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Backgrounds on the Heisenberg group

The study of critical equations in the context of the stratified Lie
groups is a fast growing and fascinating topic. There are multiple
reasons behind this interest. On one hand, it is well known that the
Heisenberg group appears in various areas of physics and science,
such as quantum theory (uncertainty principle, commutation
relations), cf.

@ P. Cartier, Quantum mechanical commutation relations and theta functions,
Proc. Sympos. Pure Math. 9 (1966), 361-383.

@ P.P. Divakaran, Quantum theory as the representation theory of symmetries,
Physical Review Letters 79 (1997), 2159-2163.
in signal theory,

@ W. Schempp, Harmonic analysis on the Heisenberg nilpotent Lie group, with
applications to signal theory, Longman Scientific and Technical, Harlow,
Essex, 1986, 199 pp.

and theory of theta functions, cf. Cartier above and

@ S. Zelditch, Index and dynamics of quantized contact transformationgzga.
Inst. Fourier 47 (1997), 305-363. €




From a mathematical point of view, the main reason of the interest in
studying critical equations in this context is the strong connection
with the Yamabe problem on Cauchy—Riemann (CR) manifolds. We
refer for further details on this subject, e.g., to

a B. Bianchini, L. Mari, M. Rigoli, Yamabe type equations with sign—changing
nonlinearities on the Heisenberg group, and the role of Green functions, Recent
trends in nonlinear partial differential equations, I. Evolution problems,
115-136, Contemp. Math., 594, Amer. Math. Soc., Providence, RI, 2013.

ﬁ N. Garofalo, Gradient bounds for the horizontal p—Laplacian on a Carnot group
and some applications Manuscripta Math. 130 (2009), 375-385.

ﬁ N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313-356.

a N. Garofalo, E. Lanconelli, Existence and nonexistence results for semilinear
equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), 71-98.

ﬁ N. Garofalo, D. Vassilev, Symmetry properties of positive entire solutions of
Yamabe-type equations on groups of Heisenberg type, Duke Math. J A4
(2001), 411-448. v
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N. Garofalo, D. Vassilev, The non—linear Dirichlet problem and the CR
Yamabe problem, Boundary value problems for elliptic and parabolic operators
(Catania, 1998), Matematiche (Catania) 54 (1999), suppl., 75-93.

D. Jerison, J.M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar
curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983), 57-63,
Contemp. Math. 27, Amer. Math. Soc., Providence, RI, 1984.

D. Jerison, J.M. Lee, The Yamabe problem on CR manifolds, J. Differential
Geom. 25 (1987), 167-197.

A. Kristaly, Nodal solutions for the fractional Yamabe problem on Heisenberg
groups Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), 771-788.

F. Uguzzoni, A note on Yamabe-type equations on the Heisenberg group,
Hiroshima Math. J. 30 (2000), 179-189.




In the development of the theory of partial differential equations in
the Heisenberg group and, more generally, in sub—Riemanian
manifolds, it is important to explore new challenging problems as
well as to figure out, in this emerging variety of results, whether or
not the standard methods developed in the Euclidean spaces can be
adapted to this new context. This kind of analysis is the main scope of
this course.

Next I review some necessary background on the Heisenberg group.
Analysis on the Heisenberg group is very interesting because this
space is topologically Euclidean, but analytically non-Euclidean, and
so some basic tools, such as dilatations, must be developed again.
One of the main differences with the Euclidean case is the appearance
of the so-called homogeneous dimension Q = 2n + 2 in the
Heisenberg group. The number Q > 2n 4+ 1, which we introduce later,
plays a role analogous to the topological dimension in the Euclidean

context. For a complete treatment, we refer to
unipg
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J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493-512.

N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313-356.

G.P. Leonardi, S. Masnou, the isoperimetric problem in the Heisenberg group
H", Ann. Mat. Pura Appl. 184 (2005), 533-553.

A. Loiudice, Improved Sobolev inequalities on the Heisenberg group,
Nonlinear Anal. 62 (2005), 953-962.




Definition of the Heisenberg group

The Heisenberg group H" is the Lie group whose underlying
manifold is R?"+1,

H'={{=(z,1) e R*"* 2= (x,y) e R, 1 € R}
endowed with the non—Abelian group law
n
g0 = (z+2,t+7+2) (v — x)))
i=1

for all £, §’€]H[” W1th§ (z,t)= (x,y,t) and
¢ =, 7)=(¥,y,1). Clearly, O = (0,0) is the identity element of
H"* and for any £ € H", ¢~ = —¢.

7/113



The sub—Riemannian structure

The Heisenberg group is the simplest sub—Riemannian manifold that
is not Riemannian and the simplest noncommutative nilpotent Lie

group.

» The constrain on admissible
curves is given by a distribution
of planes, that is a distribution
that smoothly assigns to each point
a plane (inside the 3D tangent space).

» The admissible
curves are tangent to such a distribution.

A distribution on
H] o~ R3

unipg
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» Each pair of points of H" can be connected by at least one
admissible curve. From this fact one can define a distance
between two points £ and £ as the infimum of the length of all
the admissible curves between £ and &':
dec(&,¢') = inf{Length(y) | v admissible curve between & and £'}.
The celebrated theorem of Piotr-Zimmermann in 2015
completely describes the geodesics connecting two points.
» This metric space is not Riemannian. Indeed, the topological
dimension 2n + 1 is strictly less than the homogeneous
dimension Q = 2n + 2.

The unit ball in H!

unipg
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An equivalent norm

» The Kordnyi norm is given for £ = (z,¢) € H" by
r() = r(z.0) = (j2* + )%,

and is defined via the stratification property of H". Here | - | is
the Euclidean norm of the horizontal layer. The Kordnyi norm is
1-homogeneous with respect to the group of dilations. From the
computational viewpoint, the Kordnyi norm is easier to handle
compared to the Carnot—Carathéodory norm. However, all
homogeneous norms are equivalent in the context of Carnot
groups.

> We prefer to use the Kordnyi distance, since it is much easier to
compute than the Carnot—Carathéodory (CC) distance, even if it
does not reflect the sub-Riemannian structure of the Heisenberg

group. Despite this, the two metrics are closely related oo —
unipg
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An equivalent norm

» Interestingly, it was shown by Yang in 2013 that the L-gauge d(x)
— sometimes also called the Koranyi-Folland or Kaplan gauge —
can be replaced by the CC distance, and the Hardy inequality
remains valid with the same best constant p/(Q — p), where
Q = 2n + 2 is the homogeneous dimension of the n Heisenberg
group. Homogenoeous dimension or Hausdorff dimension Q.

» The corresponding distance, the so called Kordnyi distance, is
dg(£,€) = (€ o)

for all (£, ¢') € H" x H".

» This distance acts like the Euclidean distance in horizontal
directions and behaves like the square root of the
Euclidean distance in the missing direction.

i HEMATICS
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Properties of the Kordanyi norm

» Translation invariance w.r.t. left translations (7;),cm» given by
& no& forall{ € H".

» Homogeneity of degree 1 w.r.t. the family of dilations (6g)gr>0,
given by

or : € = (z,1) — (Rz,R*) for all ¢ € H",

since r(dr(€)) = r(Rz, R*t) = (|Rz|* + R*?)!/* = Rr(¢) for all
£ = (z1t) € H".

» The Jacobian determinant of dg : H" — H" is constant and equal
to R?"*+2, This is why the natural number Q = 2n + 2 is called
homogeneous dimension of H".
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The Lie algebra of left—invariant vector fields on H" is generated by
the vector fields

0 0 0 0
Xi= 2 42,2 vi=2 o2 1
_9
o

This basis satisfies the Heisenberg canonical commutation relations
(Xj, Vi) = —40uT, [Y;,Yi] = [X;, Xe] = [V}, T] = [X;, T] = 0.

In the span of {X;, Y;}/ | ~ R?" we consider the natural inner product
given by
n
(X,7),=>_ (@Y +¥Y)
j=1
for X = {¥/X; +FY;}2_, and ¥ = {y/X; + PV, }1_,. nipg
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The inner product (~, ) , produces the Hilbertian norm

Xl = (X’X)H
for the horizontal vector field X. The horizontal gradient of u is
DHM:(XIM,"' ,XnM,Yll/t,"' aYnu)v

where

n
Dl = | Y {Xul? + |Yul?}.
i=1

The Heisenberg group is a particular example of a wide class of
nilpotent Lie groups referred to as Carnot groups in the literature.

unipg
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Definition

A Carnot group is a connected and simply connected Lie group G
with a Lie algebra g, which admits a stratification, i.e. g is the direct
sum of linear subspaces, g = @@'_, V;, such that

(i) [Vi,Vj] =Vjpiforj=1,...,r—1,

(if) [V1, V] = 0.

The number r is called the step of the Carnot group. Clearly the
Heisenberg group is a Carnot group of step 2. Most of the results that
we prove in the course can be extended to this more general context.
However, we do not present them in the most general framework, and
we limit our treatment to the Heisenberg group context. For a detailed
discussion about Carnot groups we refer to

@ J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493-512.

