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Right Clifford modules

Analysis in terms of 1st order operators

Dirac (Rn) Cauchy − Riemann (Rn+1)

∂ =
∑

j

ej∂xj D = ∂x0 + ∂

Linearity w.r.t. Rp,q-scalars: if f (x) =
∑

A fA(x)eA, x ∈ Ω ⊂ Rn then

∂f = 0 ⇒ ∂(λf ) =
∑
j,i,A

eiejeAλi∂xj fA = (?).

Definition 3.1.

A right unitary module over Rp,q (right Clifford module) is a vector space V
with an algebra morphism R : Rp,q → End(V), a 7→ R(a), s.t.

R(ab + c) = R(b)R(a) + R(c);

R(1) = Id ;
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Examples

1 V = Cn;
R(a)x = xa, x , a ∈ Cn.

2 V is a vector space of functions f : Ω ⊂ Rn → Rp,q ;

R(a)f = g x 7→ R(a)f (x) = f (x)a =: g(x), x ∈ Ω, a ∈ Rp,q .

Functions spaces of Rp,q-valued functions are right Clifford modules.
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Banach right Clifford modules

Definition 3.2.

A function space V is a Banach right Clifford module when

V is right Clifford module;

V is a Banach space endowed with a norm ∥ · ∥;
there exists a constant C > 0 s.t. for all f ∈ V, a ∈ Rp,q ,

∥R(a)f∥ = ∥fa∥ ≤ C|a|∥f∥,

where |a|2 =
∑

A |aA|2.

Example: Lp(Ω,Cn) spaces, 1 ≤ p < ∞, with norm

∥f∥p :=
∑

A

(∫
Ω

|fA(x)|pdx
)1/p

< ∞
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Hilbert right Clifford modules

Definition 3.3.

Given a Hilbert space H endowed with a inner product ⟨·, ·⟩ : H×H → C, we
say that

V := H⊗R R0,n

is a Hilbert right Clifford module.

Two types of "inner products" on V :

Hermitean form

⟨⟨f , g⟩⟩ = ⟨⟨
∑

A

fAeA,
∑

B

gBeB⟩⟩ :=
∑
A,B

⟨fA, gB⟩H eAeB.

Remark that this form is sesquilinear, linear on the 2nd argument, but
not positive definite;

Inner product

⟨f , g⟩ := [⟨⟨f , g⟩⟩]0 =
∑

A

⟨fA, gA⟩H ∈ C.
5 / 22



Introduction to hypercomplex analysis

Clifford analysis

Functionals

Lemma 3.4. (Schwarz’ formula)

For all f , g ∈ V = L2(Ω)⊗ R0,n, a Hilbert right Clifford module, then∣∣⟨⟨f , g⟩⟩∣∣ ≤ 2n/2∥f∥2∥g∥2.

Given a Banach right Clifford module V we obtain its dual V∗ as the set of all
φ : V → Cn for which

f =
∑

A

fAeA 7→ φ(f ) :=
∫
Ω

φ(x)f (x)dx .

Theorem 3.5. (Riesz’ representation theorem - BDS, 1982)

For every continuous linear functional φ ∈ V∗ there exists a unique gφ ∈ V
such that

f 7→ φ(f ) := ⟨⟨gφ, f ⟩⟩ =
∑
A,B

eAeB

[ ∫
Ω

φA(x)fB(x)dx
]
.
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Reproducing kernels in Hilbert right Clifford
modules
Let K = K (·, ·) be a reproducing kernel of H⊗ R0,n, i.e.

Kx = K (x , ·) ∈ H⊗ R0,n;

for all f ∈ H⊗ R0,n,

x 7→ f (x) = ⟨⟨Kx , f ⟩⟩ =
∫
Ω

K (x , y)f (y)dy , for all x ∈ Ω.

Reconstruction via interpolation spaces
1 VM := Span{Kxj , xj ∈ Ω, j = 1, . . . ,M} with

VM ∋ u =
∑

j

Kxj cj , c = (c1, . . . , cM) ∈ (Cn)
M .

2 K := [⟨⟨Kxi ,Kxj ⟩⟩]
M
i,j=1

allows for ⟨⟨u, u⟩⟩ = c∗Kc;

but what does it means K positive define?
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Quasi-determinants and Schur complements

The Gram matrix K is hermitean and we have the positivity of the all
sub-matrices Km = [⟨⟨Kxi ,Kxj ⟩⟩]

m
i,j=1 where m ≤ M.

This positiviness condition implies that the corresponding Schur
complements(

A B
C D

)(
1 −A−1B
0 1

)
=

(
1 0

CA−1 1

)(
A 0
0 D − CA−1B

)
.︸ ︷︷ ︸

quasi−determinant

are positive and, consequently, so are their quasi-determinants; further, they
satisfy the heredity principle.

