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The Fourier transform of f € L' is defined by
O = | fee2eeax
Rd
where x - & = x1&1 + -+ + xq&4.

The integral converges absolutely to a continuous function
vanishing at infinity, that satisfies

1Flloo < £
If also f € L1, then
f(x) = f F(£)e>™ ™ dx.
Rd

For f € L' we will denote by 7(¢) the integral

f(e) = fRd f(x)e>™ ™ dx.



A C® function f is Schwartz if together with all its derivatives
decays at infinity more rapidly than |x| =V for all N € N, that is

H|x]NDafHoo < Cyn < 0.

The space of Schwartz functions S(R?) is dense in any LP with
p < oo and the Fourier transform is an isomorphism of S(RY).



If f,g € S their convolution,
g = [ - )gl)dy,

is a Schwartz function. We can therefore compute the Fourier
transform

We also have



If f is a general L2 function the integral

J f(x)e_zﬂix'édx
]Rd

does not converge absolutely. To define the Fourier transform in
L2, we observe that if g is a Schwartz function (g € S), then g
obeys the Plancherel identity

lgll2 = [&]2-

For any f € L2 there is {f,} = S such that |f — f,|» — 0. Since
{f,} is a Cauchy sequence, by

|fo = fanllz = 1o = Fmll2,

{,} is also Cauchy. We call 7 the L2 limit of {f,} (sometimes we
will call it Fourier-Plancherel transform for clarity).



Since LP — L' + 1% for 1 < p < 2, the Fourier transform f of a
function f in LP(Rd), 1 < p < 2, can be defined, by decomposing f
into a sum f; + > with f; € LY(RY) and f; € L?(RY), as

where

and % is the Fourier-Plancherel transform.



The Fourier transform of a function in LP is a function in LP,
% + % = 1, and satisfies the Hausdorff-Young's inequality.
THEOREM (HAUSDORFF-YOUNG’S INEQUALITY)

Let 1 < p<2andlet f be a Schwartz function. Then

[#ler < [1lp-

Similarly to what we did for the Fourier transform in L2, one can
also define f for f in LP(R?) (1 < p < 2), showing first that the
Hausdorff-Young inequality holds for Schwartz functions and then
exploit the density of S(R9) in LP(R).



The Hausdorff-Young inequality can be proved by interpolating
between

1#llo0 < ]2
and
|f]2 = ||f]2

with the Riesz-Thorin theorem.



THEOREM (M.RIESz-O.THORIN)

Let po, p1, o, g1 be Lebesgue exponents and let T be a linear
operator mapping LP° + [Pt — [90 4 |91 Suppose that we have

[ Tfllgo < Collfllp: [ TFllar < Cil[flp-

Define for 1 < t < 1,

then

Tflg < GGl



Young's convolution inequality,

I+ gl < [flolel-

holds for
1 1 1
—+1=—-+-
q pr

and can also be proved using the Riesz-Thorin theorem.



It may be proved by interpolating between
If gl <|fl lgly and [ *glw < |fllgl
Setting gqo=r, po=1,g1 =0, pr =r and Tg = f % g, we get

It «glq=[Tglq < Ifl-lglp

with
1 1-t 1 1—1t 1 1-t t t
- = — = , —=——+—==1—-
q r o0 r p 1 r'
Note that
1 1 t 1 t
St =l—-+ 4 -=1+4-=
p roq r



Restriction of the Fourier transform

Functions in L have a Fourier transform f that is continuous and
may be evaluated at every point; in particular, it may be restricted
to a set of measure zero, like, for instance, the unit sphere,

Sd—l:{XeRd:Xf+...+X§:1},

On the other hand, by the Plancherel theorem any function in L2 is
a Fourier transform. Since L2 functions are defined only almost
everywhere, their restriction to sets of measure zero does not make
sense. As a consequence, for f € L2 the restriction of f to S91 is
meaningless.



For f € LP, 1 < p < 2, we have

?: f/>1 +f,:2a
where fi € L' and f, € L2 and

f=fi+h

The function f is continuous and may be restricted to $9-1.
However, the function f is in L? and cannot in general be
meaningfully restricted.



The first hint that things might be quite different is the observation
that for certain p in (1,2) if £ in LP is radial, then f is continuous
away from the origin.

PROPOSITION

Suppose f € LP is a radial function. If 1 < p <Ad2—fl, then f is
continuous away from the origin. In particular f may be restricted
to S9-1.

This proposition is a consequence of the decay of the Fourier
transform of do: the surface measure on S9—1.



Fourier transform of complex measures

In these lectures we will only consider measures du = d A, where
Y e LY and X is a (positive) Borel measure with bounded support or
dx.

Examples are: du = fdx with f € L'; dju = do; the Dirac mass &o.

