnegative majorant $\ell(x, y)$.
- ② There is a continuous self-adjoint operator J on \mathcal{H}_{ℓ} such that $J : \ell(x, \cdot)f \mapsto k(x, \cdot)f, x \in \Omega, f \in \mathcal{K}$. The module \mathcal{V} is unique if and only if J has the unique factorization property.

An example

The Clifford module $L^2(\Omega; \mathbb{R}_{p,q}) := L^2(\Omega) \otimes_{\mathbb{R}} \mathbb{R}_{p,q}$, where $\Omega \subset \mathbb{R}^n$, endowed with the **sesquilinear form**

$$\begin{aligned}\langle\!\langle f, g \rangle\!\rangle_2 &:= \sum_{A,B} \langle f_A, g_B \rangle_{L^2(\Omega)} \bar{e}_A e_B \\ &= \sum_{A,B} \left(\int_{\Omega} f_A(x) g_B(x) dx \right) \bar{e}_A e_B\end{aligned}$$

is a **Krein module**, with **inner product**

$$\begin{aligned}\langle f, g \rangle_2 &:= [\langle\!\langle f, g \rangle\!\rangle_2]_0 \\ &= \sum_{A: \#A^+ \text{ even}} \langle f_A, g_A \rangle_{L^2(\Omega)} - \sum_{A: \#A^+ \text{ odd}} \langle f_A, g_A \rangle_{L^2(\Omega)}.\end{aligned}$$

For each $f \in L^2(\Omega; \mathbb{R}_{p,q}) := L^2(\Omega) \otimes_{\mathbb{R}} \mathbb{R}_{p,q}$ we have the **fundamental decomposition**

$$f = \underbrace{\sum_{A: \#A^+ \text{ even}} f_A e_A}_{=f_+} - \underbrace{\sum_{A: \#A^+ \text{ odd}} f_A e_A}_{=f_-}.$$

Ultrahyperbolic Dirac operator

Consider the ultrahyperbolic Dirac operator

$$\partial_{p,q} = \partial_T - \partial_X,$$

which factorizes the ultrahyperbolic Laplace operator

$$\partial_{p,q}^2 = \Delta_T - \Delta_X,$$

where $T = \sum_{i=1}^p e_i x_i$ and $X = \sum_{i=p+1}^{p+q} e_i x_i$.

Additionally, we assume the ultrahyperbolic monogenic functions to be α -homogeneous, that is,

$$\begin{cases} \partial_{p,q} u = 0, \\ \mathbb{E} u = \alpha u, \end{cases}$$

where $\mathbb{E} = \sum_{i=1}^{p+q} x_i \partial_i$ is the Euler operator. Then

$$u(T, X) = \partial_{p,q} [|T|^{\alpha+1} f(|X|^2) \epsilon V_\lambda(\epsilon) V_\kappa(\omega)]$$

where $f(\tau) = f(|X|^2)$ satisfies a hypergeometric differential equation.

RK Clifford-Krein module

Consider the reproducing kernel

$$k_c(z, w) = \sum_{(\lambda, \kappa) \in \text{supp}(c): |\lambda| + |\kappa| = 0}^{\infty} \overline{\Psi_{\lambda, \kappa}(\omega_z, \epsilon_z)} \Psi_{\lambda, \kappa}(\omega_w, \epsilon_w) c_{\lambda, \kappa},$$

where $\Psi_{\lambda, \kappa}(\omega, \epsilon) := [A(r_X) + \omega \epsilon B(r_X)] V_{\lambda}(\epsilon) V_{\kappa}(\omega)$.

This kernel k_c defines the RK Clifford-Krein module \mathcal{K}_c containing all functions

$$f(z) = \sum_{(\lambda, \kappa) \in \text{supp}(c): |\lambda| + |\kappa| = 0}^{\infty} \Psi_{\lambda, \kappa}((\omega_z, \epsilon_z), (\omega_w, \epsilon_w)) f_{\lambda, \kappa},$$

with $f_{\lambda, \kappa} \in \mathbb{R}_{p, q}$, for which it holds

$$\|f\|_c^2 := \sum_{(\lambda, \kappa) \in \text{supp}(c): |\lambda| + |\kappa| = 0}^{\infty} \frac{\|f_{\lambda, \kappa}\|_{\mathbb{R}_{p, q}}^2}{c_{\lambda, \kappa}} < \infty.$$

Interpolation

We now consider the interpolation problem: *Given the nodes and values $(z_j, w_j), j \in \mathbb{J}$ we want to construct a function $f \in \mathcal{K}_c$, such that $f(z_j) = w_j$, for all $j \in \mathbb{J}$.*

$$w_j = f(z_j) = \sum_{(\lambda, \kappa) \in \text{supp}(c): |\lambda| + |\kappa| = 0}^{\infty} \Psi_{\lambda, \kappa}(\omega_{z_j}, \epsilon_{z_j}) f_{\lambda, \kappa}, \quad f_{\lambda, \kappa} \in \mathbb{R}_{p, q}.$$

Theorem 3.14.

The interpolation problem has a unique solution $f \in \mathcal{H}_c$ whereby the coefficients $f_{\lambda, \kappa}$ satisfy $f_{\lambda, \kappa} = f_{\lambda, \kappa}^+ - f_{\lambda, \kappa}^-$ and $f_{\lambda, \kappa}^+, f_{\lambda, \kappa}^-$ are solutions of

$$\underline{w}^+ = (\Psi_{\lambda_l, \kappa_l}^+(\omega_{z_j}, \epsilon_{z_j}))_{j, l} \underline{f_{\lambda, \kappa}^+}, \quad \underline{w}^- = (\Psi_{\lambda_l, \kappa_l}^-(\omega_{z_j}, \epsilon_{z_j}))_{j, l} \underline{f_{\lambda, \kappa}^-}.$$

References

- [1] Brackx, F. Delanghe R., and Sommen, *Clifford Analysis*, Research Notes in Mathematics, **76**, Pitman Advanced Publishing, 1982.
- [2] O. Teichmüller, *Operatoren im Wachsschen Raum*, J. Reine Angew. Math., **174**. (1936), 73-124.
- [3] L. Schwartz, *Sous espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)*, J. Analyse Math., **13**, (1964), 115-256.
- [4] T. Ya. Azizov and I.S. Iohvidov, *Linear operators in spaces with an indefinite metric*, John Wiley, New York, 1989.
- [5] I. Gelfand, S. Gelfand, V. Retakh, and R. L. Wilson, *Quasideterminants, Advances in Mathematics*, **193**, (2005), 56-141.
- [6] D. Alpay, PC, U. Kähler, *Krein reproducing kernel modules in Clifford analysis*, J. Analyse Math., **143**, (2021), 253-288.

Acknowledgments

Thank you for your attention!

This work was supported by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), reference UIDB/04106/2020.