@ S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publlshmg «TP¥
Ltd., Hackensack, NJ, 2011, xviii+219 pp.

I
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The operator Ay

The horizontal Laplacian in H" is the operator

n
A= (X} + 7 )u
j=1

B o o P u
= 4 — 4x; 42> =
Z( o " omon xfayjaz> ut 4l 55

The operator Ay is subelliptic, according to Hérmander’s notation.
Le us also define, for p > 1, the operator horizontal p—Laplacian

Appp = divy(|Duglly Drep)

for any ¢ € C°(H").
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The Haar measure and the Lebesgue spaces

We briefly recall the definition of the Haar measure of a locally
compact topological group, and we specify it in the context of the
Heisenberg group. For a detailed treatment about general Haar
measures we refer to

[

[
B

A. Bonfigli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential
Theory for Their Sub-Laplacians, Springer—Verlag, Berlin Heidelberg, 2007,
xxvi+802 pp.

G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics
Studies, 122. Princeton University Press, Princeton, NJ, 1989, x+277 pp.

G.B. Folland, E.M. Stein, Estimates for the 9, complex and analysis on the
Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.

and for the special case of the Heisenberg group we refer to

E

[

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493-512.

S. G. Krantz, Explorations in Harmonic Analysis: With Applications g
Complex Function Theory and the Heisenberg Group, Birkhduser BfEE
xiv+362 pp.

DEPARTMENT OF MATHEMATICS
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Definition

Let (G, o) be a topological group. A left Haar measure on G is a
nonzero regular Borel measure 1 on G such that (g o A) = u(A) for
all g € G and all Borel measurable subsets A of G. The corresponding
integral is invariant under left translations, that is

/Gu(g’og)dMZ/Gu(g)du

for any integrable function u on G.
Similarly a right Haar measure is also defined. Moreover, by
Proposition 1.3.21 in

@ A. Bonfigli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential
Theory for Their Sub-Laplacians, Springer—Verlag, Berlin Heidelberg, 2007,
xxvi+802 pp.

if p and 1/ are two left Haar measures on G then p = ay/ for some
a € R, and so the Haar measure is unique up to a multiplicagiye
positive constant.
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In the special case of the Heisenberg group, it is easy to check that the
Lebesgue measure on R?"*! is invariant under left translations. Thus,
from here on, we denote by d¢ the Haar measure on H" that coincides
with the (2n + 1)-Lebesgue measure.

Moreover, |U| is the (2n + 1)—dimensional Lebesgue measure of any

measurable Borel set U C H". Furthermore, the Haar measure on H"

is O—homogeneous with respect to dilations dg. Then,

0r(U)| = RO|U|,  d(6g€) = R2dE.

In particular |Bg| = |B|R2.

19/113



The Lebesgue Spaces on H"

For any measurable set U C H" and for any 1 < p < oo, we denote
LP(U) the set of all measurable functions u : U — R such that
lullp(vy < 00, where

U
ey = ( / \uws) i1 <p< oo,

while

lull Lo vy = esssupu = inf{M : [u(§)| < M forae. £ € U}.
U

When U = H" or when there is not ambiguity about the set
considered, for simplicity we denote the norm || - || ..

The symbol 15 denotes the characteristic function of a Lebesgue
measurable subset U of any Lebesgue o—algebra. —
unipg
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Properties of L7(£2)

Let €2 be a nonempty open set of H".

The Lebesgue spaces LP(2), 1 < p < oo, are Banach spaces and
C.(Q) is dense in L7 () when 1 < p < 0.

Moreover, the spaces L7 (£2) are reflexive when 1 < p < oo, while
L'(2) and L>(Q) are not reflexive.

Indeed, for 1 < p < oo the dual space (L7(2))" of L7(€2) can be
identified with 1"’ (), where p’ denotes the Holder conjugate of p,
thatis 1/p+1/p’ = 1, so that (L (Q))/ can be identified with L> ().
On the other hand, the dual space of L>°({2) is identified with the

space of all absolutely continuous, finitely additive set functions of
bounded total variation on §2, cf. Chapter IV.9 of

@ K. Yosida, Functional analysis, Reprint of the sixth (1980) edition, Classics in
Mathematics, Springer-Verlag, Berlin, 1995, xvi+504 pp.
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The horizontal Sobolev spaces and geometric inequalities

Sharp geometric inequalities on the Heisenberg group H”, such as the
Hardy—Sobolev inequality and the Trudinger—Moser inequality, play
an important role in the study of the existence of solutions to
nonlinear partial differential equations involving power nonlinearities
with critical exponents and nonlinearities of exponential growth, cf.

@ N. Lam, G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at
the critical case and applications, Adv. Math. 231 (2012), 3259-3287.

@ N. Lam, G. Lu, H. Tang, On nonuniformly subelliptic equations of
Q-sub—Laplacian type with critical growth in the Heisenberg group, Adv.
Nonlinear Stud. 12 (2012), 659-681.

@ N. Lam, G. Lu, H. Tang, Sharp subcritical Moser—Trudinger inequalities on
Heisenberg groups and subelliptic PDEs, Nonlinear Anal. 95 (2014), 77-92.

@ J. Li, G. Lu, M. Zhu, Concentration—compactness principle for
Trudinger—-Moser inequalities on Heisenberg groups and existence of ground
state solutions, Calc. Var. Partial Differential Equations 57 (2018), 26 pp.

@ G. Mingione, A. Zatorska—Goldstein, X. Zhong, Gradient regular
equations in the Heisenberg group, Adv. Math. 222 (2009), 62—129.
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Following

[

E

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493-512.

S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011, xviii+219 pp.

we introduce some necessary background on the horizontal Sobolev
spaces in the Heisenberg group. Then, we collect useful comments
and results related to the sharp geometric inequalities on H". Our
presentation is partly taken from the above monograph and

E

[

L. Capogna, D. Danielli , S.D. Pauls, J.T. Tyson, An Introduction to the
Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhduser
Basel, Progress in Mathematics 259, 2007, xvi+224 pp.

G.B. Folland, E.M. Stein, Estimates for the 9, complex and analysis on the
Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.

N. Lam, PhD Thesis, Moser—Trudinger And Adams Type Inequalities And Their
Applications, Wayne State University Dissertations, 2014, 90 pp.

P—L. Lions, The concentration compactness principle in the calculus
variations. The limit case I, Rev. Mat. Iberoamericana 1 (1985), no. 1,

AAAAAAAAAAAAAAAAAAA
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References in more general settings

@ R. Bramati, A family of sharp inequalities on real spheres Complex Var. Elliptic
Equ. 67 (2022), 2030-2042.

@ R. Bramati, P. Ciatti, J. Green, J. Wright, Oscillating spectral multipliers on
groups of Heisenberg type, Rev. Mat. Iberoam. 38 (2022), 1529-1551.

@ M. Chatzakou, M. Ruzhansky, N. Tokmagambetov, Fractional Schrodinger
equations with singular potentials of higher order. II: hypoelliptic case, Rep.
Math. Phys. 89 (2022), 59-79.

@ A. Kassymov, M. Ruzhansky, D. Suragan, Hardy inequalities on metric
measure spaces, I1I: the case ¢ < p < 0 and applications Proc. A. 479 (2023),
no. 2269, Paper No. 20220307, 16 pp.

ﬁ A. Kassymov, M. Ruzhansky, D. Suragan, Reverse Stein-Weiss,
Hardy-Littlewood-Sobolev, Hardy, Sobolev and Caffarelli-Kohn-Nirenberg
inequalities on homogeneous groups, Forum Math. 34 (2022), 1147-1158.
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References in more general settings

@ A. Kassymov, M. Ruzhansky, D. Suragan, Reverse integral Hardy inequality on
metric measure spaces Ann. Fenn. Math. 47 (2022), 39-55.

@ A. Kassymov, M. Ruzhansky, D. Suragan, Hardy-Littlewood-Sobolev and
Stein-Weiss inequalities on homogeneous Lie groups Integral Transforms Spec.
Funct. 30 (2019), 643-655.

@ A. Kassymov, M. Ruzhansky, B.T. Torebek, Rayleigh-Faber-Krahn, Lyapunov
and Hartmann-Wintner inequalities for fractional elliptic problems, Mediterr. J.
Math. 20 (2023), Paper No. 119, 14 pp.

@ M. Ruzhansky, N. Yessirkegenov, Critical Gagliardo-Nirenberg, Trudinger,
Brezis-Gallouet-Wainger inequalities on graded groups and ground states
Commun. Contemp. Math. 24 (2022), Paper No. 2150061, 29 pp.

rrrrrrrrrrrrrrrrr

25/113



The horizontal Sobolev space HW'? ()

Let us restrict to the special case 1 < p < oo and to an open set €2 of
H*.

