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Backgrounds on the Heisenberg group

The study of critical equations in the context of the stratified Lie
groups is a fast growing and fascinating topic. There are multiple
reasons behind this interest. On one hand, it is well known that the
Heisenberg group appears in various areas of physics and science,
such as quantum theory (uncertainty principle, commutation
relations), cf.

P. Cartier, Quantum mechanical commutation relations and theta functions,
Proc. Sympos. Pure Math. 9 (1966), 361–383.

P.P. Divakaran, Quantum theory as the representation theory of symmetries,
Physical Review Letters 79 (1997), 2159–2163.

in signal theory,

W. Schempp, Harmonic analysis on the Heisenberg nilpotent Lie group, with
applications to signal theory, Longman Scientific and Technical, Harlow,
Essex, 1986, 199 pp.

and theory of theta functions, cf. Cartier above and

S. Zelditch, Index and dynamics of quantized contact transformations, Ann.
Inst. Fourier 47 (1997), 305–363.
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From a mathematical point of view, the main reason of the interest in
studying critical equations in this context is the strong connection
with the Yamabe problem on Cauchy–Riemann (CR) manifolds. We
refer for further details on this subject, e.g., to

B. Bianchini, L. Mari, M. Rigoli, Yamabe type equations with sign–changing
nonlinearities on the Heisenberg group, and the role of Green functions, Recent
trends in nonlinear partial differential equations, I. Evolution problems,
115–136, Contemp. Math., 594, Amer. Math. Soc., Providence, RI, 2013.

N. Garofalo, Gradient bounds for the horizontal p–Laplacian on a Carnot group
and some applications Manuscripta Math. 130 (2009), 375–385.

N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313–356.

N. Garofalo, E. Lanconelli, Existence and nonexistence results for semilinear
equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), 71–98.

N. Garofalo, D. Vassilev, Symmetry properties of positive entire solutions of
Yamabe–type equations on groups of Heisenberg type, Duke Math. J. 106
(2001), 411–448.
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N. Garofalo, D. Vassilev, The non–linear Dirichlet problem and the CR
Yamabe problem, Boundary value problems for elliptic and parabolic operators
(Catania, 1998), Matematiche (Catania) 54 (1999), suppl., 75–93.

D. Jerison, J.M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar
curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983), 57–63,
Contemp. Math. 27, Amer. Math. Soc., Providence, RI, 1984.

D. Jerison, J.M. Lee, The Yamabe problem on CR manifolds, J. Differential
Geom. 25 (1987), 167–197.

A. Kristály, Nodal solutions for the fractional Yamabe problem on Heisenberg
groups Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), 771–788.

F. Uguzzoni, A note on Yamabe-type equations on the Heisenberg group,
Hiroshima Math. J. 30 (2000), 179–189.
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In the development of the theory of partial differential equations in
the Heisenberg group and, more generally, in sub–Riemanian
manifolds, it is important to explore new challenging problems as
well as to figure out, in this emerging variety of results, whether or
not the standard methods developed in the Euclidean spaces can be
adapted to this new context. This kind of analysis is the main scope of
this course.
Next I review some necessary background on the Heisenberg group.
Analysis on the Heisenberg group is very interesting because this
space is topologically Euclidean, but analytically non-Euclidean, and
so some basic tools, such as dilatations, must be developed again.
One of the main differences with the Euclidean case is the appearance
of the so-called homogeneous dimension Q = 2n + 2 in the
Heisenberg group. The number Q > 2n + 1, which we introduce later,
plays a role analogous to the topological dimension in the Euclidean
context. For a complete treatment, we refer to
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J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.

N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313–356.

G.P. Leonardi, S. Masnou, the isoperimetric problem in the Heisenberg group
Hn, Ann. Mat. Pura Appl. 184 (2005), 533–553.

A. Loiudice, Improved Sobolev inequalities on the Heisenberg group,
Nonlinear Anal. 62 (2005), 953–962.

6 / 113



Definition of the Heisenberg group

The Heisenberg group Hn is the Lie group whose underlying
manifold is R2n+1,

Hn = {ξ = (z, t) ∈ R2n+1 | z = (x, y) ∈ R2n, t ∈ R}

endowed with the non–Abelian group law

ξ ◦ ξ′ =
(
z + z′, t + t′ + 2

n∑
i=1

(yix′i − xiy′i)
)

for all ξ, ξ′ ∈ Hn with ξ =(z, t)= (x, y, t) and
ξ′ =(z′, t′)= (x′, y′, t′). Clearly, O = (0, 0) is the identity element of
Hn and for any ξ ∈ Hn, ξ−1 = −ξ.
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The sub–Riemannian structure

The Heisenberg group is the simplest sub–Riemannian manifold that
is not Riemannian and the simplest noncommutative nilpotent Lie
group.

A distribution on
H1 ∼= R3

I The constrain on admissible
curves is given by a distribution
of planes, that is a distribution
that smoothly assigns to each point
a plane (inside the 3D tangent space).

I The admissible
curves are tangent to such a distribution.
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I Each pair of points of Hn can be connected by at least one
admissible curve. From this fact one can define a distance
between two points ξ and ξ′ as the infimum of the length of all
the admissible curves between ξ and ξ′:
dCC(ξ, ξ′) = inf{Length(γ) | γ admissible curve between ξ and ξ′}.

The celebrated theorem of Piotr-Zimmermann in 2015
completely describes the geodesics connecting two points.

I This metric space is not Riemannian. Indeed, the topological
dimension 2n + 1 is strictly less than the homogeneous
dimension Q = 2n + 2.

The unit ball in H1
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An equivalent norm

I The Korányi norm is given for ξ = (z, t) ∈ Hn by

r(ξ) = r(z, t) = (|z|4 + t2)1/4.

and is defined via the stratification property of Hn. Here | · | is
the Euclidean norm of the horizontal layer. The Korányi norm is
1–homogeneous with respect to the group of dilations. From the
computational viewpoint, the Korányi norm is easier to handle
compared to the Carnot–Carathéodory norm. However, all
homogeneous norms are equivalent in the context of Carnot
groups.

I We prefer to use the Korányi distance, since it is much easier to
compute than the Carnot–Carathéodory (CC) distance, even if it
does not reflect the sub-Riemannian structure of the Heisenberg
group. Despite this, the two metrics are closely related.
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An equivalent norm

I Interestingly, it was shown by Yang in 2013 that the L-gauge d(x)
– sometimes also called the Korányi-Folland or Kaplan gauge –
can be replaced by the CC distance, and the Hardy inequality
remains valid with the same best constant p/(Q− p), where
Q = 2n + 2 is the homogeneous dimension of the n Heisenberg
group. Homogenoeous dimension or Hausdorff dimension Q.

I The corresponding distance, the so called Korányi distance, is

dK(ξ, ξ′) = r(ξ−1 ◦ ξ′)

for all (ξ, ξ′) ∈ Hn ×Hn.

I This distance acts like the Euclidean distance in horizontal
directions and behaves like the square root of the
Euclidean distance in the missing direction.
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Properties of the Korányi norm

I Translation invariance w.r.t. left translations (τη)η∈Hn given by

τη : ξ 7→ η ◦ ξ for all ξ ∈ Hn.

I Homogeneity of degree 1 w.r.t. the family of dilations (δR)R>0,
given by

δR : ξ = (z, t) 7→ (Rz,R2t) for all ξ ∈ Hn,

since r(δR(ξ)) = r(Rz,R2t) = (|Rz|4 + R4t2)1/4 = R r(ξ) for all
ξ = (z, t) ∈ Hn.

I The Jacobian determinant of δR : Hn → Hn is constant and equal
to R2n+2. This is why the natural number Q = 2n + 2 is called
homogeneous dimension of Hn.
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The Lie algebra of left–invariant vector fields on Hn is generated by
the vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
j = 1, . . . , n,

T =
∂

∂t
.

This basis satisfies the Heisenberg canonical commutation relations

[Xj,Yk] = −4δjkT, [Yj,Yk] = [Xj,Xk] = [Yj,T] = [Xj,T] = 0.

In the span of {Xj,Yj}n
j=1 ' R2n we consider the natural inner product

given by (
X,Y

)
H =

n∑
j=1

(
xjyj + x̃jỹj)

for X = {xjXj + x̃jYj}n
j=1 and Y = {yjXj + ỹjYj}n

j=1.

13 / 113



The inner product
(
·, ·
)

H produces the Hilbertian norm

|X|H =
√(

X,X
)

H

for the horizontal vector field X. The horizontal gradient of u is

DHu = (X1u, · · · ,Xnu,Y1u, · · · ,Ynu),

where

|DHu|H =

√√√√ n∑
i=1

{|Xiu|2 + |Yiu|2}.

The Heisenberg group is a particular example of a wide class of
nilpotent Lie groups referred to as Carnot groups in the literature.
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Definition
A Carnot group is a connected and simply connected Lie group G
with a Lie algebra g, which admits a stratification, i.e. g is the direct
sum of linear subspaces, g =

⊕r
j=1 Vj, such that

(i) [V1,Vj] = Vj+1 for j = 1, . . . , r − 1,

(ii) [V1,Vr] = 0.
The number r is called the step of the Carnot group. Clearly the
Heisenberg group is a Carnot group of step 2. Most of the results that
we prove in the course can be extended to this more general context.
However, we do not present them in the most general framework, and
we limit our treatment to the Heisenberg group context. For a detailed
discussion about Carnot groups we refer to

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.

S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011, xviii+219 pp.
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The operator ∆H

The horizontal Laplacian in Hn is the operator

∆Hu =

n∑
j=1

(X2
j + Y2

j )u

=

n∑
j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
u + 4|z|2∂

2u
∂t2 .