This ensures that the quasi-determinant of the K is non-zero and the system

Kc = f

has a unique solution.
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Kreı̌n spaces

What about the case of signature spaces (real case)? Rp,q (p, q ̸= 0).

Quadratic space Rp,q can be split into Rp,q = Rp,0 ⊕ R0,q .

Definition 3.6.

Given a right-linear module (V, ⟨⟨·, ·⟩⟩), that is, V endowed with a sesquilinear
form ⟨⟨·, ·⟩⟩, we define its anti-module as (V,−⟨⟨·, ·⟩⟩).

Obviously, if ⟨⟨·, ·⟩⟩ is a positive form, i.e.

[⟨⟨x , x⟩⟩]0 > 0, for all non-zero x ∈ V,

then its anti-module is endowed with a negative form

[⟨⟨x , x⟩⟩]0 < 0, for all non-zero x ∈ V.
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Clifford-Krein modules

Definition 3.7.

A right-linear module (V, ⟨⟨·, ·⟩⟩), (where ⟨⟨·, ·⟩⟩ is a sesquilinear form) is called
a Clifford-Krein right-module if

(a) it admits a decomposition into a positive and a negative Hilbert modules

V = V+ ⊕ V−; (1)

(b) the decomposition is orthogonal with respect to the sesquilinear form,
i.e.

⟨⟨v+, v−⟩⟩ = 0, for every (v+, v−) ∈ V+ × V−. (2)

The decomposition (1) is called a fundamental decomposition.

The positivity is induced from the secondary linear form ⟨·, ·⟩ := [⟨⟨·, ·⟩⟩]0;
A Clifford-Krein module is an inner product space which is
non-degenerate, decomposable, and complete. In general the positive
and negative modules V± are infinite-dimensional right Hilbert modules
which are orthogonal to each other w.r.t. ⟨⟨·, ·⟩⟩.
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A word of caution

Theorem 3.8. (Moore-Aronszajn Theorem)

A K : Ω× Ω → R0,n be a Hermitean positive kernel. Then there exists a
unique reproducing kernel Hilbert module which has K as its reproducing
kernel.

In general, a Hermitean kernel is not a reproducing kernel of a Clifford-Krein
module.

Also, a given reproducing kernel may be associated to different Clifford-Krein
modules.
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A counter-example (courtesy of L. Schwartz)

Let V be a Banach bi-module that does not allow for a Hilbert structure, and
consider V′ × V.

Then the kernel acting on (V′ × V)× (V′ × V) as

k((e′
1, e1), (e′

2, e2)) = e′
1(e2) + e′

2(e1)

cannot be written as k = k+ − k−.

If it would be possible, then V×V′ = H+ ⊕H− and V could be endowed with
a Hilbert structure.

This means that a sesquilinear form can only induces a kernel if it can be
written as k = k1 − k2 with k1, k2 positive kernels.
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Kolmogorov decomposition
When does a Hermitean kernel is a reproducing kernel of a Clifford-Krein
module?

Definition 3.9.

A Hermitean kernel K = [Ki,j ]i,j∈J,Ki,j ∈ L(Vi ,Vj), with Ki,j = K ∗
j,i , admits a

Kolmogorov decomposition if there exists a Clifford Krein-module K and
operators Vj ∈ L(Vj ,K), j ∈ J, such that

1 Ki,j = V ∗
i Vj , i, j ∈ J;

2 K = ∨jVjVj .

Theorem 3.10.

Let K be a Hermitean kernel then the following statements are equivalent
1 K has a Kolmogorov decomposition;
2 K has a nonnegative majorant;
3 K = K+ − K− for some Hermitean kernels K+ ≥ 0,K− ≥ 0.

In this case, the decomposition in point (3) can be chosen such that the only
Hermitean kernel M such that 0 ≤ M ≤ M± is M = 0.

13 / 22



Introduction to hypercomplex analysis

Clifford analysis

Unique factorisation property

Definition 3.11.

A self-adjoint operator C ∈ L(K) on a Clifford-Krein module has the unique
factorisation property if for any two factorisations

C = A1A∗
1 = A2A∗

2 ,

where Aj ∈ L(Kj ,K), with kerAj = {0}, for Clifford-Krein modules Kj , j = 1, 2,
there exists an isomorphism U ∈ L(K1,K2) such that A1 = A2U.

Theorem 3.12.

Let K be a Hermitean kernel with nonnegative majorant ℓ and Gram operator
K. Any two ℓ-continuous Kolmogorov decompositions are equivalent if and
only if K has the unique factorisation property.
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Evaluations mappings

Theorem 3.12.