Definition

Let HW!? () be the horizontal Sobolev space consisting of all
functions u € L”(2) such that Dyu exists in the sense of distributions
and |Dyuly € [P(2), endowed with the natural norm

1/p
oy = ( [ urae+ [ \DHu\';,df) -

We recall that the underlying measure in use here is the Haar measure
on H", which agrees with the Lebesgue measure on R***!. From here

on,
1/p
1Dl ) = ( / rDHuV;,dg) |

and ||Dyul|, = || Dyul|rp ), when = H", for simplicity.
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It is easy to check that the distributional horizontal gradient of a
function u € HW'?(Q) is uniquely defined a.e. in 2. Furthermore, if
u is a smooth function, then its classical horizontal gradient is also the
distributional horizontal gradient. For this reason, if « is a nonsmooth
function, Dyu is meant in the distributional sense.

The space HW'”(Q) is a separable Banach space if | < p < oo and a
reflexive Banach space if 1 < p < oc.

For 1 < p < oo the dual space of HWW(H”) is

HW= (H") = {hMZ (hX; + 12Y)
[ A

where the pairing between a function u € HW!”(H") and a functional
h=h"+ 370, (h}X; + h7Y;) is given as usual by

1o hl w2 e IV (H), j:1,...,n},

() =17 w0 = / {h0u + Z (h} Xju + thu)}dg,r

j=1

MENT OF MATHEMATICS
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@ A. Baldi, B. Franchi, N. Tchou, M.C. Tesi, Compensated compactness for
differential forms in Carnot groups and applications, Adv. Math. 223 (2010),
1555-1607.

The corresponding norm is
12l gy = 0 {NRONpr + 325y (I}l + 117 )
h=h+ 37 (hiX;+ kY }.
Let us now recall some density results for the horizontal Sobolev
spaces, such as the analogous of the celebrated Meyers-Serrin
theorem, which can be found in
@ B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and

relaxation of variational integrals depending on vector fields, Houston Math. J.
22 (1996), 859-889.

The density theorem for horizontal Sobolev spaces in the Heisenberg
group is analogous to the Euclidean one, thatis, C2°(H") is dense in
HW'?(H") for every p with 1 < p < oo.

28/113



As shown in

@ B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and
relaxation of variational integrals depending on vector fields, Houston Math. J.
22 (1996), 859-889.

@ N. Garofalo, D.-M. Nhieu, Isoperimetric and Sobolev inequalities for
Carnot—Carathéodory spaces and the existence of minimal surfaces, Comm.
Pure Appl. Math. 49 (1996), 1081-1144.

we have a complete extension of

Theorem (Meyers—Serrin theorem)
Let Q2 be an open set in H" and 1 < p < . Then,

C>®(Q) NHW'Y(Q) is dense in HW'? ().

unipg
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The Folland—Stein inequality in the Heisenberg group

The subelliptic variant of the Sobolev inequality has a form similar to
the Euclidean version, but the exponent governing the transition to the
supercritical case is the homogeneous dimension Q = 2n + 2. The
Folland-Stein inequality is valid also for any Carnot group, but we
state it in the context the Heisenberg group, see also Franchi, Gallot
and Wheeden, Math. Ann. 1994.

Theorem (The Folland—Stein inequality, Comm. Pure Appl.
Math. 1974)
pQ

Let 1 < p < Qand setp* = 0

. Then, there exists a constant

Cp,0 such that

§ 1/p* 1/p
(FS) ( /H ol d&) <Cro < /H \DHsoV’df)

forall p € C(H"). unipg
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Some remarks

» The Folland—Stein inequality is also true for functions in the
space HW, " (2), where € is an open subset of H" and HW,” ()
is the completion of C2°(€2) with respect to the norm

1
il ey = (llhy ) + 1Dl )"

» In particular, if 2 = H", the Folland—Stein inequality holds in
the horizontal Sobolev space HW' (H") consisting of the
functions u € LP(H") such that Dyu exists in the sense of
distributions and |Dyu|y € L7 (H"), and HW!'? (H") is endowed
with the norm ||u| g1y, @ = H".
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Some remarks

If I know that there exists g such that

lelly < CllDaell,

holds for any ¢ € C°(H"), then g = p* = QpQ Indeed, taking
4

ox(€) = 0(0r(£)), A >0,

leally < CliDaAl,

)\_Q/qHSOHq < C)‘]_Q/p”DmPHpa

so that
10—

P
q pQ AD. 1308 m—
unipg

. HEMATICS
(COMPUTER SCIENCES

32/113



Best constant of the Folland—Stein inequality

» Actually, much less is known about sharp constants for the
Folland and Stein inequality on the Heisenberg group than for
Sobolev inequality on the Euclidean space.

P> As in most proofs of sharp constants in Euclidean spaces (note
the celebrated results of Talenti and Aubin), one attempts to use
the radial nonincreasing rearrangement u* of functions u (in
terms of a certain norm) on the Heisenberg group.

@ T. Aubin, Problémes isopérimétriques et espaces de Sobolev, J.
Differential Geometry 11 (1976), 573-598.

@ G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110
(1976), 353-372.
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Radial nonincreasing rearrangement

The radial nonincreasing rearrangement u* of a function u is the
unique function such that the level sets {x € R" : u*(x) > t} of u*
are balls which have the same measure as the level sets

{x e R" : u(x) >t} of u.

I
{u,l*“.>t3

The radial rearrangement function u*

unipg
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Radial nonincreasing rearrangement

Equivalently, the radial nonincreasing rearrangement of a function u
is defined as

u(x) = sup{r : u(t) > wnlx|"},

where w,, denotes volume of the unit ball in R” and
wu(t) = meas{x € R" : u(x) >t}

is the measure of the level sets of u.

unipg
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Theorem (P6lya—Szegd inequality)

Givenu € W'» (R™), the non—increasing rearrangement u* satisfies
[y = Mlullp, NV [lp < [[Vullp.

In particular, u* € WP (R").

» The Polya—Szeg6 inequality is used to prove the
Rayleigh—Faber—Krahn inequality, which states that among all
the domains of a given fixed volume, the ball has the smallest
first eigenvalue for the Laplacian with Dirichlet boundary
conditions.

» The optimal constant in the Sobolev inequality in R” can be
obtained by combining the Pélya—Szeg6 inequality with some
integral inequalities.
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The Euclidean case
In the Euclidean case, if 1 < p < n the best constant of the Sobolev

inequality
Lo\ 1/p
( |ulP dx) < Cpn (/ |Vu|pdx>
R R"

was computed by Talenti (Ann. Mat. Pura Appl., 1976). The proof is
accomplished by symmetrization and consists in two main steps.

1. the ratio

B [|u p*

) = 1)

attains its maximum value on spherically symmetric functions.

p

2. The functional J has a maximum in a class of spherically
symmetric functions.

i [|u p*

IVl

More precisely, the functional J () increases

p

if u is replaced by u*.
37/113



Radial nonincreasing rearrangement in H"

>

>

Of course the definition of u* can be generalized to the
Heisenberg context.

Problem: In the Heisenberg context, it is NOT KNOWN whether
or not the L7 norm of the horizontal gradient of the
rearrangement of a function is dominated by the [” norm of the
horizontal gradient of the function.

In other words, the P6lya—Szeg6 inequality
1Drw ||, < (| Drul|

for the horizontal gradient in the Heisenberg group is NOT
available.
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Radial nonincreasing rearrangement in H"

» Manfredi and Vera De Serio (Acta Math. Sin., 2019) proved a
generalization of the Pélya—Szegd inequality for p > 1 for the
Heisenberg group asserting that there exists a constant
C = C(p) > 1, depending only on p, such that

1Drulp < Cl| D]

(actually the result holds in the more general context of Carnot
groups).

» However, the exact value of C is not known and so this result
cannot be used to determine the sharp constant of the
Folland—Stein inequality.

» The work of Jerison and Lee (J. Amer. Math. Soc., 1988)
indicates that this inequality does not hold with C = 1
ifp=2. lifibg
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Proof of the P6lya—Szegd inequality
The three main ingredients are:

» The coarea formula: given (2 open setin R", u: 2 - Ra
Lipschitz function and g € L!(R"), then

/Qg(x)’Vu(x)dX—/R (/u_l([) g(x)dHn_1(x)> d

» The Holder inequality

» The (classical) isoperimetric inequality Given £ C R” a regular
set such that H"~!(OE) < oo, then

min{meas(E), meas(R"\E)} < C;(n) [H" ' (OE)] " . 1F =

and the best constant C;(n) in the previous inequality is given by

*

meas(By)/ [H"~" (0B1)]' = wa/[nwa]'".
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Main issue: Isoperimetric inequality in the Heisenberg

group
| 2

>

The isoperimetric problem in the Heisenberg group is one of the
central questions of sub—Riemannian geometric analysis.