The operator ∆H is subelliptic, according to Hörmander’s notation.
Le us also define, for p > 1, the operator horizontal p–Laplacian

∆H,pϕ = divH(|DHϕ|p−2
H DHϕ)

for any ϕ ∈ C∞c (Hn).
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The Haar measure and the Lebesgue spaces
We briefly recall the definition of the Haar measure of a locally
compact topological group, and we specify it in the context of the
Heisenberg group. For a detailed treatment about general Haar
measures we refer to

A. Bonfigli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential
Theory for Their Sub-Laplacians, Springer–Verlag, Berlin Heidelberg, 2007,
xxvi+802 pp.

G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics
Studies, 122. Princeton University Press, Princeton, NJ, 1989, x+277 pp.

G.B. Folland, E.M. Stein, Estimates for the ∂b complex and analysis on the
Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.

and for the special case of the Heisenberg group we refer to

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.

S. G. Krantz, Explorations in Harmonic Analysis: With Applications to
Complex Function Theory and the Heisenberg Group, Birkhäuser Basel, 2009,
xiv+362 pp.
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Definition
Let (G, ◦) be a topological group. A left Haar measure on G is a
nonzero regular Borel measure µ on G such that µ(g ◦ A) = µ(A) for
all g ∈ G and all Borel measurable subsets A of G. The corresponding
integral is invariant under left translations, that is∫

G
u(g′ ◦ g)dµ =

∫
G

u(g)dµ

for any integrable function u on G.
Similarly a right Haar measure is also defined. Moreover, by
Proposition 1.3.21 in

A. Bonfigli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential
Theory for Their Sub-Laplacians, Springer–Verlag, Berlin Heidelberg, 2007,
xxvi+802 pp.

if µ and µ′ are two left Haar measures on G then µ = aµ′ for some
a ∈ R+, and so the Haar measure is unique up to a multiplicative
positive constant.
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In the special case of the Heisenberg group, it is easy to check that the
Lebesgue measure on R2n+1 is invariant under left translations. Thus,
from here on, we denote by dξ the Haar measure on Hn that coincides
with the (2n + 1)–Lebesgue measure.
Moreover, |U| is the (2n + 1)–dimensional Lebesgue measure of any
measurable Borel set U ⊂ Hn. Furthermore, the Haar measure on Hn

is Q–homogeneous with respect to dilations δR. Then,

|δR(U)| = RQ|U|, d(δRξ) = RQdξ.

In particular |BR| = |B1|RQ.
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The Lebesgue Spaces on Hn

For any measurable set U ⊂ Hn and for any 1 ≤ p ≤ ∞, we denote
Lp(U) the set of all measurable functions u : U → R such that
‖u‖Lp(U) <∞, where

‖u‖Lp(U) =

(∫
U
|u|pdξ

)1/p

, if 1 ≤ p <∞,

while

‖u‖L∞(U) = ess sup
U

u = inf{M : |u(ξ)| ≤ M for a.e. ξ ∈ U}.

When U = Hn or when there is not ambiguity about the set
considered, for simplicity we denote the norm ‖ · ‖p.
The symbol 1U denotes the characteristic function of a Lebesgue
measurable subset U of any Lebesgue σ–algebra.
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Properties of Lp(Ω)

Let Ω be a nonempty open set of Hn.
The Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, are Banach spaces and
Cc(Ω) is dense in Lp(Ω) when 1 ≤ p <∞.
Moreover, the spaces Lp(Ω) are reflexive when 1 < p <∞, while
L1(Ω) and L∞(Ω) are not reflexive.
Indeed, for 1 ≤ p <∞ the dual space

(
Lp(Ω)

)′ of Lp(Ω) can be
identified with Lp′(Ω), where p′ denotes the Hölder conjugate of p,
that is 1/p + 1/p′ = 1, so that

(
L1(Ω)

)′ can be identified with L∞(Ω).
On the other hand, the dual space of L∞(Ω) is identified with the
space of all absolutely continuous, finitely additive set functions of
bounded total variation on Ω, cf. Chapter IV.9 of

K. Yosida, Functional analysis, Reprint of the sixth (1980) edition, Classics in
Mathematics, Springer-Verlag, Berlin, 1995, xvi+504 pp.
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The horizontal Sobolev spaces and geometric inequalities
Sharp geometric inequalities on the Heisenberg group Hn, such as the
Hardy–Sobolev inequality and the Trudinger–Moser inequality, play
an important role in the study of the existence of solutions to
nonlinear partial differential equations involving power nonlinearities
with critical exponents and nonlinearities of exponential growth, cf.

N. Lam, G. Lu, Sharp Moser–Trudinger inequality on the Heisenberg group at
the critical case and applications, Adv. Math. 231 (2012), 3259–3287.

N. Lam, G. Lu, H. Tang, On nonuniformly subelliptic equations of
Q–sub–Laplacian type with critical growth in the Heisenberg group, Adv.
Nonlinear Stud. 12 (2012), 659–681.

N. Lam, G. Lu, H. Tang, Sharp subcritical Moser–Trudinger inequalities on
Heisenberg groups and subelliptic PDEs, Nonlinear Anal. 95 (2014), 77–92.

J. Li, G. Lu, M. Zhu, Concentration–compactness principle for
Trudinger–Moser inequalities on Heisenberg groups and existence of ground
state solutions, Calc. Var. Partial Differential Equations 57 (2018), 26 pp.

G. Mingione, A. Zatorska–Goldstein, X. Zhong, Gradient regularity for elliptic
equations in the Heisenberg group, Adv. Math. 222 (2009), 62–129.
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Following

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.

S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011, xviii+219 pp.

we introduce some necessary background on the horizontal Sobolev
spaces in the Heisenberg group. Then, we collect useful comments
and results related to the sharp geometric inequalities on Hn. Our
presentation is partly taken from the above monograph and

L. Capogna, D. Danielli , S.D. Pauls, J.T. Tyson, An Introduction to the
Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser
Basel, Progress in Mathematics 259, 2007, xvi+224 pp.

G.B. Folland, E.M. Stein, Estimates for the ∂b complex and analysis on the
Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.

N. Lam, PhD Thesis, Moser–Trudinger And Adams Type Inequalities And Their
Applications, Wayne State University Dissertations, 2014, 90 pp.

P.–L. Lions, The concentration compactness principle in the calculus of
variations. The limit case I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201.
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References in more general settings

R. Bramati, A family of sharp inequalities on real spheres Complex Var. Elliptic
Equ. 67 (2022), 2030–2042.

R. Bramati, P. Ciatti, J. Green, J. Wright, Oscillating spectral multipliers on
groups of Heisenberg type, Rev. Mat. Iberoam. 38 (2022), 1529–1551.

M. Chatzakou, M. Ruzhansky, N. Tokmagambetov, Fractional Schrödinger
equations with singular potentials of higher order. II: hypoelliptic case, Rep.
Math. Phys. 89 (2022), 59–79.

A. Kassymov, M. Ruzhansky, D. Suragan, Hardy inequalities on metric
measure spaces, III: the case q ≤ p ≤ 0 and applications Proc. A. 479 (2023),
no. 2269, Paper No. 20220307, 16 pp.

A. Kassymov, M. Ruzhansky, D. Suragan, Reverse Stein-Weiss,
Hardy-Littlewood-Sobolev, Hardy, Sobolev and Caffarelli-Kohn-Nirenberg
inequalities on homogeneous groups, Forum Math. 34 (2022), 1147–1158.

24 / 113



References in more general settings

A. Kassymov, M. Ruzhansky, D. Suragan, Reverse integral Hardy inequality on
metric measure spaces Ann. Fenn. Math. 47 (2022), 39–55.

A. Kassymov, M. Ruzhansky, D. Suragan, Hardy-Littlewood-Sobolev and
Stein-Weiss inequalities on homogeneous Lie groups Integral Transforms Spec.
Funct. 30 (2019), 643–655.

A. Kassymov, M. Ruzhansky, B.T. Torebek, Rayleigh-Faber-Krahn, Lyapunov
and Hartmann-Wintner inequalities for fractional elliptic problems, Mediterr. J.
Math. 20 (2023), Paper No. 119, 14 pp.

M. Ruzhansky, N. Yessirkegenov, Critical Gagliardo-Nirenberg, Trudinger,
Brezis-Gallouet-Wainger inequalities on graded groups and ground states
Commun. Contemp. Math. 24 (2022), Paper No. 2150061, 29 pp.
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The horizontal Sobolev space HW1,p(Ω)
Let us restrict to the special case 1 ≤ p <∞ and to an open set Ω of
Hn.

Definition
Let HW1,p(Ω) be the horizontal Sobolev space consisting of all
functions u ∈ Lp(Ω) such that DHu exists in the sense of distributions
and |DHu|H ∈ Lp(Ω), endowed with the natural norm

‖u‖HW1,p(Ω) =

(∫
Ω
|u|pdξ +

∫
Ω
|DHu|pHdξ

)1/p

.