DEFINITION
The Fourier transform of p is

E) = [ €2 <dul).
The integral converges absolutely and /i is a bounded function since
A€ < JW(X)!d/\(X) = |-

In general, however, [i does not decay at infinity (30 =1).



An application of dominated convergence shows that ji is a
continuous function. If in addition we assume that dyu has a
bounded support (like do or dp), then [i extends to an entire
function on CY.

The convolution of f € L' and dyu is

Fon() = [ = y)du(y)
By Fubini's theorem, we have

Fep&) = FOME).



The main point for us is that 6 decays at infinity and in fact enjoys
the bound

(d—1)
2

6= @ +[E) =

This is due the curvature of the sphere. Indeed, letting
v={(x,0)eR?:0< xg <1}

and dp = dxg, we get

1
e—27rlf-xd'u(x) _ f e—27rl§1x1 Xm’
0

fi(€1,€2) = f

Y

so that 9(&1,&2) = 4(£1,0) and does not decay in the vertical
direction.



PROPOSITION
Suppose f e LP is a radial function (f(x) = f(r), r = |x|). If
1<p< d+1 then f is continuous away from the origin.

Proof: fxp,1) € L! has a continuous Fourier transform.
Write x = rw with w € S and p = |£]. We have

0 = [ ([, e o)) ot

= LOO f(r)a(rp)rd=—tdr




By dominated convergence it is easy to see that /(p) is continuous
for p > 1, since

d—1 _ d—1 4
F()p 2 &(rp)|r! L < |F(r)|p"2 (rp)” 2 rd~1
1

— [f(n)|rF ri L e LY(dr)

since



DEFINITION
Given a Borel set £ in RY and a measure di on E, we say that E
enjoys the R(p — q)-restriction property if the estimate

1Fluoie .o = (f P()19d (e ) < e

holds for all f € S.

The R(1 — o) estimate holds trivially for any Borel set E = R9. A
less trivial example is given by the Hausdorff-Young inequality,
which tells that E = RY satisfies the R(p — p')-restriction
estimate (with the Lebesgue measure).



If E enjoys the R(p — q)-restriction property, we may define the
restriction of f to E (in the L9 sense) for all f € LP:

Since the Schwartz space is dense in LP (for p < o0), there is a
sequence {f,} — S converging to f in the LP norm. The functions
in {f,} are Schwartz and hence continuous, so

E>¢m RA(E) = hle(©) = [ e f(x)dx
is well defined. Since {f,} is a Cauchy sequence in LP, we deduce

from R(p — q) that {f,} is a Cauchy sequence in L9(E). Finally,
we define Rf = f|g as the L9(E) limit of {f,|g}.



It is often more convenient to consider the adjoint of R, which for
ge CZ (S971) is given by

com

R*g(x) = f M g (€)do (£)

Sd—1

and is called extension operator. Indeed,

fRd f(§)R*g(§)do(¢) = L RF(€)g(€)do(€)
Ld . < Lo fx)e _27”§de> g(€)do(€)

( e27rl§ X (§)> dx.
gd—1




By duality S~ enjoys an R(p — q) restriction estimate if and
only if it satisfies the R*(q' — p’)-extension inequality:

IRoel = ([ IR°e0P )" < ([ @1 ao(0))

for all continuous g on M. In other words:

,_.
Qm

LEMMA
The restriction operator R maps LP(RY) to L9(S9L, do) if and
only if R* maps L9 (591 do) to LP (RY).



It is easy to see that when a hypersurface M = R9 (endowed with
the surface measure) contains a non trivial portion of a hyperplane,
then there are no non-trivial restriction estimate: for d = 2 consider
M = {(£1,0) : 1 < & < 1} with d¢;, then

1

R*g(xl,xz>=f 2nins g (£,)dey

0

is independent of x, and thus does not belong to any LP'(R?) with
p < .



We can also see that there are not R(p — q) estimates for S9! if
p < d2d orp = d+1 This follows by testing the extension

estimate on the constant function g = 1. Since

R*g(x) = L > X do(w) = &(x)

and |6(x)| ~ \x| * for |x| > 1, we have
IR*gl5, 2 f X =,
[x|>1

2d
d+1-

From thls computatlon we see that 6 € L™ if and only if r >

if 952 <dorp <2 thatis p>

2d
d-1-



Hystorically, the first non trivial restriction estimate was obtained in
the sixties of the last century by E. Stein, who proved a

(p, 2)-estimate holding on the sphere, by conjugating the decay of
the Fourier transform of do and the Hardy-Littlewood-Sobolev
inequality.

This estimate is based on the following observation holding for
q=2.



LEMMA
The following estimates are equivalent:

|Rf[12(doy < ClfllLr(ra), (1)
HR*gHLP/(Rd) < CHgHLZ(dU)7 (2)
| R*Rf | o ey < C2Hf|‘LP(Rd)7 (3)

for all f € S(RY) and all g € Ceom(E).