The inequality (for n = 1)

min{meas(E), meas(H \ E)} < Cy 4 [Pu(9E)]*/>
has been proved by Pansu (R. Acad. Sci. Paris Sér. I Math.,
1982)

Open problem: the best constant and the extremal configuration
are still unknown

Pansu conjecture: the best constant C; g in the previous
inequality is given by

meas(B(0, R)/ [Pu(9B(0,R)*"* = 3/[4/m]*/3
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and B(O, R) is a bubble set.
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Bubble sets in H’
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The case p = 2

In conclusion, new ideas are needed in deriving sharp inequalities on
the Heisenberg group.

» The first major breakthrough came after the works of Jerison and
Lee (J. Amer. Math. Soc., 1988) on the sharp constants for the
Sobolev inequality and extremal functions on the Heisenberg
group, in conjunction with the solution of the CR Yamabe
problem.

» In particular, the best constant for the Folland—Stein inequality
on H" forp =2

. 1/2* 1/2
( [ dé) < Crg < / |DHu\2d5>
Hn Hn

was found and the extremal functions were identified.
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Theorem (Jerison and Lee, J. Amer. Math. Soc., 1988)
The best constant for the Folland—Stein inequality for p = 2 on H"

1/2* 1/2
(FS) < / |u|2*d§> < Cag < / \DHu|2d§>
n Hﬂn

is given by
1 1/(nt1)
—— I 1
) 47’['}12 [ (l’l + )] ’
and all the extremals of (FS) are obtained by dilations and left
translations of the function

CZQ:

K|(t+i(|2*+ D)™

Furthermore, the extremals in (FS) are constant multiples of images

under the Cayley transform of extremals for the Yamabe functional on
the sphere S*"t1 in C*+1. ¥

unipg
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Open problems

The work of Jerison and Lee raised two natural questions.
1. What is the best constant C,, ¢ Folland Stein inequality for all p,
when 1 < p < Qand p # 2?

2. What about the borderline case p = Q?
While the first question still seems to be open, the second question

was answered in the work of Cohn and Lu (Indiana Univ. Math. J.,
2001).
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Existence of minimizers via concentration—compactness

When 1 < p < Q, while the symetrization argument fails, the
concentration—compactness method by Lions (Ann. Inst. H. Poincaré
Anal. Non Linéaire, 1984) can be generalized to deal with the
problem of finding minimizers of the variational problem

[Drull,p

T = .
ueC® (H")  ||u|p>
u#0

The natural space where looking for extremals is the Folland—Stein
space S (H"), defined as the completion of C°(H") w.r.t. the norm

1/p
| = 12w, = ( [ D)
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Theorem (Ivanon and Vassilev, 2011)
Let | < p < Q. Every minimizing sequence (u), in S'?(H") of the
variational problem

[Dru]

ueCe (H")  [|ul|p~
u#0

(VP) 7=

has a convergent subsequence in S'* (H") after possibly translating
and dilating its elements by

W) = u(y(€)),  ur(&) = AP u(6x(€))

Moreover, the infimum in (VP) is achieved by a nonnegative function
u € SYP(H") which is a weak nonnegative solution of the critical
equation

—Apgpu = W i H
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Some remarks

» The difficulty in finding minimizers of (VP) stems from the fact
that the Sobolev embedding is not compact and there is a
(noncompact) group of dilations preserving the set of extremals.
In particular, starting from an extremal we can construct a
sequence of extremals which converge to the zero function.
Thus, an argument proving the existence of an extremal by
taking a sequence of functions converging to an extremal will
fail unless a more delicate analysis and modification (by scaling
and translating) of the sequence is performed.

» The concentration—compactness principle of Lions can be
applied to prove that the best constant in the Folland—Stein
embedding is achieved.

» This method does not allow an explicit determination of the best

constant or the functions for which it is achieved. o
unipg
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Continuous embeddings and compact embeddings

Theorem (Subelliptic Sobolev embeddings)
(i) If 1 < p < Q, then HW'P(Q) — LY(Q) is continuous for any
R .

cEppp =7
q € [p,p’] 07
(ii) if p = Q, then HW2(Q) < LY(Q) is continuous for any
q € [Q, 0.
Moreover, if ) is bounded and 1 < p < Q, then the embedding
HWP(Q) < LY(Q) is continuous for any q € [1,p*], while if ) is
bounded and p = Q, embedding HW"2(Q) < LI(Q) is continuous
forany q € [1,00).
For the proof of the Subelliptic Sobolev embedding Theorem we refer
e.g. to Proposition 5.27 in

@ J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponent
Var. Partial Differential Equuations 3 (1995), 493-512.
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We conclude this discussion with some hints about the compactness

of embedding HW'?(Q2) < L(Q2) on well behaved domains (2. For a
complete treatment we refer to

@ J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493-512.

ﬁ B. Franchi, C. Gutierrez, R.L. Wheeden, Weighted Sobolev—Poincaré
inequalities for Grushin type operators, Comm. Partial Differential Equations
19 (1994), 523-604.

@ N. Garofalo, D.-M. Nhieu, Isoperimetric and Sobolev inequalities for
Carnot—Carathéodory spaces and the existence of minimal surfaces, Comm.
Pure Appl. Math. 49 (1996), 1081-1144.

@ P. Hajtasz, P. Koskela, Sobolev met Poicaré, Mem. Amer. Math. Soc. 145, 2000,
x+101 pp.

and the monograph of Hajtasz and Koskela contains an extensive
bibliography on this subject. More precisely, let us introduce the
following definition as given by Garofalo and Nhieu.
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Definition

An open set 2 of H" is said to be a Poincaré—Sobolev domain, briefly
PS domain, if there exists a covering {B}pc r of 2 by
Carnot—Carathéodory balls B and numbers N > 0, « > 1,and v > 1
such that

(i) Y Lias1)p(€) < Nlq(¢) for every & € H;

BeF
(ii) there exists a ball By € F such that for all B € F there is a finite

chain By, By, . .. 7Bs(B)’ with B; N B4 75 () and

|Bi N Bit1| > max{[Bi, |Bi+1]}/N,

(iii) BC vBjfori=1,...,s(B).

The Definition of a PS domain is purely metric. In the context of the
Heisenberg groups, one can produce a large class of PS domains as
explained in details inthe cited paper of Garofalo and Nhieu.

unipg
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For our needs, it is important also to report a version of the
Rellich—-Kondrachov compact embedding, in the Heisenberg group
context. In particular, the next theorem is a particular case of
Theorem 1.3.1 in

@ S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011, xviii+219 pp.

Theorem (The Rellich—-Kondrachov theorem)

(i) If Q denotes a bounded PS domain in H" and 1 < p < Q, then the
embedding
HW'P(Q) —— LI(Q)

is compact provided that 1 < q < p*, where p* is the critical Sobolev
exponent related to p.
(i) The Carnot—Carathéodory balls are PS domains.
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Part (i) was first proved by Garofalo and Nhieu in 1996 in the
subelliptic setting, while for a proof of part (ii) we refer to the paper
of Franchi, Gutierrez and Wheeden in 1994.

Combining the Rellich—-Kondrachov theorem, with the fact that the
Carnot—Carathéodory distance and the Kordnyi distance are
equivalent on H", we get

Corollary

Let 1 < p < Q and let Bg(&y) be any Kordnyi ball, centered at
&0 € H", with radius R > 0. Then, the embedding

(1) HW'?(Bg(&)) << L(Br(%0))

is compact provided that 1 < q < p* = &
Q—-p
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The Hardy inequality

Following

@ N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313-356.

put (&) = |Dyr(é)l = ‘é') for £ = (2.1) % O, where

r(€) = (z|* + 2)'/* is the Koranyi norm.

Theorem (The Hardy inequality in H")
If1 <p < Q, then

d p
Lerwts < (G2) [ ioustiae

forall p € C*(H"\ {0}).
The Hardy inequality remains valid in the Folland—-Stein spac
Sl D (Hn)
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The Hardy inequality was obtained by Garofalo and Lanconelli in in
1990 when p = 2 and then extended to all p > 1 in

@ L. D’ Ambrosio, Hardy—type inequalities related to degenerate elliptic
differential operators, Ann. Sc. Norm. Super. Pisa CI. Sci. (5) 4 (2005), 451-486.

@ P. Niu, H. Zhang, Y. Wang, Hardy—type and Rellich type inequalities on the
Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623-3630.

When p = 2, the optimality of the constant (2/(Q — 2))? is shown in

@ J.A. Goldstein, Q.S. Zhang, On a degenerate heat equation with a singular
potential, J. Funct. Anal. 186 (2001), 342-359.

A sharp Hardy inequality of type has been derived in general

Carnot—Carathéodory spaces in the monograph

@ D. Danielli, N. Garofalo, N.C. Phuc, Inequalities of Hardy—Sobolev type in
Carnot—Carathéodory, Sobolev spaces in mathematics. I, 117-151, Int. Math.
Ser. (N.Y.), 8, Springer, New York, 2009.
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The case p = Q

» As in the Euclidean case, functions in HW !¢ (H") have
exponential integrability. This result is refined by the
Trudinger—Moser inequality.