We recall that the underlying measure in use here is the Haar measure
on Hn, which agrees with the Lebesgue measure on R2n+1. From here
on,

‖DHu‖Lp(Ω) =

(∫
Ω
|DHu|pHdξ

)1/p

.

and ‖DHu‖p = ‖DHu‖Lp(Hn), when Ω = Hn, for simplicity.
26 / 113



It is easy to check that the distributional horizontal gradient of a
function u ∈ HW1,p(Ω) is uniquely defined a.e. in Ω. Furthermore, if
u is a smooth function, then its classical horizontal gradient is also the
distributional horizontal gradient. For this reason, if u is a nonsmooth
function, DHu is meant in the distributional sense.
The space HW1,p(Ω) is a separable Banach space if 1 ≤ p <∞ and a
reflexive Banach space if 1 < p <∞.
For 1 < p <∞ the dual space of HW1,p(Hn) is

HW−1,p′(Hn) =
{

h0 +

n∑
j=1

(
h1

j Xj + h2
j Yj
)

:

h0, h1
j , h

2
j ∈ Lp′(Hn) , j = 1, . . . , n

}
,

where the pairing between a function u ∈ HW1,p(Hn) and a functional
h = h0 +

∑n
j=1

(
h1

j Xj + h2
j Yj
)

is given as usual by

〈h, u〉HW−1,p′ ,HW1,p =

∫
Hn

{
h0u +

n∑
j=1

(
h1

j Xju + h2
j Yju

)}
dξ,

as shown in
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A. Baldi, B. Franchi, N. Tchou, M.C. Tesi, Compensated compactness for
differential forms in Carnot groups and applications, Adv. Math. 223 (2010),
1555–1607.

The corresponding norm is
‖h‖HW−1,p′ = inf

{
‖h0‖p′ +

∑n
j=1

(
‖h1

j ‖p′ + ‖h2
j ‖p′
)

:

h = h0 +
∑n

j=1

(
h1

j Xj + h2
j Yj
)}
.

Let us now recall some density results for the horizontal Sobolev
spaces, such as the analogous of the celebrated Meyers-Serrin
theorem, which can be found in

B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and
relaxation of variational integrals depending on vector fields, Houston Math. J.
22 (1996), 859–889.

The density theorem for horizontal Sobolev spaces in the Heisenberg
group is analogous to the Euclidean one, thatis, C∞c (Hn) is dense in
HW1,p(Hn) for every p with 1 ≤ p <∞.
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As shown in
B. Franchi, R. Serapioni, F. Serra Cassano, Meyers-Serrin type theorems and
relaxation of variational integrals depending on vector fields, Houston Math. J.
22 (1996), 859–889.

N. Garofalo, D.–M. Nhieu, Isoperimetric and Sobolev inequalities for
Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm.
Pure Appl. Math. 49 (1996), 1081–1144.

we have a complete extension of

Theorem (Meyers–Serrin theorem)
Let Ω be an open set in Hn and 1 ≤ p <∞. Then,

C∞(Ω) ∩ HW1,p(Ω) is dense in HW1,p(Ω).
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The Folland–Stein inequality in the Heisenberg group

The subelliptic variant of the Sobolev inequality has a form similar to
the Euclidean version, but the exponent governing the transition to the
supercritical case is the homogeneous dimension Q = 2n + 2. The
Folland–Stein inequality is valid also for any Carnot group, but we
state it in the context the Heisenberg group, see also Franchi, Gallot
and Wheeden, Math. Ann. 1994.

Theorem (The Folland–Stein inequality, Comm. Pure Appl.
Math. 1974)
Let 1 < p < Q and set p∗ =

pQ
Q− p

. Then, there exists a constant

Cp,Q such that

(FS)
(∫

Hn
|ϕ|p∗dξ

)1/p∗

≤ Cp,Q

(∫
Hn
|DHϕ|pdξ

)1/p

for all ϕ ∈ C∞c (Hn).
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Some remarks

I The Folland–Stein inequality is also true for functions in the
space HW1,p

0 (Ω), where Ω is an open subset of Hn and HW1,p
0 (Ω)

is the completion of C∞c (Ω) with respect to the norm

‖u‖HW1,p(Ω) =
(
‖u‖p

Lp(Ω) + ‖DHu‖p
Lp(Ω)

)1/p
.

I In particular, if Ω = Hn, the Folland–Stein inequality holds in
the horizontal Sobolev space HW1,p(Hn) consisting of the
functions u ∈ Lp(Hn) such that DHu exists in the sense of
distributions and |DHu|H ∈ Lp(Hn), and HW1,p(Hn) is endowed
with the norm ‖u‖HW1,p(Ω), Ω = Hn.
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Some remarks

If I know that there exists q such that

‖ϕ‖q ≤ C‖DHϕ‖p

holds for any ϕ ∈ C∞c (Hn), then q = p∗ =
pQ

Q− p
. Indeed, taking

ϕλ(ξ) = ϕ(δλ(ξ)), λ > 0,

‖ϕλ‖q ≤ C‖DHϕλ‖q,

λ−Q/q‖ϕ‖q ≤ Cλ1−Q/p‖DHϕ‖p,

so that
1
q

=
Q− p

pQ
.
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Best constant of the Folland–Stein inequality

I Actually, much less is known about sharp constants for the
Folland and Stein inequality on the Heisenberg group than for
Sobolev inequality on the Euclidean space.

I As in most proofs of sharp constants in Euclidean spaces (note
the celebrated results of Talenti and Aubin), one attempts to use
the radial nonincreasing rearrangement u∗ of functions u (in
terms of a certain norm) on the Heisenberg group.

T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J.
Differential Geometry 11 (1976), 573–598.

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110
(1976), 353–372.
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Radial nonincreasing rearrangement

The radial nonincreasing rearrangement u∗ of a function u is the
unique function such that the level sets {x ∈ Rn : u∗(x) > t} of u∗

are balls which have the same measure as the level sets
{x ∈ Rn : u(x) > t} of u.

The radial rearrangement function u∗
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Radial nonincreasing rearrangement

Equivalently, the radial nonincreasing rearrangement of a function u
is defined as

u∗(x) = sup{t : µ(t) > ωn|x|n},

where ωn denotes volume of the unit ball in Rn and

µ(t) = meas{x ∈ Rn : u(x) > t}

is the measure of the level sets of u.
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Theorem (Pólya–Szegő inequality)
Given u ∈ W1,p(Rn), the non–increasing rearrangement u∗ satisfies

‖u∗‖p = ‖u‖p, ‖∇u∗‖p ≤ ‖∇u‖p.

In particular, u∗ ∈ W1,p(Rn).

I The Pólya–Szegő inequality is used to prove the
Rayleigh–Faber–Krahn inequality, which states that among all
the domains of a given fixed volume, the ball has the smallest
first eigenvalue for the Laplacian with Dirichlet boundary
conditions.

I The optimal constant in the Sobolev inequality in Rn can be
obtained by combining the Pólya–Szegő inequality with some
integral inequalities.
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The Euclidean case
In the Euclidean case, if 1 < p < n the best constant of the Sobolev
inequality (∫

Rn
|u|p∗dx

)1/p∗

≤ Cp,n

(∫
Rn
|∇u|pdx

)1/p

was computed by Talenti (Ann. Mat. Pura Appl., 1976). The proof is
accomplished by symmetrization and consists in two main steps.

1. the ratio

J(u) =
‖u‖p∗

‖∇u‖p

attains its maximum value on spherically symmetric functions.

2. The functional J has a maximum in a class of spherically
symmetric functions.

More precisely, the functional J(u) =
‖u‖p∗

‖∇u‖p
increases

if u is replaced by u∗.
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Radial nonincreasing rearrangement in Hn

I Of course the definition of u∗ can be generalized to the
Heisenberg context.

I Problem: In the Heisenberg context, it is NOT KNOWN whether
or not the Lp norm of the horizontal gradient of the
rearrangement of a function is dominated by the Lp norm of the
horizontal gradient of the function.

I In other words, the Pólya–Szegő inequality

‖DHu∗‖p ≤ ‖DHu‖p

for the horizontal gradient in the Heisenberg group is NOT
available.
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Radial nonincreasing rearrangement in Hn

I Manfredi and Vera De Serio (Acta Math. Sin., 2019) proved a
generalization of the Pólya–Szegő inequality for p ≥ 1 for the
Heisenberg group asserting that there exists a constant
C = C(p) ≥ 1, depending only on p, such that

‖DHu∗‖p ≤ C‖DHu‖p

(actually the result holds in the more general context of Carnot
groups).

I However, the exact value of C is not known and so this result
cannot be used to determine the sharp constant of the
Folland–Stein inequality.

I The work of Jerison and Lee (J. Amer. Math. Soc., 1988)
indicates that this inequality does not hold with C = 1
if p = 2.
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Proof of the Pólya–Szegő inequality
The three main ingredients are:
I The coarea formula: given Ω open set in Rn, u : Ω→ R a

Lipschitz function and g ∈ L1(Rn), then∫
Ω

g(x)|∇u(x)| dx =

∫
R

(∫
u−1(t)

g(x) dHn−1(x)

)
dt

I The Hölder inequality
I The (classical) isoperimetric inequality Given E ⊂ Rn a regular

set such thatHn−1(∂E) <∞, then

min{meas(E),meas(Rn\E)} ≤ CI(n)
[
Hn−1(∂E)

]1∗
, 1∗ =

n
n− 1

,

and the best constant CI(n) in the previous inequality is given by

meas(B1)/
[
Hn−1(∂B1)

]1∗
= ωn/[nωn]1

∗
.
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Main issue: Isoperimetric inequality in the Heisenberg
group

I The isoperimetric problem in the Heisenberg group is one of the
central questions of sub–Riemannian geometric analysis.