PROOF.

(1) and (2) are equivalent by the previous lemma. The bound in
(3) follows by composition of those in (1) and (2). Finally,
assuming (3), we have

|RFIZ2(g) = (R, Rf)2(g) = (f, R*Rf) 2(re)

< |fllo@ey |R*REl 1o ey < C2UF o o)-



We prove an estimate holding for R*R. The advantages of that are
first that R*Rf is still a function on RY (like f) and second that
R*R is a convolution operator and the effects of the oscillations are
all contained in its kernel.



First we obtain an expression for the operator R*R,

R*(Rf)(x) = JSdl eZM WX Rf (w)do(w) = JSdl > X f(w)do(w)

:J‘ e2ﬂ'iw.x <f f(y)e27riy-wdy> da(w),
Sd—1 Rd

which by Fubini's theorem yields

R*Rf(x) = fRd f(y) ( Ld_l e_2”i(X_Y)'“da(w)> dy
- | fetx—yay
= f % 6(x).



Being

6] s (L+ €)™
& lies in L"(R9) if and only if

- 2d
r>—-——.
d—1
Hence, by Young's inequality we get

IR*RF oy = IF * 1oy < 1oy 6]y < 1 Floaers

if



Using the Hardy-Littlewood-Sobolev estimate instead of Young's

convolution inequality Stein proved the estimate for p < 3;*711.

Stein himself and P. Tomas eventually showed that the restriction

- - 2d+2
inequality holds exactly for 1 < p < <775



We first show that there are not L2 restriction estimate in the

range: p > 2;:32 To do that we introduce the Knapp example.

We test the inequality

lgdo L ray < lglizs)

on the characteristic function g of a cap Cs of radius 0 < 0 « 1
centered at the north pole ey = (0,---,0,1).
We have

Cs = Sdfl N Ds,

where Dy is the cylinder around the x4 coordinate axis, with radius
0 and top face tangent to the sphere at e4. The bottom of the
cylinder lies at hight v/1 — 42, so

Ds=1{y=(,yq) eRITIXR: |y/| <6,1—yg<1—~1—06=~ ).

The thickness of Ds is chosen in order to maximize the intersection
with S9-1.



The norm on the right hand side is given by

-1

1
HgHB(S) =[Glz~d 7.

We need an estimate from below for |gdo| . So we need a bound
from below for

lgdo(x)| =

J @27 ixw do(w) ‘ .
Cs



Observe that
lgdo(x)| = ezm'x'edf e2ﬁix'(“_ed)d0(w)’
Cs
_ f e27rix-(w—ed)d0—(w)‘
Cs

> Ref e27rix-(w—ed)do.(w)‘
Cs

- fq; cos(2mx - (w — ed))dU(W)‘ :



We look for a subset of RY where

cos(2mx - (w — eq)) = for all w e C5 < Dy.

N

For ¢ > 0, let
Dg,c = {(X/,Xd) : ‘X/| < C/(Sv |Xd| < C/52}’
If x = (X', xq) € D} . and w = (w',wq) € C5 = Ds, then

[27x - (w — eg)| < 2m|x" - | + 2 |xq||wq — 1

< 27X ||| + 27 |xg||lwg — 1] < 27c + 2mc <

if ¢ is sufficiently small.

il
3 Y



This yields the bound

— 1
gdo)| > 5 | dolw) 2 |Go| ~ 5%

Cs

for x e Df .
Since |Dj | ~ 67(@7 1672 = 5=(4+1)  we obtain

— — _ 1 g o_dit
HgdUHLp’(Rd) = HgdUHLp’(D:;C) z 69 I‘D;CW > 69715 v



Assuming

1890 ] L 0y < lEli2(s):

we get

for all 0 < § « 1. This implies
d—1 d+1 d—1_d+1
— >

2 p 2 p
or
P=91 PS9i3

proving the claim.



The same example applied to
190 1 ety < g1 1o -1

d—1
leads to the condition ([ g ¢ (ga-1) ~ & ¢ )

that is

which implies




The Restriction Conjecture

This lead to Stein to conjecture that the estimate

1Pl iacsa-1) < [ Fllip(re)

should be true for

Known for d =2 (1 < p <4/3 and p’ < 3q) (due to C.
Fefferman-Stein and A. Zygmund).



THEOREM (P. TOMAS)
The inequality

IR* R o) < |F oo

holds for 1 < p < 2‘1‘1—;’32 = p*.

The proof is based on an interpolation theorem due to R. Hunt.



THEOREM (R. HUNT)

Let (X, ) and (Y,v) be measure spaces. Let T be a linear
operator mapping measurable functions on X to measurable
functions on Y. Let pg, p1, 9o, g1 be Lebesgue exponents, with

po < p1 and qo < q1. Suppose that for any measurable set E — X
we have

1 1
ITxElw0y)y S |E[P, [ Txe|an(y) S [E[P.
Define for0 < t < 1,

_1—t t

11—t t
= + —,

1
P Po p1 g qo ai

Y

then

1T Lacyy < 1flox)

for all measurable functions f.