» The Trudinger—Moser inequality was first proved, when {2 is a
subset of R" of finite measure, by Trudinger ( J. Math. Mech.,
1967). Short after, Moser (Indiana Univ. Math. J., 1970)
obtained a different proof, which allows the determination of the
corresponding sharp constant.

» In the entire Euclidean space R”, the first related inequalities
have been proved by Cao (Commun. Partial Differ. Equ., 1992)
for n = 2, and for any dimension by do O (Abstr. Appl. Anal.,
1997) and Adachi and Tanaka (Proc. Amer. Math. Soc., 2000).

unipg
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The Trudinger—-Moser inequality in 2 C R”, [Q)| < oo

Theorem (Trudinger—Moser inequality)

Let Q) be a domain with finite measure in R", n > 2. Then there exist a
nﬂ.n/Z

1/(n—1)
sharp constant oy, = n F(n/2+1)> and a positive constant

Co = Co(n) such that

1 /
Im/Qexp (a]u|™ )dx < Cy

for any u € Wh(Q) with [, |Vu|"dx < 1 and any oo < ov,, where
n=n/(n—1).
This constant «, is sharp in the sense that if « > «,, then the above

inequality does not hold any longer with a constant Cy 1ndependent
of u.

unipg
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The Trudinger—Moser inequality in R”

Theorem (Trudinger—Moser inequality in R")

For any « € (0, o), there exists a constant Co, > 0 such that

2

/ exp (alu") - Z yu|J" dx < Cy[u?
R” 0
for any u € WH(R™) with || Vul|, < 1.

This inequality is false for o > «,. It can be noted that unlike the case
of the bounded domains, o, cannot be reached.

@ Cianchi, Musil, Pick, Lubos, Int. Math. Res. Not. IMRN 2022

[ Ho, Perera, Proc. Edinb. Math. Soc. 2022
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The Trudinger—Moser inequality in the Heisenberg group

» In bounded domains of H", the Trudinger—Moser inequality was
first established in by Cohn and Lu (Indiana Univ. Math. J.,
2001), adapting an Adams idea in deriving the Moser—Trudinger
inequality for higher order derivatives in Euclidean space to
avoid considering the horizontal gradient of the rearrangement
function. This method requires an optimal bound on the size of a
function in terms of the potential of its gradient, namely a sharp
representation formula. Indeed, the main difficulty in passing to
the Heisenberg context is the impossibility of using the radial
nonincreasing rearrangement u* of functions u (in terms of a
certain norm) on the Heisenberg group.

» The situation is more complicated when concerning the
Trudinger—Moser type inequalities for unbounded domains
of H", since the Adams approach does not work. However, Lam,
Lu and Tang (Nonlinear Anal., 2014) obtain a sharp

Trudinger-Moser inequality on the whole H". qnipg
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Singular Trudinger—Moser inequality in H"

Theorem (Lam, Lu and Tang, Nonlinear Anal. 2014)

n 0
There exists a positive constant cg = Q (h F(Fl(/ é)/g)(l(“%sl)/ 2)>
such that for B, with 0 < B < Q, and for any «, with
0 <a<ag(l —pB/Q) = agp, there exists a constant Co g > 0 such

that the inequality

1 NS :
/Hnr(f)ﬁ exp (a|u\Q> Z |u\]Q d§ < Copllu H

O

holds for all u € HW 2 (H"), with |Drullo < 1.
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Some references

[§ Capogna, Danielli, Pauls and Tyson, An Introduction to the
Heisenberg Group and the Sub-Riemannian Isoperimetric
Problem, Birkhduser Basel, Progress in Mathematics (2007)

[§ Garofalo and Nhieu, Isoperimetric and Sobolev inequalities for
Carnot—Carathéodory spaces and the existence of minimal
surfaces, Comm. Pure Appl. Math. (1996)

[§ Ivanov and Vassilev, Extremals for the Sobolev inequality and
the quaternionic contact Yamabe problem, World Scientific
Publishing Co. Pte. Ltd. (2011)

[d Lam, Moser—Trudinger And Adams Type Inequalities And Their
Applications, Ph.D. thesis (2014)
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The fractional horizontal Sobolev spaces

There are many definitions in literature of the fractional horizontal
Sobolev spaces HW*”(H") and so extremely different approaches.
We refer to

@ G. Palatucci, M. Piccinini, Nonlocal Harnack inequalities in the Heisenberg
group, Calc. Var. Partial Differential Equations 61 (2022), Paper No. 185.

for a detailed list of references on the subject.

Definition

Let0 <s < 1land1 < p < oco. The horizontal fractional Sobolev
space HW*?(H") is the completion of C2°(H") with respect to the
norm

1/p
I e ey = (u ey + [ W)

lo(€) — ()P’ /e

along any ¢ € C°(H").

where
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For notational simplicity, the (s, p) fractional horizontal gradient of
any function u € HW*?(H") is denoted by

s viey = [ & —ul)l” [ Ju(€oh) —u(@)”
e = [ MO, [ e uel,

where we recall for all , ¢’ € H", with £ =(z,t) = (x,y,) and
¢ =(d,1)=,y,1)

n
ol =(z+71+7+ 22(in§ —xiy7))
i=1
and n~! = —n for any € H", while as usually
r(€) = r(z,1) = (|z|* + )4, for & = (z,1) € H", is the Koranyi
norm.
The (s, p) horizontal gradient of a function u € HW*?(H") is well

defined a.e. in H" and |DulP € L' (H") thanks to Tonelli’s theorem.

unipg
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Fractional continuous and compact embeddings

The fractional Sobolev embedding in the Heisenberg group is
obtained in

@ Adimurth, A. Mallick, A Hardy type inequality on fractional order Sobolev
spaces on the Heisenberg group, Ann. Sc. Norm. Super. Pisa CI. Sci. (5) 18
(2018), 917-949.
following the arguments of

@ E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional
Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.

Theorem
If0<s<1,1<p<ooandsp < Q, then there exists a positive
constant Cpx = Cpx(p, Q, s) such that

pQ
Q—sp’

PY [99]5;’§407 ljj =

forall p € C°(H").
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Theorem

For every sequence (uy)y bounded in HW*? (H") there exist

u € HW*P(H") and a subsequence (uy;); C (ux)x such that for all
& eH" andR >0

uy, —u inLP(Br()) asj— oo.

A Lie group version of the Fréchet—-Kolmogorov theorem yields the
existence of a function u € LF(H") and a subsequence of (u)y, still
denoted (u )k, such that uy — u a.e. in H" and ux — u in L (Bg(&o))
for all & € H" and R > 0. The proof of the fact that u € HW*" (H")
follows from an application of the Fatou lemma.

unipg
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(p, q) problems in the Heisenberg group The above inequalities are
the fundamental tool to study existence, multiplicity and qualitative
properties of solutions for a class of problems with the following
features:

1. We consider subelliptic problems, dealing first with the model
case of the Heisenberg group.

2. We consider problems involving operators with non—standard
growth conditions, also known as (p, ¢) operators, see Zhikov
(Izv. Akad. Nauk SSSR Ser. Mat., 1986), Marcellini (J.
Differential Equations, 1991) and many others.

3. We deal with entire solutions, that is solutions defined in the
whole space, and we consider different types of critical
nonlinearities. The combined presence of these two factors
causes a "double lack of compactness" which produces new,
interesting complications.
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A Model arising in nonlinear elasticity

Let us first describe the model considered by Marcellini (Ann. Inst.
H. Poincaré Anal. Non Linéaire 1986) and originally studied by Ball
(Phil. Trans. R. Soc. Lond. 1982).

» Consider the deformation
of an elastic body that occupies
a bounded domain 2 C R,
> Letu:Q — RN
be the displacement and Du the
N x N matrix of the deformation
gradient, then the total energy is

I(u) :/Qf(x,Du(x))dx

for some function f. unipg
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The (p, g) growth condition

A natural choice for f is given by
f(x,8) = g(x, &) + h(det &)
with g and 4 satisfying
il <g(x &) <ea(1+[€7),  esfr] < hlt) < ea(1+ 1))

with 1 < p < N. Therefore, since |det &| < ¢s(1 + |£|V), the function
f satisfies the condition

Al < f(x, &) < o1+ [€V).

It is then clear the interest in considering general functions
f:Q x R™ x RV — R satisfying the (p, ¢) growth condition

Cilg)P <f(x, &) < C(1+[¢Y), 1<p<q,

forall x € Q and & € RV,
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Model (p, ¢) problem in H"

The model problem is

—Apput — Ay gu+ [ulP2u+ w7 ?u = f(x,u), inH".