I The inequality (for n = 1)

min{meas(E),meas(H \ E)} ≤ CI,H [PH(∂E)]4/3

has been proved by Pansu (R. Acad. Sci. Paris Sér. I Math.,
1982)

I Open problem: the best constant and the extremal configuration
are still unknown

I Pansu conjecture: the best constant CI,H in the previous
inequality is given by

meas(B(O,R)/ [PH(∂B(O,R))]4/3 = 3/[4
√
π]4/3.

and B(O,R) is a bubble set.
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Bubble sets in H1

Figura: Leonardi and Masnou, On the isoperimetric problem in the
Heisenberg group Hn, Springer–Verlag (2005)
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The case p = 2

In conclusion, new ideas are needed in deriving sharp inequalities on
the Heisenberg group.
I The first major breakthrough came after the works of Jerison and

Lee (J. Amer. Math. Soc., 1988) on the sharp constants for the
Sobolev inequality and extremal functions on the Heisenberg
group, in conjunction with the solution of the CR Yamabe
problem.

I In particular, the best constant for the Folland–Stein inequality
on Hn for p = 2(∫

Hn
|u|2∗dξ

)1/2∗

≤ C2,Q

(∫
Hn
|DHu|2dξ

)1/2

was found and the extremal functions were identified.
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Theorem (Jerison and Lee, J. Amer. Math. Soc., 1988)
The best constant for the Folland–Stein inequality for p = 2 on Hn

(FS)
(∫

Hn
|u|2∗dξ

)1/2∗

≤ C2,Q

(∫
Hn
|DHu|2dξ

)1/2

is given by

C2,Q =
1

4πn2 [Γ(n + 1)]1/(n+1) ,

and all the extremals of (FS) are obtained by dilations and left
translations of the function

K|
(
t + i(|z|2 + 1)

)
|−n.

Furthermore, the extremals in (FS) are constant multiples of images
under the Cayley transform of extremals for the Yamabe functional on
the sphere S2n+1 in Cn+1.
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Open problems

The work of Jerison and Lee raised two natural questions.

1. What is the best constant Cp,Q Folland Stein inequality for all p,
when 1 < p < Q and p 6= 2?

2. What about the borderline case p = Q?

While the first question still seems to be open, the second question
was answered in the work of Cohn and Lu (Indiana Univ. Math. J.,
2001).
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Existence of minimizers via concentration–compactness

When 1 < p < Q, while the symetrization argument fails, the
concentration–compactness method by Lions (Ann. Inst. H. Poincaré
Anal. Non Linéaire, 1984) can be generalized to deal with the
problem of finding minimizers of the variational problem

I = inf
u∈C∞c (Hn)

u6=0

‖DHu‖p

‖u‖p∗
.

The natural space where looking for extremals is the Folland–Stein
space S1,p(Hn), defined as the completion of C∞c (Hn) w.r.t. the norm

‖u‖ = ‖DHu‖p =

(∫
Hn
|DHu|pdξ

)1/p

.
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Theorem (Ivanon and Vassilev, 2011)
Let 1 < p < Q. Every minimizing sequence (un)n in S1,p(Hn) of the
variational problem

(VP) I = inf
u∈C∞c (Hn)

u6=0

‖DHu‖p

‖u‖p∗

has a convergent subsequence in S1,p(Hn) after possibly translating
and dilating its elements by

uη(ξ) = u(τη(ξ)), uλ(ξ) = λQ/p∗u(δλ(ξ))

Moreover, the infimum in (VP) is achieved by a nonnegative function
u ∈ S1,p(Hn) which is a weak nonnegative solution of the critical
equation

−∆H,pu = up∗−1 in Hn.
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Some remarks

I The difficulty in finding minimizers of (VP) stems from the fact
that the Sobolev embedding is not compact and there is a
(noncompact) group of dilations preserving the set of extremals.
In particular, starting from an extremal we can construct a
sequence of extremals which converge to the zero function.
Thus, an argument proving the existence of an extremal by
taking a sequence of functions converging to an extremal will
fail unless a more delicate analysis and modification (by scaling
and translating) of the sequence is performed.

I The concentration–compactness principle of Lions can be
applied to prove that the best constant in the Folland–Stein
embedding is achieved.

I This method does not allow an explicit determination of the best
constant or the functions for which it is achieved.
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Continuous embeddings and compact embeddings

Theorem (Subelliptic Sobolev embeddings)
(i) If 1 ≤ p < Q, then HW1,p(Ω) ↪→ Lq(Ω) is continuous for any

q ∈ [p, p∗], p∗ =
pQ

Q− p
;

(ii) if p = Q, then HW1,Q(Ω) ↪→ Lq(Ω) is continuous for any
q ∈ [Q,∞[.
Moreover, if Ω is bounded and 1 < p < Q, then the embedding
HW1,p(Ω) ↪→ Lq(Ω) is continuous for any q ∈ [1, p∗], while if Ω is
bounded and p = Q, embedding HW1,Q(Ω) ↪→ Lq(Ω) is continuous
for any q ∈ [1,∞).
For the proof of the Subelliptic Sobolev embedding Theorem we refer
e.g. to Proposition 5.27 in

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.
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We conclude this discussion with some hints about the compactness
of embedding HW1,p(Ω) ↪→ Lq(Ω) on well behaved domains Ω. For a
complete treatment we refer to

J. Chabrowski, Concentration-compactness principle at infinity and semilinear
elliptic equations involving critical and subcritical Sobolev exponents, Calc.
Var. Partial Differential Equuations 3 (1995), 493–512.

B. Franchi, C. Gutierrez, R.L. Wheeden, Weighted Sobolev–Poincaré
inequalities for Grushin type operators, Comm. Partial Differential Equations
19 (1994), 523–604.

N. Garofalo, D.–M. Nhieu, Isoperimetric and Sobolev inequalities for
Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm.
Pure Appl. Math. 49 (1996), 1081–1144.

P. Hajłasz, P. Koskela, Sobolev met Poicaré, Mem. Amer. Math. Soc. 145, 2000,
x+101 pp.

and the monograph of Hajłasz and Koskela contains an extensive
bibliography on this subject. More precisely, let us introduce the
following definition as given by Garofalo and Nhieu.
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Definition
An open set Ω of Hn is said to be a Poincaré–Sobolev domain, briefly
PS domain, if there exists a covering {B}B∈F of Ω by
Carnot–Carathéodory balls B and numbers N > 0, α ≥ 1, and ν ≥ 1
such that

(i)
∑
B∈F

1(α+1)B(ξ) ≤ N1Ω(ξ) for every ξ ∈ Hn;

(ii) there exists a ball B0 ∈ F such that for all B ∈ F there is a finite
chain B0,B1, . . . ,Bs(B), with Bi ∩ Bi+1 6= ∅ and
|Bi ∩ Bi+1| ≥ max{|Bi|, |Bi+1|}

/
N,

(iii) B ⊂ νBi for i = 1, . . . , s(B).

The Definition of a PS domain is purely metric. In the context of the
Heisenberg groups, one can produce a large class of PS domains as
explained in details inthe cited paper of Garofalo and Nhieu.
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For our needs, it is important also to report a version of the
Rellich–Kondrachov compact embedding, in the Heisenberg group
context. In particular, the next theorem is a particular case of
Theorem 1.3.1 in

S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the
quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011, xviii+219 pp.

Theorem (The Rellich–Kondrachov theorem)
(i) If Ω denotes a bounded PS domain in Hn and 1 ≤ p < Q, then the

embedding
HW1,p(Ω) ↪→↪→ Lq(Ω)

is compact provided that 1 ≤ q < p∗, where p∗ is the critical Sobolev
exponent related to p.
(ii) The Carnot–Carathéodory balls are PS domains.
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Part (i) was first proved by Garofalo and Nhieu in 1996 in the
subelliptic setting, while for a proof of part (ii) we refer to the paper
of Franchi, Gutierrez and Wheeden in 1994.
Combining the Rellich–Kondrachov theorem, with the fact that the
Carnot–Carathéodory distance and the Korányi distance are
equivalent on Hn, we get

Corollary
Let 1 ≤ p < Q and let BR(ξ0) be any Korányi ball, centered at
ξ0 ∈ Hn, with radius R > 0. Then, the embedding

(1) HW1,p(BR(ξ0)) ↪→↪→ Lq(BR(ξ0))

is compact provided that 1 ≤ q < p∗ =
pQ

Q− p
.
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The Hardy inequality

Following

N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the
uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990),
313–356.

put ψ(ξ) = |DHr(ξ)|H =
|z|

r(ξ)
for ξ = (z, t) 6= O, where

r(ξ) = (|z|4 + t2)1/4 is the Korányi norm.

Theorem (The Hardy inequality in Hn)
If 1 < p < Q, then∫

Hn
|ϕ|pψp dξ

rp ≤
(

p
Q− p

)p ∫
Hn
|DHϕ|pHdξ

for all ϕ ∈ C∞c (Hn \ {O}).
The Hardy inequality remains valid in the Folland–Stein space
S1,p(Hn).
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The Hardy inequality was obtained by Garofalo and Lanconelli in in
1990 when p = 2 and then extended to all p > 1 in

L. D’Ambrosio, Hardy–type inequalities related to degenerate elliptic
differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 451–486.

P. Niu, H. Zhang, Y. Wang, Hardy–type and Rellich type inequalities on the
Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623–3630.

When p = 2, the optimality of the constant (2/(Q− 2))2 is shown in

J.A. Goldstein, Q.S. Zhang, On a degenerate heat equation with a singular
potential, J. Funct. Anal. 186 (2001), 342–359.

A sharp Hardy inequality of type has been derived in general
Carnot–Carathéodory spaces in the monograph

D. Danielli, N. Garofalo, N.C. Phuc, Inequalities of Hardy–Sobolev type in
Carnot–Carathéodory, Sobolev spaces in mathematics. I, 117–151, Int. Math.
Ser. (N.Y.), 8, Springer, New York, 2009.
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The case p = Q

I As in the Euclidean case, functions in HW1,Q(Hn) have
exponential integrability. This result is refined by the
Trudinger–Moser inequality.