Let K be a Clifford-Krein module of functionals defined on a set Ω and taking
values in a Clifford-Krein module V. Then

1 K has a reproducing kernel if and only if all evaluation mappings
E(x), x ∈ Ω belong to L(K,V);

2 the reproducing kernel is given by

K (x , y) = E(x)E(y)∗, x , y ∈ Ω,

and uniquely determined by the module K.

Remarks:
the existence of a reproducing kernel is equivalent to the existence of a
Kolmogorov decomposition with Vj = E∗

j .
The reproducing kernel Clifford-Krein module is not necessarily unique,
i.e. we can have two Clifford-Krein modules with the same reproducing
kernel.
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Uniqueness
Uniqueness of the RK Clifford-Krein module is obtained by imposing that the
Krein module has an essentially unique Kolmogorov decomposition.

Theorem 3.13.

If K (x , y), x , y ∈ Ω is a Hermitean kernel with values in L(K) (where K is a
Krein module), then the following statements are equivalent:

1 K (x , y) is the RK for some Krein module V of functions on Ω.
2 K (x , y) has a nonnegative majorant ℓ(x , y) on Ω× Ω.
3 K (x , y) = K+(x , y)− K−(x , y) for some nonnegative kernels K±(x , y)

on Ω× Ω.

Furthermore, under the above conditions we have
i For a given nonnegative majorant ℓ(x , y) for K (x , y) there is a Krein

module V with RK K (x , y) which is contained continuously in the Hilbert
module Hℓ where K has a nonnegative majorant ℓ(x , y).

ii There is a continuous self-adjoint operator J on Hℓ such that
J : ℓ(x , ·)f 7→ k(x , ·)f , x ∈ Ω, f ∈ K. The module V is unique if and only if
J has the unique factorization property.
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An example
The Clifford module L2(Ω;Rp,q) := L2(Ω)⊗R Rp,q , where Ω ⊂ Rn, endowed
with the sesquilinear form

⟨⟨f , g⟩⟩2 :=
∑
A,B

⟨fA, gB⟩L2(Ω) eAeB

=
∑
A,B

(∫
Ω

fA(x)gB(x)dx
)

eAeB

is a Krein module, with inner product

⟨f , g⟩2 := [⟨⟨f , g⟩⟩2]0

=
∑

A:#A+even

⟨fA, gA⟩L2(Ω) −
∑

A:#A+odd

⟨fA, gA⟩L2(Ω) .

For each f ∈ L2(Ω;Rp,q) := L2(Ω)⊗R Rp,q we have the fundamental
decomposition

f =
∑

A:#A+even

fAeA︸ ︷︷ ︸
=f+

−
∑

A:#A+odd

fAeA︸ ︷︷ ︸
=f−

.
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Ultrahyperbolic Dirac operator

Consider the ultrahyperbolic Dirac operator

∂p,q = ∂T − ∂X ,

which factorizes the ultrahyperbolic Laplace operator

∂2
p,q = ∆T −∆X ,

where T =
∑p

i=1 eixi and X =
∑p+q

i=p+1 eixi .

Additionally, we assume the ultrahyperbolic monogenic functions to be
α−homogeneous, that is, {

∂p,qu = 0,
Eu = αu,

where E =
∑p+q

i=1 xi∂i is the Euler operator. Then

u(T ,X ) = ∂p,q
[
|T |α+1f (|X |2)ϵVλ(ϵ)Vκ(ω)

]
where f (τ) = f (|X |2) satisfies a hypergeometric differential equation.
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RK Clifford-Krein module
Consider the reproducing kernel

kc(z,w) =
∞∑

(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ(ωz , ϵz)Ψλ,κ(ωw , ϵw )cλ,κ,

where Ψλ,κ(ω, ϵ) := [A(rX ) + ωϵB(rX )]Vλ(ϵ)Vκ(ω).

This kernel kc defines the RK Clifford-Krein module Kc containing all
functions

f (z) =
∞∑

(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ((ωz , ϵz), (ωw , ϵw ))fλ,κ,

with fλ,κ ∈ Rp,q , for which it holds

∥f∥2
c :=

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

∥fλ,κ∥2
|Rp,q |

cλ,κ
< ∞.
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Interpolation

We now consider the interpolation problem: Given the nodes and
values (zj ,wj), j ∈ J we want to construct a function f ∈ Kc , such that
f (zj) = wj , for all j ∈ J.

wj = f (zj) =
∞∑

(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ(ωzj , ϵzj )fλ,κ, fλ,κ ∈ Rp,q .

Theorem 3.14.
The interpolation problem has a unique solution f ∈ Hc whereby the
coefficients fλ,κ satisfy fλ,κ = f+λ,κ − f−λ,κ and f+λ,κ, f

−
λ,κ are solutions of

w+ = (Ψ+
λl ,κl

(ωzj , ϵzj ))j,l f+λ,κ, w− = (Ψ−
λl ,κl

(ωzj , ϵzj ))j,l f−λ,κ.
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