» Ay ., is the horizontal p—Laplacian operator, which is defined
forp > 1as

Ap o = dive(|Duels; *Due) for any ¢ € C°(H");

P the exponents p and ¢g are such that 1 < p < g < Q, where
Q = 2n + 2 is the homogeneous dimension of H";

P f contains a critical term;

> We consider two different cases: ¢ < Q and ¢ = Q.
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A more general class of (p, g) systems

In P.P. and Temperini (Adv. Nonlinear Anal., 2020), we consider the
system in H"

—divy (A(|Dpul ) Daie) + B(lul)u = NF(u, v) + —[v]7]u|*2u,

(S)
—divy (A(|Duv|e)Duv) + B(|v|)v = AFy(u,v) + E!u|“\v\ﬁ_2v,

> 1 <p<qg< Qwhere Q =2n+ 2 is the homogeneous
dimension of H";

> )\ > 0is a parameter;
> o, > 1witha+ 8 = ¢*, where ¢* = o-v

unipg
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Structural assumptions

Following Fiscella and P.P. (Nonlinear Anal., 2018) we assume that:
(A) A is a positive, strictly increasing function of class C'(R1),

(B) B € C(R") is a positive function and t — tB(t) is strictly
increasing in R, with tB(t) — Oast — 0.
We introduce the potentials A and 3, which are 0 in 0 and which are
obtained by integration from A’(¢r) = tA(t), |, B'(t) = tB(t) for all
teRY.
(C1) There exist strictly positive constants ay, ag, bg, by, aj, ay, by ,by
with ag < 1, and there exist exponents p and g, with 1 <p < q < Q,
such that for all t € Rg

aptP '+ a7t < A1) < apP 7 4 agd !,

bot"~' + bt < B'(t) < botP~! 4+ b1
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(C2) There exist constants 6 and ¥, with p < min{6, 9} < ¢*, such
that

0A(t) > tA'(t), 9B(t) >tB'(t) forallt € RY;

F,, F, are partial derivatives of a function of class C'(R?), such that
(Fy) F(u,v) > 0 for all (u,v) € R?, F,(u,v) = 0 forallu < 0 and
v € R, while F,(u,v) = 0 forallu € Randv < 0 and F(u,v) > 0 for
(u,v) € RT x R*. There exist m, m such that ¢ < m < m < ¢*, and
for every € > 0 there exists C. > 0 such that

IVF(u,v)| < me|(u,v)|[™" +mC:|(u,v)|""  forany (u,v) € R?;
(F») there exists o, with max{0,9} < o < ¢*, such that

0 < oF(u,v) < VF(u,v)- (u,v) forall (u,v)c R

74/113



Some examples Let 1 < p < g < Q.
> If A(t) = B(t) =" /p+11/q,t € R{, then

> if A() = 2(1+ )27 +17/gand B(t) =1 /p+ctl/qt € R,
c>0,andif 2 < p < ¢, then
aO:bO:b0:a0:a1:alzl,blzc,ﬁzp,ﬂ:pif
¢ =0, while ¥ = g if ¢ > 0 and

Dyult, D
—divy [Drtly ?i/ — Ap g+ [ufP"u 4 [ul7u.
(1+ [Dyulfy) ~"

unipg
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In the particular case in which2 = p < ¢ =4 < Q we have
> if A(t) =1 +2 1+ /4and B(t) = 1?2+ t*/4,t € RS,
thenag=bg=b1=ap=a1=bp=b;=1,a1 = 1/2,
0=v=4,a+pF=q"=4"=40Q/(Q —4) and

DHM

71+ ‘DHM|1%1

> if A(f) = tarctant—log V1 + 2 +¢*/4 and B(t) = > /2 +t*/4,
tER(—;,thenaO:bO:bl =aqp=a;=bgp=b; =1,
a1 =2/3,0=9=4,a+p=q"=4*and

—divy — AHAM—I—M + u3;

, <arctan |Dpu|y
—divy | ————
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Theorem (P.P. and Temperini — Adv. Nonlinear Anal., 2020)

Assume that the structural assumptions (A), (B), (C1),(C2), (F) and
(F») hold. Then, there exists \* > 0 such that for all A > \* the
system in H"

—divH(A(\DHu|H)DHu) + B(|u|)u = A\F,(u,v) + %|v|ﬁ|u|°‘_2u,
(S)
—divy (A(‘DHV’H)DHV) + B(|v])v = AFy(u,v) + ?|u]°‘|v|ﬁ_2v,

admits at least one solution (uy,vy) in W. Moreover, each
component of (ux,vy) is non trivial and

lim [|(ux,vy)|| = 0.
A—00

unipg
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The proof of the existence theorem is divided into several steps.

» First, we introduce the variational setting of the problem and we
prove that the underlying functional / has the geometry of
Mountain pass, where

1) = [ [AQDasl) + Al + [ [B(ul) + Bl

H»

1
— )\/ F(u,v)d§ — —*/ lu|*|v|Pd¢  for all (u,v) € W.
H» q Hr

» Then, we obtain the existence of a Palais—Smale sequence
{(uk, vk) }x C W for I at the special level ¢, where
= inf I(~(t)) >0,
ox = Inf max I((1))
with I' = {y € C([0, 1], W) : 7(0) = (0,0), I(~(1)) <0}.
Furthermore, the set of critical levels {c) } satisfies the

asymptotic condition

lim cy = 0. o —
Asoo unipg
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> the key step is to prove that, up to a subsequence,
(g, vi) — (ux,vy) in Was k — oo,
and that there exists a threshold A* > 0 such that

(ux,vy) is a weak solution for A > \*.
For this we need a new concentration—compactness result in the
space
S = SHO(H") x SO (H")
where SU¢(H"), 1 < p < Q, is the Folland-Stein space.

> Finally, the fact that the constructed solution is nontrivial is
obtained via a theorem of alternatives a /a Lions.

unipg
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In order to handle the critical potential, we first study the exact
behavior of the weakly convergent sequences of

S = SH(H") x §H(H")

in the space of measures, in the spirit of Lions.
The result is based on the optimal constant

O LY R U

(uv)e q/q*’
et Onto ( / |u0‘]v]6d§>

which is well defined thanks to the Folland—Stein inequality.

unipg
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Exponential (p, Q) equations in H"

In P.P. and Temperini (Adv. Calc. Var. 15 (2022), 601-617) we
consider the equation in H”

f(&u)
r(€)”

(&) = Aupu— Apgu+ [uf 7u+ [u|Pu = +h(8),

> 1 <p<0,0<B<Qwhere Q=2n+2,

> /i is a nontrivial nonnegative functional of HW "¢’ (H"), where
HW~12' (H") is the dual space of HW"-2(H"),

> (&) = r(z,1) = (J2|* + 2)"/* is the Kordnyi norm in H", with
§=(z,1) e H", z = (x,y) € R" x R", 1 € R, |z| the Euclidean
norm of z € R?",
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References in the vectorial case

@ M. Bhakta, S. Chakraborty, O.H. Miyagaki, P.P., Fractional elliptic
systems with critical nonlinearities Nonlinearity (2021)

ﬁ D. Cassani, H. Tavares, J. Zhang, Bose fluids and positive solutions to
weakly coupled systems with critical growth in dimension two, J.
Differential Equations (2020).

ﬁ Chen, Fiscella, P.P. and Tang, Coupled elliptic systems in RN with
(p, N) Laplacian and critical exponential nonlinearities, Nonlinear
Anal (2020).

ﬁ do O, de Albuquerque, On coupled systems of nonlinear Schrodinger
equations with critical exponential growth, Appl. Anal. (2018).

ﬁ Tao, Zhang, Solutions for nonhomogeneous fractional (p, q)-Laplacian
systems with critical nonlinearities, Adv. Nonlinear Anal. (2022).
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References in the scalar case

@ Candito, Gasinski, Livrea, Three solutions for parametric
problems with nonhomogeneous (a, 2)-type differential operators
and reaction terms sublinear at zero, J. Math. Anal. Appl. (2019)

[§ Figueiredo, Radulescu, Nonhomogeneous equations with
critical exponential growth and lack of compactness, Opuscula
Mathematica (2020)

[ Fiscella, PP., (p,N) equations with critical exponential
nonlinearities in RY, J. Math. Anal. Appl. (2021)

[ Kumar, Radulescu, Sreenadh, Unbalanced fractional elliptic
problems with exponential nonlinearity: subcritical and critical
cases, Topological Methods in Nonlinear Analysis (2022)
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References in the scalar case

[d Papageorgiou, Scapellato, Positive solutions for anisotropic
singular (p, q)—equations, Z. Angew. Math. Phys. (2020)

[§ Papageorgiou, Scapellato, Multiple solutions for Robin
(p, q)—equations plus an indefinite potential and a reaction
concave near the origin, Anal. Math. Phys. (2021)

[ Mukherjee, P.P., Xiang, Combined effects of singular and
exponential nonlinearities in fractional Kirchhoff problems,
Discrete Contin. Dyn. Syst. (2022)

[§ Xiang, Radulescu, Zhang, Nonlocal Kirchhoff problems with

singular exponential nonlinearity, Appl. Math. Optim.
(2021)
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Structural assumptions

(f1) f is a Carathéodory function, with f(-,u) = 0 for all u < 0, and
such that there exists cg > 0 with the property that for all € > 0
there exists k. > 0 such that