I The Trudinger–Moser inequality was first proved, when Ω is a
subset of Rn of finite measure, by Trudinger ( J. Math. Mech.,
1967). Short after, Moser (Indiana Univ. Math. J., 1970)
obtained a different proof, which allows the determination of the
corresponding sharp constant.

I In the entire Euclidean space Rn, the first related inequalities
have been proved by Cao (Commun. Partial Differ. Equ., 1992)
for n = 2, and for any dimension by do Ó (Abstr. Appl. Anal.,
1997) and Adachi and Tanaka (Proc. Amer. Math. Soc., 2000).
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The Trudinger–Moser inequality in Ω ⊂ Rn, |Ω| <∞

Theorem (Trudinger–Moser inequality)
Let Ω be a domain with finite measure in Rn, n ≥ 2. Then there exist a

sharp constant αn = n

(
nπn/2

Γ(n/2 + 1)

)1/(n−1)

and a positive constant

C0 = C0(n) such that

1
|Ω|

∫
Ω

exp (α|u|n′)dx ≤ C0

for any u ∈ W1,n(Ω) with
∫

Ω |∇u|ndx ≤ 1 and any α ≤ αn, where
n′ = n/(n− 1).

This constant αn is sharp in the sense that if α > αn, then the above
inequality does not hold any longer with a constant C0 independent
of u.
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The Trudinger–Moser inequality in Rn

Theorem (Trudinger–Moser inequality in Rn)
For any α ∈ (0, αn), there exists a constant Cα > 0 such that

∫
Rn

exp
(
α|u|n′

)
−

n−2∑
j=0

αj

j!
|u|jn′

 dx ≤ Cα‖u‖n
n

for any u ∈ W1,n(Rn) with ‖∇u‖n ≤ 1.

This inequality is false for α ≥ αn. It can be noted that unlike the case
of the bounded domains, αn cannot be reached.

Cianchi, Musil, Pick, Luboš, Int. Math. Res. Not. IMRN 2022

Ho, Perera, Proc. Edinb. Math. Soc. 2022
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The Trudinger–Moser inequality in the Heisenberg group
I In bounded domains of Hn, the Trudinger–Moser inequality was

first established in by Cohn and Lu (Indiana Univ. Math. J.,
2001), adapting an Adams idea in deriving the Moser–Trudinger
inequality for higher order derivatives in Euclidean space to
avoid considering the horizontal gradient of the rearrangement
function. This method requires an optimal bound on the size of a
function in terms of the potential of its gradient, namely a sharp
representation formula. Indeed, the main difficulty in passing to
the Heisenberg context is the impossibility of using the radial
nonincreasing rearrangement u∗ of functions u (in terms of a
certain norm) on the Heisenberg group.

I The situation is more complicated when concerning the
Trudinger–Moser type inequalities for unbounded domains
of Hn, since the Adams approach does not work. However, Lam,
Lu and Tang (Nonlinear Anal., 2014) obtain a sharp
Trudinger–Moser inequality on the whole Hn.
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Singular Trudinger–Moser inequality in Hn

Theorem (Lam, Lu and Tang, Nonlinear Anal. 2014)

There exists a positive constant αQ = Q
(

2πnΓ(1/2)Γ((Q−1)/2)
Γ(Q/2)Γ(n)

)Q′−1

such that for β, with 0 ≤ β < Q, and for any α, with
0 < α < αQ(1− β/Q) = αQ,β , there exists a constant Cα,β > 0 such
that the inequality

∫
Hn

1
r(ξ)β

exp
(
α|u|Q′

)
−

Q−2∑
j=0

αj

j!
|u|jQ′

 dξ ≤ Cα,β‖u‖Q−β
Q

holds for all u ∈ HW1,Q(Hn), with ‖DHu‖Q ≤ 1.
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Some references

Capogna, Danielli, Pauls and Tyson, An Introduction to the
Heisenberg Group and the Sub-Riemannian Isoperimetric
Problem, Birkhäuser Basel, Progress in Mathematics (2007)

Garofalo and Nhieu, Isoperimetric and Sobolev inequalities for
Carnot–Carathéodory spaces and the existence of minimal
surfaces, Comm. Pure Appl. Math. (1996)

Ivanov and Vassilev, Extremals for the Sobolev inequality and
the quaternionic contact Yamabe problem, World Scientific
Publishing Co. Pte. Ltd. (2011)

Lam, Moser–Trudinger And Adams Type Inequalities And Their
Applications, Ph.D. thesis (2014)
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The fractional horizontal Sobolev spaces
There are many definitions in literature of the fractional horizontal
Sobolev spaces HWs,p(Hn) and so extremely different approaches.
We refer to

G. Palatucci, M. Piccinini, Nonlocal Harnack inequalities in the Heisenberg
group, Calc. Var. Partial Differential Equations 61 (2022), Paper No. 185.

for a detailed list of references on the subject.

Definition
Let 0 < s < 1 and 1 < p <∞. The horizontal fractional Sobolev
space HWs,p(Hn) is the completion of C∞c (Hn) with respect to the
norm

‖ · ‖HWs,p(Hn) =
(
‖ · ‖p

Lp(Hn) + [ · ]pH,s,p
)1/p

,

where

[ϕ]H,s,p =

(∫∫
Hn×Hn

|ϕ(ξ)− ϕ(η)|p

r(η−1 ◦ ξ)Q+sp dξdη
)1/p

along any ϕ ∈ C∞c (Hn).
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For notational simplicity, the (s, p) fractional horizontal gradient of
any function u ∈ HWs,p(Hn) is denoted by

|Ds
Hu|p(ξ) =

∫
Hn

|u(ξ)− u(η)|p

r(η−1 ◦ ξ)Q+ps dη =

∫
Hn

|u(ξ ◦ h)− u(ξ)|p

r(h)Q+ps dh,

where we recall for all ξ, ξ′ ∈ Hn, with ξ =(z, t)= (x, y, t) and
ξ′ =(z′, t′)= (x′, y′, t′)

ξ ◦ ξ′ =
(
z + z′, t + t′ + 2

n∑
i=1

(yix′i − xiy′i)
)

and η−1 = −η for any η ∈ Hn, while as usually
r(ξ) = r(z, t) = (|z|4 + t2)1/4, for ξ = (z, t) ∈ Hn, is the Korányi
norm.
The (s, p) horizontal gradient of a function u ∈ HWs,p(Hn) is well
defined a.e. in Hn and |Ds

Hu|p ∈ L1(Hn) thanks to Tonelli’s theorem.
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Fractional continuous and compact embeddings

The fractional Sobolev embedding in the Heisenberg group is
obtained in

Adimurth, A. Mallick, A Hardy type inequality on fractional order Sobolev
spaces on the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18
(2018), 917–949.
following the arguments of

E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional
Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

Theorem
If 0 < s < 1, 1 < p <∞ and sp < Q, then there exists a positive
constant Cp∗s = Cp∗s (p,Q, s) such that

‖ϕ‖p
p∗s
≤ Cp∗s [ϕ]pH,s,p, p∗s =

pQ
Q− sp

,

for all ϕ ∈ C∞c (Hn).
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Theorem
For every sequence (uk)k bounded in HWs,p(Hn) there exist
u ∈ HWs,p(Hn) and a subsequence (ukj)j ⊂ (uk)k such that for all
ξ0 ∈ Hn and R > 0

ukj → u in Lp(BR(ξ0)) as j→∞.

A Lie group version of the Fréchet–Kolmogorov theorem yields the
existence of a function u ∈ Lp(Hn) and a subsequence of (uk)k, still
denoted (uk)k, such that uk → u a.e. in Hn and uk → u in Lp(BR(ξ0))
for all ξ0 ∈ Hn and R > 0. The proof of the fact that u ∈ HWs,p(Hn)
follows from an application of the Fatou lemma.
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(p, q) problems in the Heisenberg group The above inequalities are
the fundamental tool to study existence, multiplicity and qualitative
properties of solutions for a class of problems with the following
features:

1. We consider subelliptic problems, dealing first with the model
case of the Heisenberg group.

2. We consider problems involving operators with non–standard
growth conditions, also known as (p, q) operators, see Zhikov
(Izv. Akad. Nauk SSSR Ser. Mat., 1986), Marcellini (J.
Differential Equations, 1991) and many others.

3. We deal with entire solutions, that is solutions defined in the
whole space, and we consider different types of critical
nonlinearities. The combined presence of these two factors
causes a "double lack of compactness" which produces new,
interesting complications.
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A Model arising in nonlinear elasticity

Let us first describe the model considered by Marcellini (Ann. Inst.
H. Poincaré Anal. Non Linéaire 1986) and originally studied by Ball
(Phil. Trans. R. Soc. Lond. 1982).

I Consider the deformation
of an elastic body that occupies
a bounded domain Ω ⊂ RN .

I Let u : Ω→ RN

be the displacement and Du the
N × N matrix of the deformation

gradient, then the total energy is

I(u) =

∫
Ω

f (x,Du(x))dx

for some function f .
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The (p, q) growth condition
A natural choice for f is given by

f (x, ξ) = g(x, ξ) + h(det ξ)

with g and h satisfying

c1|ξ|p ≤ g(x, ξ) ≤ c2(1 + |ξ|p), c3|t| ≤ h(t) ≤ c4(1 + |t|)

with 1 < p ≤ N. Therefore, since |det ξ| ≤ c5(1 + |ξ|N), the function
f satisfies the condition

c1|ξ|p ≤ f (x, ξ) ≤ c6(1 + |ξ|N).

It is then clear the interest in considering general functions
f : Ω× Rm × RNm → R satisfying the (p, q) growth condition

C1|ξ|p ≤ f (x, ξ) ≤ C2(1 + |ξ|q), 1 < p ≤ q,

for all x ∈ Ω and ξ ∈ RNm.
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Model (p, q) problem in Hn

The model problem is

−∆H,pu−∆H,qu + |u|p−2u + |u|q−2u = f (x, u), in Hn.

I ∆H,℘, is the horizontal ℘–Laplacian operator, which is defined
for ℘ > 1 as

∆H,℘ϕ = divH(|DHϕ|℘−2
H DHϕ) for any ϕ ∈ C∞c (Hn);

I the exponents p and q are such that 1 < p < q ≤ Q, where
Q = 2n + 2 is the homogeneous dimension of Hn;

I f contains a critical term;
I We consider two different cases: q < Q and q = Q.
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A more general class of (p, q) systems

In P.P. and Temperini (Adv. Nonlinear Anal., 2020), we consider the
system in Hn

(S)


−divH

(
A(|DHu|H)DHu

)
+ B(|u|)u = λFu(u, v) +

α

q∗
|v|β|u|α−2u,

−divH
(
A(|DHv|H)DHv

)
+ B(|v|)v = λFv(u, v) +

β

q∗
|u|α|v|β−2v,

I 1 < p < q < Q where Q = 2n + 2 is the homogeneous
dimension of Hn;

I λ > 0 is a parameter;

I α, β > 1 with α+ β = q∗, where q∗ =
qQ

Q− q
.
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Structural assumptions

Following Fiscella and P.P. (Nonlinear Anal., 2018) we assume that:

(A) A is a positive, strictly increasing function of class C1(R+),

(B) B ∈ C(R+) is a positive function and t 7→ tB(t) is strictly
increasing in R+, with tB(t)→ 0 as t→ 0+.

We introduce the potentials A and B, which are 0 in 0 and which are
obtained by integration from A′(t) = tA(t), ],B′(t) = tB(t) for all
t ∈ R+

0 .

(C1) There exist strictly positive constants a0, a0, b0, b0, a1, a1, b1 ,b1
with a0 ≤ 1, and there exist exponents p and q, with 1 < p < q < Q,
such that for all t ∈ R+

0
a0tp−1 + a1tq−1 ≤ A′(t) ≤ a0tp−1 + a1tq−1,
b0tp−1 + b1tq−1 ≤ B′(t) ≤ b0tp−1 + b1tq−1.
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(C2) There exist constants θ and ϑ, with p ≤ min{θ, ϑ} < q∗, such
that

θA(t) ≥ tA′(t), ϑB(t) ≥ tB′(t) for all t ∈ R+
0 ;

Fu, Fv are partial derivatives of a function of class C1(R2), such that

(F1) F(u, v) ≥ 0 for all (u, v) ∈ R2, Fu(u, v) = 0 for all u ≤ 0 and
v ∈ R, while Fv(u, v) = 0 for all u ∈ R and v ≤ 0 and F(u, v) > 0 for
(u, v) ∈ R+ × R+. There exist m, m such that q < m < m < q∗, and
for every ε > 0 there exists Cε > 0 such that

|∇F(u, v)| ≤ mε|(u, v)|m−1 + mCε|(u, v)|m−1 for any (u, v) ∈ R2;

(F2) there exists σ, with max{θ, ϑ} < σ < q∗, such that

0 ≤ σF(u, v) ≤ ∇F(u, v) · (u, v) for all (u, v) ∈ R2.
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Some examples Let 1 < p < q < Q.
I If A(t) = B(t) = tp/p + tq/q, t ∈ R+

0 , then
a0 = a0 = a1 = a1 = b0 = b0 = b1 = b1 = 1, θ = ϑ = q and

−∆H,pu−∆H,qu + |u|p−2u + |u|q−2u;

I if A(t) = 1
2(1 + tp)2/p + tq/q and B(t) = tp/p + c tq/q, t ∈ R+

0 ,
c ≥ 0, and if 2 ≤ p < q, then
a0 = b0 = b0 = a0 = a1 = a1 = 1, b1 = c, θ = p, ϑ = p if
c = 0, while ϑ = q if c > 0 and

−divH

(
|DHu|p−2

H DHu(
1 + |DHu|pH

)1−2/p

)
−∆H,qu + |u|p−2u + c |u|q−2u.
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In the particular case in which 2 = p < q = 4 < Q we have
I if A(t) =

√
1 + t2 − 1 + t4/4 and B(t) = t2/2 + t4/4, t ∈ R+

0 ,
then a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1, a1 = 1/2,
θ = ϑ = 4, α+ β = q∗ = 4∗ = 4Q/(Q− 4) and

−divH

 DHu√
1 + |DHu|2H

−∆H,4u+u + u3;

I ifA(t) = t arctan t− log
√

1 + t2 + t4/4 and B(t) = t2/2 + t4/4,
t ∈ R+

0 , then a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1,
a1 = 2/3, θ = ϑ = 4, α+ β = q∗ = 4∗ and

−divH

(
arctan |DHu|H
|DHu|H

DHu
)
−∆H,4u+u + u3.
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Theorem (P.P. and Temperini – Adv. Nonlinear Anal., 2020)
Assume that the structural assumptions (A), (B), (C1),(C2), (F1) and
(F2) hold. Then, there exists λ∗ > 0 such that for all λ ≥ λ∗ the
system in Hn

(S)


−divH

(
A(|DHu|H)DHu

)
+ B(|u|)u = λFu(u, v) +

α

q∗
|v|β|u|α−2u,

−divH
(
A(|DHv|H)DHv

)
+ B(|v|)v = λFv(u, v) +

β

q∗
|u|α|v|β−2v,

admits at least one solution (uλ, vλ) in W. Moreover, each
component of (uλ, vλ) is non trivial and

lim
λ→∞

‖(uλ, vλ)‖ = 0.
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The proof of the existence theorem is divided into several steps.
I First, we introduce the variational setting of the problem and we

prove that the underlying functional I has the geometry of
Mountain pass, where

I(u, v) =

∫
Hn

[
A(|DHu|H) +A(|DHv|H)

]
dξ +

∫
Hn

[
B(|u|) + B(|v|)

]
dξ

− λ
∫
Hn

F(u, v)dξ − 1
q∗

∫
Hn
|u|α|v|βdξ for all (u, v) ∈ W.

I Then, we obtain the existence of a Palais–Smale sequence
{(uk, vk)}k ⊂ W for I at the special level cλ, where

cλ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0,

with Γ = {γ ∈ C([0, 1],W) : γ(0) = (0, 0), I(γ(1)) < 0} .
Furthermore, the set of critical levels {cλ}λ satisfies the
asymptotic condition

lim
λ→∞

cλ = 0.
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I the key step is to prove that, up to a subsequence,

(uk, vk) ⇀ (uλ, vλ) in W as k→∞,
and that there exists a threshold λ∗ > 0 such that

(uλ, vλ) is a weak solution for λ ≥ λ∗.
For this we need a new concentration–compactness result in the
space

S = S1,℘(Hn)× S1,℘(Hn)

where S1,℘(Hn), 1 < ℘ < Q, is the Folland–Stein space.
I Finally, the fact that the constructed solution is nontrivial is

obtained via a theorem of alternatives à la Lions.
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In order to handle the critical potential, we first study the exact
behavior of the weakly convergent sequences of

S = S1,q(Hn)× S1,q(Hn)

in the space of measures, in the spirit of Lions.
The result is based on the optimal constant

I = inf
(u,v)∈S

u6=0∧v 6=0

‖DHu‖q
q + ‖DHv‖q

q(∫
Hn
|u|α|v|βdξ

)q/q∗
,

which is well defined thanks to the Folland–Stein inequality.
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Exponential (p,Q) equations in Hn

In P.P. and Temperini (Adv. Calc. Var. 15 (2022), 601–617) we
consider the equation in Hn

(E) −∆H,pu−∆H,Qu + |u|p−2u + |u|Q−2u =
f (ξ, u)

r(ξ)β
+ h(ξ),

I 1 < p < Q, 0 ≤ β < Q where Q = 2n + 2,
I h is a nontrivial nonnegative functional of HW−1,Q′(Hn), where

HW−1,Q′(Hn) is the dual space of HW1,Q(Hn),
I r(ξ) = r(z, t) = (|z|4 + t2)1/4 is the Korányi norm in Hn, with
ξ = (z, t) ∈ Hn, z = (x, y) ∈ Rn × Rn, t ∈ R, |z| the Euclidean
norm of z ∈ R2n.
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References in the scalar case
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Structural assumptions

(f1) f is a Carathéodory function, with f (·, u) = 0 for all u ≤ 0, and
such that there exists α0 > 0 with the property that for all ε > 0
there exists κε > 0 such that

f (ξ, u) ≤ ε uQ−1 + κε

(
eα0uQ′ − SQ−2(α0, u)

)
for a.e. ξ ∈ Hn and all u ∈ R+

0 , where R+
0 = [0,∞),

Q′ =
Q

Q− 1
and SQ−2(α0, u) =

∑Q−2
j=0

αj
0ujQ′

j!
;

(f2) there exists a number ν > Q such that 0 < νF(ξ, u) ≤ uf (ξ, u)
for a.e ξ ∈ Hn and any u ∈ R+, R+ = (0,∞), where
F(ξ, u) =

∫ u
0 f (ξ, v)dv for a.e ξ ∈ Hn and all u ∈ R.
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Theorem (P.P. and Temperini, Adv. Calc. Var. 15 (2022),
601–617)
Assume that the structural assumptions (f1), (f2) hold. Then, there
exists a constant σ > 0 such that the equation