F(E ) < 2ul™ e (20— Sg (a0, u))

fora.e. & € H" and allu € Ry, where Rf = [0, c0),

Q0 = QQ—I and  Sg-2(a0,u) = ZQ ’
(f2) there exists a number v > Q such that 0 < vF(§,u) < uf(g, u)
fora e{ € H" andany u € RT, RT = (0,00), where

fo v)dv for a.e £ € H" and all u € R.

a’u’

7
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Theorem (P.P. and Temperini, Adv. Calc. Var. 15 (2022),
601-617)

Assume that the structural assumptions (f1), (f2) hold. Then, there
exists a constant o > 0 such that the equation

L r(é’;;) +h(8)

admits at least a nontrivial nonnegative solution uy in W, provided

(€)= Dyt — Apygu + [ulr =2+ [u]0%u =

that 0 < ||h||,y-1.00 < 0. Moreover,

lim ||uy|| = 0.
h—0
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Future developments and open problems

| 2

>

| 4

Complete the previous theorems giving existence/nonexistence
results for small A and large h

Consider the presence of other critical potentials, such as Hardy
potentials

Consider (p, g) non local problems, involving the fractional
Laplace operator on the Heisenberg group, defined as

u —Uu -2 u —Uu
(~Bm)ul§) = Couppv [ MOZHIE GO = g

where Q = 2n + 2, Cg s , is a positive constant, and PV is the
Cauchy principal value, see Fiscella, P.P. (Fract. Calc. Appl.
Anal., 2020), De Filippis, Palatucci (J. Differential Equations,
2019), Kumar and Sreenadh (Commun. Contemp. Math., 2020).
Goel, Sreenadh, Radulescu, Variational framework and
Lewy-Stampacchia type estimates for nonlocal operatoj
Heisenberg group, Ann. Fenn. Math. 2022. X

unipg

87/113



Critical equations in H"

In P.P. and Temperini, Opuscula Math., Special Issue Advances in
Nonlinear Partial Differential Equations 2022 we consider the
equation in H"

€ = Mgt = wl©)lul 2w+ K()uf” 2u in H",

with 1 < p < Q, where Q = 2n + 2 is the homogeneous dimension
of the Heisenberg group H"; furthermore, p < g < p* and

o= pQ
Q—-p

is the critical exponent associated to p.
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For (§) — Appu = w(&)[u?2u+ K(&)|ulP” ~2u in H" we
distinguish two different situations:

. 1<p<gqg<ph
2. 1<p=gqg<p_
In the first case, we assume that

(w1) w >0, we LL_(H") and w is such that the embedding
SUP(H") s LI(H", wd€) is compact,

(K1) K>O0ae inH" K € L*°(H") and

lim K(¢) = Koo € R,

r(€)—o0

where R = [0, 00).
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Theorem (P.P., Temperini, Opuscula Math., S.I. Advances in
Nonlinear Partial Differential Equations 2022)

Let 1 <p < Qandp < q < p*. Assume that (w,) and (H,) are
satisfied. Then, there exists \* > 0 such that for all A > \* the
equation

©) — Appu = Aw(E)ul 1w+ K(E)|uf”" u in H",

admits at least a nontrivial solution.
The Theorem extends Theorem 1.1 of
[§ [BFP]S. Bordoni, R. Filippucci, P. P., Existence problems on

Heisenberg groups involving Hardy and critical terms, J. Geom.
Anal. 30 (2020), 1887-1917.

ssssssssssssssssss
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Our Theorem is obtained via an application of the
concentration—compactness results given in

[@ P.P, L. Temperini, Existence for singular critical exponential
(p, Q) equations in the Heisenberg group, Adv. Calc. Var. 15
(2022), 601-617.

[§ P.P., L. Temperini, On the concentration—compactness principle
for Folland—Stein spaces and for fractional horizontal Sobolev
spaces, Math. Eng. 5 (2023), Special Issue: The interplay
between local and nonlocal equations - dedicated to the memory
of Professor Ireneo Peral, Paper no. 007, 21 pp.
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The second case, namely when p = ¢, is more challenging and is not
treated in [BFP]. Following somehow

[3 Bonder, Saintier, Silva, The concentration-compactness
principle for fractional order Sobolev spaces in unbounded
domains and applications to the generalized fractional
Brézis—Nirenberg problem, Nonlinear Differential Equations
Appl. 25 (2018), 52:25.

we assume that K(£) = 1, so that (K) is trivially satisfied, and that w
verifies (w;) and the additional request

(wp)  w € L®°(H") and there exists &y € H" such that w is
continuous at & and w(&) > 0.

We are then able to prove the following
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Theorem (P.P., Temperini, Opuscula Math., S.I. Advances in
Nonlinear Partial Differential Equations 2022)

Let p > 1 be such that p*> < Q. Assume that the function w satisfies
(w1) withp = g and (w») and that K = 1. Then, equation

&) — Apput = Iw(E)|ulP2u+ |ulP” "u in H,

admits at least a nontrivial solution for any X € (0, \;) where

. |Duvllp
)\1 = )\1 w) = IIlf o N 1 1~
(w) vGSl;Z(()H") S w(&)|vIPdE

The idea behind the construction of the solution in the theorem above
goes back to the seminal paper by

[3 [BN] H. Brézis, L. Nirenberg, Positive solutions of nonlinear
elliptic equations involving critical Sobolev exponents, Comm.
Pure Appl. Math. 36 (1983), 437-477. ; \

The main difficulty is the unavailability of an explicit form .

of the extremals for the Folland—Stein embedding. 93/113
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If 1 < p < Q, then there exists an extremal U € S (H") for the
Folland—Stein embedding and this estimate holds:

)=

U() ~r(§)r=t asr() — oc.

The knowledge of the exact asymptotic behavior at infinity of
Sobolev extremals turns out to be crucial in order to obtain existence
results for the Brézis—Nirenberg type problems, whenever the explicit
form of minimizers is not known.

Finally, assumption p? < Q, together with the estimate for U above,
ensures that U € L7 (H") since otherwise, as we already noted,
functions in S (H") may not belong to the Lebesgue space L7 (H").

unipg
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Few references for the p—Laplacian on the Euclidean setting

) ) W = =D

Bonanno, Jebelean, Serban, Proc. Roy. Soc. Edinburgh Sect. A
2017

Bonanno, Livrea, Radulescu, Atti Accad. Naz. Lincei Rend.
Lincei Mat. Appl. 2021

Bonanno, D’Agui, Livrea, Nonlinear Anal. 2020
Brasco, Prinari, Zagati, Nonlinear Anal. 2022
Candito, Gasinski, Livrea, Santos, Adv. Nonlinear Anal. 2022

Ciraolo, Figalli, Roncoroni, Geom. Funct. Anal. 2020
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Few references for the p—Laplacian on the Euclidean setting

El Fusco, Mukherjee, Zhang, Yi, Proc. Lond. Math. Soc. 2019
[§ Mawhin, Skrzypek, Szymainska—Debowska, Entropy 2021
@ Mercuri, Perera, J. Funct. Anal. 2022

[§ Papageorgiou, Scapellato, J. Differential Equations 2021
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(p, q) critical equations with Hardy terms
In [P.P., Temperini, Rend. Circ. Mat. Palermo 71 (2022), 1049-1077]
we consider the critical equation with Hardy terms in H"

q—2
—Apgpu — A qu+ \u|p_2u + \u|q_2u — awqw

rd
= N (& u) + [ul” u,

where o and A > 0 are real parameters. The exponents p and g are
such that 1 < p < g < Q, where ¢* = qQ/(Q — q) is the critical
exponent related to g. As usual, Ay, with p € {p, ¢}, is the
horizontal p—Laplacian defined by Ay ¢ = divH(\DHcp\f,_ZDHgo)
for all p € CX(H"), r(€) = r(z,1) = (Jz|* + )4, € = (z,1) € H,
is the Koranyi norm and  is the weight function that appears in the
Hardy inequality

d p
[rerwte < (G2 [ omelyae

thatis ¢ = |DHI"’H in H" \ {0}

)
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On f in (£) throughout the chapter we assume the following condition
(F) f is a Carathéodory function, with f(-,u) = 0 for all u < 0 and
f(-,u) > 0 forall u > 0, satisfying the two properties

(fi) there exist m and m, withp < m < m < g*, such that for every
€ > 0 there exists C. > 0 for which the inequality

f (€, u)| < melu/™" +mC.|u|™"  foranyu e R

holds for a.e. £ € H";
(f2) there exists 0, with g < 0 < ¢*, such that the inequality

0<O0F&u) <f(&uu forallue R

holds for a.e. £ € H", where F(&, u) /f &,v)dv for a.e
EeH"and allu € R.
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Due to the unbalanced growth of the (p, ¢) operator, the natural space
where finding solutions of (£) is

W = HW" (H") N HW"9(H"),
endowed with the norm

[l = Tleall s + el rrwr.o

for all u € W, where HW'#(H"), o € {p, q}, is the horizontal
Sobolev space consisting of all functions u € L®(H") such that Dyu
exists in the sense of distributions and |Dyu|y € LY (H"), endowed
with the natural norm

1/p
runﬁwl,pmn):( [ e+ [ |DHu|zd5) |
H”» H~

The number H,, denotes the best Hardy constant introduced
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Theorem
For any o € (—00,H,), there exists A\, = (0, Q,q,0) > 0 such that
equation

q— 2
g~ A+ a2l o

= M (& u) + |ul” 2u,

admits at least one nontrivial solution u = u,  in W for all X > \,.
Moreover,

©

lim [ju, 5| = 0.
A—00

unipg
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The above theorem extends and complements in several directions
previous results, such as the theorems contained in

@ S. Bordoni, R. Filippucci, P.P., Existence problems on Heisenberg groups
involving Hardy and critical terms, J. Geom. Anal. 30 (2020), 1887-1917.

@ G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic
problems with critical growth on RY, J. Math. Anal. Appl. 378 (2011), 507-518.

@ A. Fiscella, P. Pucci, (p, ¢) systems with critical terms in RY, Special Issue on
Nonlinear PDEs and Geometric Function Theory, in honor of Carlo Sbordone
on his 70th birthday, Nonlinear Anal. 177 (2018), Part B, 454-479.

Existence is obtained via the mountain pass lemma of Ambrosetti and
Rabinowitz and follows somehow the ideas of the last cited paper.

101/113



Moreover, the triple loss of compactness in (£), caused by the
simultaneous presence of the Hardy and the critical terms in the
whole Heisenberg group H", forces to study the exact behavior of the
(PS). sequences at special levels c, in the spirit of Lions. This
analysis is deeply connected with the concentration phenomena
taking place and strongly relies on the results of On the
concentration-compactness principle for Folland-Stein spaces and for
fractional horizontal Sobolev spaces

@ P.P., L. Temperini, On the concentration—compactness principle for
Folland—Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5
(2023), Paper No. 007, 21 pp.
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Multiplicity results

In S. Liang and P. P., Multiple solutions for critical Kirchhoff-Poisson
systems in the Heisenberg group, Appl. Math. Lett. 127 (2022), Paper
No. 107846 we study existence of multiple solutions of the following
critical Kirchhoff—Poisson system in the Heisenberg group

—M ([, |Dyuld€) Apu+@lult=2u=h(¢, u)+Aulu, in Q,
(KP)  { —Auo = |ule, in Q,
u=¢=0, on 99,

where Q C H! is a smooth bounded domain, 1 < g <2, Aisa
positive real parameter, and the Kirchhoff function M and the
nonlinear term A satisfy the following assumptions

unipg
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() (M) M € C(Rj,R+) and there exists mg > 0 such that
M(t) > my > 0 forall r > 0;
(M>) there exists to > > 0 such that M (z) > M(t)t for all > 1o,
where Mt fo
(H) () he C1 (Q x ]R,]R) and there exist a constant C > 0 and an
exponent r, with 2 < r < 4, such that

[h(, 1) < C(1+ [

forall ¢ € Q,t > 0;
(h2) h(&,t) = o(|t]) as t — O uniformly in § € Q;
(h3) there exist 6 € (2¢,4) and T > 0 such that

0 < O0H(& 1) < h(&, )t

forall ¢ € Qand 1, with [t| > T, where H(, 1) = [3 h(
(ha) h(§, —1) = —h(&, 1) forall (€,1) € 2 X R.
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In the Euclidean case, there are recent interesting papers devoted to
the study of the Schrédinger-Poisson systems. For example,

[§ Z. Wang, H. Zhou, Positive solution for a nonlinear stationary
Schridinger-Poisson system in R3, Discrete Contin. Dyn. Syst.
18 (2007) 809-816.

[d A. Azzollini, A. Pomponio, Ground state solutions for the
nonlinear Schrodinger-Maxwell equations, J. Math. Anal. Appl.
345 (2008) 90-108.

[§ J.Zhang, J. M. Do o, M. Squassina, Fractional
Schrodinger-Poisson systems with a general subcritical or
critical nonlinearity, Adv. Nonlinear Stud. 16 (2016) 15-30.

To the best of our knowledge, we cannot find any result in the
literature that can be directly applied to obtain the existence and
multiplicity of solutions of (K Z2).

yyyyyyyyyyyyyyyy
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However, the existence results of solutions for the critical
Schrodinger—Poisson systems in the Heisenberg group are very few.
In this setting, let us mention the paper

[d Y.C. An, H. Liu, The Schridinger-Poisson type system involving
a critical nonlinearity on the first Heisenberg group, Israel J.

Math. 235 (2020) 385-411.

in which existence of at least two positive solutions and a positive
ground state solution is proved for Schrodinger—Poisson systems in
the Heisenberg group, via the critical point theory. As far as we are
aware, there are no results in the literature that can be directly applied
to obtain the existence and multiplicity of solutions to the critical
Kirchhoff-Poisson system (K.£?) in the Heisenberg group, even in
the Euclidean case.

unipg
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Although some properties are similar between the Kohn Laplacian
Ap and the classical Laplacian A, the similarities may be misleading,
see

@ N. Garofalo, E. Lanconelli, Frequency functions on the
Heisenberg group, the uncertainty principle and unique
continuation, Ann. Inst. Fourier 40 (1990) 313-356.

In addition, the critical exponent Q* = 4 in H', while 2* = 6 in R3.

This causes us some obstacles in proving compactness. In order to

overcome these difficulties, we use the concentration compactness

principles in the Heisenberg group. The main result of the paper is
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Theorem (S. Liang, P.P., Appl. Math. Lett. 2022)

Assume that (') and (H) hold. Then, for any k € N, there exists
A; > 0 such that problem

—M ([, |Drul?d€) Apgu-+lult=2u=h(&,u)+Nu?u, in Q,
(K —Apo = |ul?, in €,
u=¢=0, on 0N,

admits k pairs of nonzero solutions for any A € (0, \}).

In [S. Liang, P.P., Appl. Math. Lett. 2022], we only consider the
one—dimensional case H', but the method employed here is also
applicable to other dimensions for this kind of problem.

unipg

i HEMATICS
(COMPUTER SCIENCES

108/113



The paper P. P. and Y. Ye, Existence for critical Kirchhoff—Poisson
systems in the Heisenberg group, Adv. Nonlinear Stud. 22 (2022),
361-371, is devoted to the study the combined effects of logarithmic
and critical nonlinearities for the Kirchhoff—Poisson system

M ([ |VHu]2d§) Apu + pgu = Mul™2uln |ul* + [ulu in Q,
AH¢ = Lt in Q,
u=¢=0 on 012,

where Ay is the Kohn—Laplacian operator in the first Heisenberg
group H',  is a smooth bounded domain of H', g € (20,4), 1 € R
and A > 0 are some real parameters. Under suitable assumptions on
the Kirchhoff function M, which cover the degenerate case, we prove
the existence of nontrivial solutions for the above problem when

A > 0 is sufficiently large. Moreover, our results are new even in the
Euclidean case.
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109/113



As in the whole lecture, let us set for simplicity Rf = [0, o0) and

R* = (0, 00). Concerning the Kirchhoff term M, we assume that
M € C(Rj,R)) satisfies:

(My) Forany T > 0, there exists my = mo(7) > 0 such that
M(t) > mg fort > T.

(M>) There exists 0 € [1,2) such that OM(1) > M(1)t for all t > 0,
where M(t) = fOZM(s)ds.

(M5) There exists my > 0 such that M(t) > m11°~! for all t € RY and
M(0) =0.

A typical example is given by
M(t)=a+b"", ab>0, at+b>0, 0>1.

When M is of this type, the problem is called non—degenerate if
a > 0, while it is said to be degenerate if a = 0.
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Theorem (P. P.,, Y. Ye, Adv. Nonlinear Stud. 2022)
Assume that (M )—(M3) are satisfied and ji < S|Q\_%, where

S = inf 7‘&'}11 |vHM|2d£
_ >
S ([ ulde)?

Then there exists \* > 0 such that problem

M ([ |V aul?d€) Agu+ pdu = NMul92uln |u]® + |ul?u in €,
—AH¢ = uz in Q,
u=¢=0 on 082,

has a nontrivial solution for any A > \*.

The degenerate case is rather appealing, not only from a mathematical
point of view, but also in applications. From a physical point of view
the fact that M(0) = 0 means that the base tension of the string is
zero, a very realistic model. It is treated in well-known X
famous papers in Kirchhoff theory, see
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[§ P.D’Ancona,S. Spagnolo, Global solvability for the degenerate

Kirchhoff equation with real analytic data, Invent. Math. 108
(1992) 247-262.

The features of Theorem are

(i) the presence of the logarithmic term and of the

critical nonlinearity, which contributes to the lack of
compactness;

(ii) the fact that the result includes the degenerate case,

which corresponds to the Kirchhoff function M
vanishing at 0.
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