(E) −∆H,pu−∆H,Qu + |u|p−2u + |u|Q−2u =
f (ξ, u)

r(ξ)β
+ h(ξ)

admits at least a nontrivial nonnegative solution uh in W, provided

that 0 < ‖h‖HW−1,Q′ < σ. Moreover,

lim
h→0
‖uh‖ = 0.
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Future developments and open problems
I Complete the previous theorems giving existence/nonexistence

results for small λ and large h
I Consider the presence of other critical potentials, such as Hardy

potentials
I Consider (p, q) non local problems, involving the fractional

Laplace operator on the Heisenberg group, defined as

(−∆H)s
℘u(ξ) = CQ,s,℘PV

∫
Hn

|u(ξ)− u(η)|℘−2(u(ξ)− u(η))

r(η−1 ◦ ξ)Q+s℘ dη

where Q = 2n + 2, CQ,s,℘ is a positive constant, and PV is the
Cauchy principal value, see Fiscella, P.P. (Fract. Calc. Appl.
Anal., 2020), De Filippis, Palatucci (J. Differential Equations,
2019), Kumar and Sreenadh (Commun. Contemp. Math., 2020).
Goel, Sreenadh, Radulescu, Variational framework and
Lewy-Stampacchia type estimates for nonlocal operators on
Heisenberg group, Ann. Fenn. Math. 2022.
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Critical equations in Hn

In P.P. and Temperini, Opuscula Math., Special Issue Advances in
Nonlinear Partial Differential Equations 2022 we consider the
equation in Hn

(E) −∆H,pu = λw(ξ)|u|q−2u + K(ξ)|u|p∗−2u in Hn,

with 1 < p < Q, where Q = 2n + 2 is the homogeneous dimension
of the Heisenberg group Hn; furthermore, p ≤ q < p∗ and

p∗ =
pQ

Q− p

is the critical exponent associated to p.
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For (E) −∆H,pu = λw(ξ)|u|q−2u + K(ξ)|u|p∗−2u in Hn we
distinguish two different situations:

1. 1 < p < q < p∗;

2. 1 < p = q < p∗.

In the first case, we assume that

(w1) w ≥ 0, w ∈ L1
loc(Hn) and w is such that the embedding

S1,p(Hn) ↪→↪→ Lq(Hn,wdξ) is compact;

(K1) K > 0 a.e. in Hn, K ∈ L∞(Hn) and

lim
r(ξ)→∞

K(ξ) = K∞ ∈ R+
0 ,

where R+
0 = [0,∞).
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Theorem (P.P., Temperini, Opuscula Math., S.I. Advances in
Nonlinear Partial Differential Equations 2022)
Let 1 < p < Q and p < q < p∗. Assume that (w1) and (H1) are
satisfied. Then, there exists λ∗ > 0 such that for all λ ≥ λ∗ the
equation

(E) −∆H,pu = λw(ξ)|u|q−2u + K(ξ)|u|p∗−2u in Hn,

admits at least a nontrivial solution.

The Theorem extends Theorem 1.1 of

[BFP] S. Bordoni, R. Filippucci, P. P., Existence problems on
Heisenberg groups involving Hardy and critical terms, J. Geom.
Anal. 30 (2020), 1887–1917.
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Our Theorem is obtained via an application of the
concentration–compactness results given in

P. P., L. Temperini, Existence for singular critical exponential
(p,Q) equations in the Heisenberg group, Adv. Calc. Var. 15
(2022), 601–617.

P. P., L. Temperini, On the concentration–compactness principle
for Folland–Stein spaces and for fractional horizontal Sobolev
spaces, Math. Eng. 5 (2023), Special Issue: The interplay
between local and nonlocal equations - dedicated to the memory
of Professor Ireneo Peral, Paper no. 007, 21 pp.
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The second case, namely when p = q, is more challenging and is not
treated in [BFP]. Following somehow

Bonder, Saintier, Silva, The concentration-compactness
principle for fractional order Sobolev spaces in unbounded
domains and applications to the generalized fractional
Brézis–Nirenberg problem, Nonlinear Differential Equations
Appl. 25 (2018), 52:25.

we assume that K(ξ) ≡ 1, so that (K1) is trivially satisfied, and that w
verifies (w1) and the additional request

(w2) w ∈ L∞(Hn) and there exists ξ0 ∈ Hn such that w is
continuous at ξ0 and w(ξ0) > 0.

We are then able to prove the following
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Theorem (P.P., Temperini, Opuscula Math., S.I. Advances in
Nonlinear Partial Differential Equations 2022)
Let p > 1 be such that p2 < Q. Assume that the function w satisfies
(w1) with p = q and (w2) and that K ≡ 1. Then, equation

(E) −∆H,pu = λw(ξ)|u|p−2u + |u|p∗−2u in Hn,

admits at least a nontrivial solution for any λ ∈ (0, λ1) where

λ1 = λ1(w) = inf
v∈S1,p(Hn)

v 6=0

‖DHv‖p
p∫

Hn w(ξ)|v|pdξ
.

The idea behind the construction of the solution in the theorem above
goes back to the seminal paper by

[BN] H. Brézis, L. Nirenberg, Positive solutions of nonlinear
elliptic equations involving critical Sobolev exponents, Comm.
Pure Appl. Math. 36 (1983), 437–477.

The main difficulty is the unavailability of an explicit form
of the extremals for the Folland–Stein embedding. 93 / 113



If 1 < p < Q, then there exists an extremal U ∈ S1,p(Hn) for the
Folland–Stein embedding and this estimate holds:

U(ξ) ∼ r(ξ)
p−Q
p−1 as r(ξ)→∞.

The knowledge of the exact asymptotic behavior at infinity of
Sobolev extremals turns out to be crucial in order to obtain existence
results for the Brézis–Nirenberg type problems, whenever the explicit
form of minimizers is not known.

Finally, assumption p2 < Q, together with the estimate for U above,
ensures that U ∈ Lp(Hn) since otherwise, as we already noted,
functions in S1,p(Hn) may not belong to the Lebesgue space Lp(Hn).
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Few references for the p–Laplacian on the Euclidean setting

Bonanno, Jebelean, Şerban, Proc. Roy. Soc. Edinburgh Sect. A
2017

Bonanno, Livrea, Radulescu, Atti Accad. Naz. Lincei Rend.
Lincei Mat. Appl. 2021

Bonanno, D’Aguì, Livrea, Nonlinear Anal. 2020

Brasco, Prinari, Zagati, Nonlinear Anal. 2022

Candito, Gasinski, Livrea, Santos, Adv. Nonlinear Anal. 2022

Ciraolo, Figalli, Roncoroni, Geom. Funct. Anal. 2020
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Few references for the p–Laplacian on the Euclidean setting

Fusco, Mukherjee, Zhang, Yi, Proc. Lond. Math. Soc. 2019

Mawhin, Skrzypek, Szymaǹska–Dȩbowska, Entropy 2021

Mercuri, Perera, J. Funct. Anal. 2022

Papageorgiou, Scapellato, J. Differential Equations 2021
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(p, q) critical equations with Hardy terms
In [P.P., Temperini, Rend. Circ. Mat. Palermo 71 (2022), 1049–1077]
we consider the critical equation with Hardy terms in Hn

(E)
−∆H,pu−∆H,qu + |u|p−2u + |u|q−2u− σψq |u|q−2u

rq

= λf (ξ, u) + |u|q∗−2u,

where σ and λ > 0 are real parameters. The exponents p and q are
such that 1 < p < q < Q, where q∗ = qQ/(Q− q) is the critical
exponent related to q. As usual, ∆H,℘, with ℘ ∈ {p, q}, is the
horizontal ℘–Laplacian defined by ∆H,℘ϕ = divH(|DHϕ|℘−2

H DHϕ)
for all ϕ ∈ C∞c (Hn), r(ξ) = r(z, t) = (|z|4 + t2)1/4, ξ = (z, t) ∈ Hn,
is the Korányi norm and ψ is the weight function that appears in the
Hardy inequality∫

Hn
|ϕ|pψp dξ

rp ≤
(

p
Q− p

)p ∫
Hn
|DHϕ|pHdξ,

that is ψ = |DHr|H in Hn \ {O}.
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On f in (E) throughout the chapter we assume the following condition
(F) f is a Carathéodory function, with f (·, u) = 0 for all u ≤ 0 and
f (·, u) > 0 for all u > 0, satisfying the two properties

(f1) there exist m and m, with p < m < m < q∗, such that for every
ε > 0 there exists Cε > 0 for which the inequality

|f (ξ, u)| ≤ mε|u|m−1 + mCε|u|m−1 for any u ∈ R

holds for a.e. ξ ∈ Hn;

(f2) there exists θ, with q < θ < q∗, such that the inequality

0 ≤ θF(ξ, u) ≤ f (ξ, u)u for all u ∈ R

holds for a.e. ξ ∈ Hn, where F(ξ, u) =

∫ u

0
f (ξ, v)dv for a.e

ξ ∈ Hn and all u ∈ R.
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Due to the unbalanced growth of the (p, q) operator, the natural space
where finding solutions of (E) is

W = HW1,p(Hn) ∩ HW1,q(Hn),

endowed with the norm

‖u‖ = ‖u‖HW1,p + ‖u‖HW1,q

for all u ∈ W, where HW1,℘(Hn), ℘ ∈ {p, q}, is the horizontal
Sobolev space consisting of all functions u ∈ L℘(Hn) such that DHu
exists in the sense of distributions and |DHu|H ∈ L℘(Hn), endowed
with the natural norm

‖u‖HW1,℘(Hn) =

(∫
Hn
|u|℘dξ +

∫
Hn
|DHu|℘Hdξ

)1/℘

.

The numberHq denotes the best Hardy constant introduced.
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Theorem
For any σ ∈ (−∞,Hq), there exists λ∗ = λ∗(σ,Q, q, θ) > 0 such that
equation

(E)
−∆H,pu−∆H,qu + |u|p−2u + |u|q−2u− σψq |u|q−2u

rq

= λf (ξ, u) + |u|q∗−2u,

admits at least one nontrivial solution u = uσ,λ in W for all λ ≥ λ∗.
Moreover,

lim
λ→∞

‖uσ,λ‖ = 0.
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The above theorem extends and complements in several directions
previous results, such as the theorems contained in

S. Bordoni, R. Filippucci, P.P., Existence problems on Heisenberg groups
involving Hardy and critical terms, J. Geom. Anal. 30 (2020), 1887–1917.

G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic
problems with critical growth on RN , J. Math. Anal. Appl. 378 (2011), 507–518.

A. Fiscella, P. Pucci, (p, q) systems with critical terms in RN , Special Issue on
Nonlinear PDEs and Geometric Function Theory, in honor of Carlo Sbordone
on his 70th birthday, Nonlinear Anal. 177 (2018), Part B, 454–479.

Existence is obtained via the mountain pass lemma of Ambrosetti and
Rabinowitz and follows somehow the ideas of the last cited paper.
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Moreover, the triple loss of compactness in (E), caused by the
simultaneous presence of the Hardy and the critical terms in the
whole Heisenberg group Hn, forces to study the exact behavior of the
(PS)c sequences at special levels c, in the spirit of Lions. This
analysis is deeply connected with the concentration phenomena
taking place and strongly relies on the results of On the
concentration-compactness principle for Folland-Stein spaces and for
fractional horizontal Sobolev spaces

P.P., L. Temperini, On the concentration–compactness principle for
Folland–Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5
(2023), Paper No. 007, 21 pp.
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Multiplicity results

In S. Liang and P. P., Multiple solutions for critical Kirchhoff–Poisson
systems in the Heisenberg group, Appl. Math. Lett. 127 (2022), Paper
No. 107846 we study existence of multiple solutions of the following
critical Kirchhoff–Poisson system in the Heisenberg group

(KP)


−M

(∫
Ω
|DHu|2dξ

)
∆Hu+φ|u|q−2u=h(ξ, u)+λ|u|2u, in Ω,

−∆Hφ = |u|q, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ H1 is a smooth bounded domain, 1 < q < 2, λ is a
positive real parameter, and the Kirchhoff function M and the
nonlinear term h satisfy the following assumptions
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(M ) (M1) M ∈ C(R+
0 ,R+) and there exists m0 > 0 such that

M(t) ≥ m0 > 0 for all t ≥ 0;
(M2) there exists t0 ≥ 0 such thatM(t) ≥ M(t)t for all t ≥ t0,
whereM(t) =

∫ t
0 M(s)ds.

(H) (h1) h ∈ C1(Ω× R,R) and there exist a constant C > 0 and an
exponent r, with 2 < r < 4, such that

|h(ξ, t)| ≤ C(1 + |t|r−1)

for all ξ ∈ Ω, t ≥ 0;
(h2) h(ξ, t) = o(|t|) as t→ 0 uniformly in ξ ∈ Ω;
(h3) there exist θ ∈ (2q, 4) and T > 0 such that

0 < θH(ξ, t) ≤ h(ξ, t)t

for all ξ ∈ Ω and t, with |t| ≥ T , where H(ξ, t) =
∫ t

0 h(ξ, s)ds;
(h4) h(ξ,−t) = −h(ξ, t) for all (ξ, t) ∈ Ω× R.

104 / 113



In the Euclidean case, there are recent interesting papers devoted to
the study of the Schrödinger-Poisson systems. For example,

Z. Wang, H. Zhou, Positive solution for a nonlinear stationary
Schrödinger-Poisson system in R3, Discrete Contin. Dyn. Syst.
18 (2007) 809–816.

A. Azzollini, A. Pomponio, Ground state solutions for the
nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl.
345 (2008) 90–108.

J. Zhang, J. M. Do Ó, M. Squassina, Fractional
Schrödinger-Poisson systems with a general subcritical or
critical nonlinearity, Adv. Nonlinear Stud. 16 (2016) 15–30.

To the best of our knowledge, we cannot find any result in the
literature that can be directly applied to obtain the existence and
multiplicity of solutions of (KP).
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However, the existence results of solutions for the critical
Schrödinger–Poisson systems in the Heisenberg group are very few.
In this setting, let us mention the paper

Y.C. An, H. Liu, The Schrödinger-Poisson type system involving
a critical nonlinearity on the first Heisenberg group, Israel J.
Math. 235 (2020) 385–411.

in which existence of at least two positive solutions and a positive
ground state solution is proved for Schrödinger–Poisson systems in
the Heisenberg group, via the critical point theory. As far as we are
aware, there are no results in the literature that can be directly applied
to obtain the existence and multiplicity of solutions to the critical
Kirchhoff–Poisson system (KP) in the Heisenberg group, even in
the Euclidean case.
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Although some properties are similar between the Kohn Laplacian
∆H and the classical Laplacian ∆, the similarities may be misleading,
see

N. Garofalo, E. Lanconelli, Frequency functions on the
Heisenberg group, the uncertainty principle and unique
continuation, Ann. Inst. Fourier 40 (1990) 313–356.

In addition, the critical exponent Q∗ = 4 in H1, while 2∗ = 6 in R3.
This causes us some obstacles in proving compactness. In order to
overcome these difficulties, we use the concentration compactness
principles in the Heisenberg group. The main result of the paper is
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Theorem (S. Liang, P.P., Appl. Math. Lett. 2022)
Assume that (M ) and (H) hold. Then, for any k ∈ N, there exists
λ∗k > 0 such that problem

(KP)


−M

(∫
Ω
|DHu|2dξ

)
∆Hu+φ|u|q−2u=h(ξ, u)+λ|u|2u, in Ω,

−∆Hφ = |u|q, in Ω,

u = φ = 0, on ∂Ω,

admits k pairs of nonzero solutions for any λ ∈ (0, λ∗k).

In [S. Liang, P.P., Appl. Math. Lett. 2022], we only consider the
one–dimensional case H1, but the method employed here is also
applicable to other dimensions for this kind of problem.
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The paper P. P. and Y. Ye, Existence for critical Kirchhoff–Poisson
systems in the Heisenberg group, Adv. Nonlinear Stud. 22 (2022),
361–371, is devoted to the study the combined effects of logarithmic
and critical nonlinearities for the Kirchhoff–Poisson system
−M

(∫
Ω |∇Hu|2dξ

)
∆Hu + µφu = λ|u|q−2u ln |u|2 + |u|2u in Ω,

−∆Hφ = u2 in Ω,
u = φ = 0 on ∂Ω,

where ∆H is the Kohn–Laplacian operator in the first Heisenberg
group H1, Ω is a smooth bounded domain of H1, q ∈ (2θ, 4), µ ∈ R
and λ > 0 are some real parameters. Under suitable assumptions on
the Kirchhoff function M, which cover the degenerate case, we prove
the existence of nontrivial solutions for the above problem when
λ > 0 is sufficiently large. Moreover, our results are new even in the
Euclidean case.
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As in the whole lecture, let us set for simplicity R+
0 = [0,∞) and

R+ = (0,∞). Concerning the Kirchhoff term M, we assume that
M ∈ C(R+

0 ,R
+
0 ) satisfies:

(M1) For any τ > 0, there exists m0 = m0(τ) > 0 such that
M(t) ≥ m0 for t ≥ τ .

(M2) There exists θ ∈ [1, 2) such that θM̂(t) ≥ M(t)t for all t ≥ 0,
where M̂(t) =

∫ t
0 M(s)ds.

(M3) There exists m1 > 0 such that M(t) ≥ m1tθ−1 for all t ∈ R+ and
M(0) = 0.

A typical example is given by

M(t) = a + btθ−1, a, b ≥ 0, a + b > 0, θ ≥ 1.

When M is of this type, the problem is called non–degenerate if
a > 0, while it is said to be degenerate if a = 0.
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Theorem (P. P., Y. Ye, Adv. Nonlinear Stud. 2022)
Assume that (M1)–(M3) are satisfied and µ < S|Ω|−

1
2 , where

S = inf
u∈S1

0(H1)
u6=0

∫
H1 |∇Hu|2dξ(∫
H1 |u|4dξ

) 1
2

.

Then there exists λ∗ > 0 such that problem
−M

(∫
Ω |∇Hu|2dξ

)
∆Hu + µφu = λ|u|q−2u ln |u|2 + |u|2u in Ω,

−∆Hφ = u2 in Ω,
u = φ = 0 on ∂Ω,

has a nontrivial solution for any λ > λ∗.

The degenerate case is rather appealing, not only from a mathematical
point of view, but also in applications. From a physical point of view
the fact that M(0) = 0 means that the base tension of the string is
zero, a very realistic model. It is treated in well–known
famous papers in Kirchhoff theory, see

111 / 113



P. D’Ancona,S. Spagnolo, Global solvability for the degenerate
Kirchhoff equation with real analytic data, Invent. Math. 108
(1992) 247-262.

The features of Theorem are

(i) the presence of the logarithmic term and of the
critical nonlinearity, which contributes to the lack of
compactness;

(ii) the fact that the result includes the degenerate case,
which corresponds to the Kirchhoff function M
vanishing at 0.
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