Proof of the Tomas theorem (A. Carbery):

Let E be a Borel set in RY, we will show that
di3
HRXEHLZ(Sd—1) < ‘E‘2d+2,

then the theorem will follow from Hunt's theorem interpolating
with the trivial [! to L® estimate,

IRXE oo (s0-1) < |E.



The argument is based on two geometric properties of the measure
o: the dimensional estimate

a(B(x,R)) s R
and the decay of the Fourier transform
_d-t
2 )

6(E)] < (1+[¢])

which is due to the curvature of S9-1.

We will use the T*T method, writing

IRXE(72(s0-1) = (RxEs RxED12(50-1) = (XE, R*RXED 12 (1)



We split R*Rf = f « & in two operators corresponding to the low
and the high frequency parts of o:
Let ¢ € S(RY) satisfy XB(0,1) < ¢ < XB(0,2) and let A > 0. Define

6Iow(f) = 6(‘5)¢(£/)‘>

and
Ghigh(§) = G(£)(1 — @(&/N))
and
Tiowf = % Glow, Thighft = f * Ghigh,
so that

R*Rf = Tiouf + Thighf-



Then

HRXE”%2(Sd71) = (XE, R*"RXxE) = {XE> TiowXE) + {XE> ThighXE)-

We will bound the two terms on the right hand side separately.



We start with the high frequency part,

I<xEs ThighXE)l < IXE| Ll ThighXElloo = |E|| ThighXE |-

We have
. R _d-1
| ThighxEllw = [ XE * Ghighlloo < |E|[|Ghighllec S |EIA 2

by the decay rate of 5. Hence, we obtain

_d-1
[KXE,s ThighXe)| < |EPA 2 .



For the low frequency part we first use Cauchy-Schwarz,
1
IKXEs TiowXE)| < |XEl2] TiowXEl2 = |EI2 || TiowxE]2-

The Plancherel identity yields

| Tiowx€ell2 = [IXE * Growl2 = |XETIow]|2

~ 1
< IXEll2tow oo = |XEl2]T1ow 0 = |EI2 | T 10w | oo-



Recall that

Glow(§) = 6(§)P(E/A) = 6(E)Pa(8),

so that

Tlow(X) = 0 dx(x) = Adf d(A(x — w))do(w).

Sd-1

Since ¢ has compact support, by the uncertainty principle the
support of ¢ cannot be bounded. However, ¢ is Schwartz, so we
can assume that ¢ is 1 on B(0,1) and decay rapidly outside of it,

0w ()] < Adj BMx — w))|do(w)

Sd—1
<\ f XE02)(Ax — w))do(w)
sd—l

— Mo (B(x,2/A\) n §971).



o(B(x,1/A) n §971) attains the supremum for x € S9! and this
is 0(B(x,1/))) ~ A~(@=1) 5o that

|Tlow (X)] < AINTE=D = ).
Hence,
| Thighxel2 < 1E1Z|otowlo < AE2,
which yields

1
IKXEs TiowXEDl < |E|2| Thighxel2 < MEJ.



Therefore,

I RXEHiz(sdfl) = {XE, TiowXE) + {XE; ThighXE)
< |E|XN + |EPA 2.

By optimizing in A, we get the claim:

d+3
HRXE||L2(5d71) < |E‘ 2d+2



Why do we have |5(¢)| < |¢]2 for |¢] » 17?

We want to estimate &(&) for R/2 < || < R for some R » 1. This
is the same as understanding

6r(§) = 6(§)or(S)

with ¢g a smooth bump function localized at |£| ~ R. We take

g € S(R) essentially supported at t = 1, that is, we suppose that
g(1) =1 and that |g(t)| « 1 for t < 3 and t > 3. We also assume
that g(0) =1, suppg < (—1,1).

Define

or(&) = &(I¢|/R).



Since
9r(€) = RIG(RE),
taking the Fourier transform of 6 = 6¢r we get
OR =0 # (E,;,

a function of total mass 1 supported in a neighborhood of S9~1 of
radius 1/R.



Indeed,
o (RIG(R] - |))(x)dx = ) RIG(RIx — w|)do(w)dx
fRd JRd Ld 1
_ Ld_l fRd RS(R|x — w|)dxdor(w)
_ Ld_l fRd RY%(R|x|)dxdor (w)
_ fRd RIG(R|x|)dx Ldl do(w)
=159 [ b

~ 1.



So far we showed that
OR =0 * QR

is a function of total mass 1 supported in a neighborhood of S9!
of radius 1/R. Therefore or can be written as

or(x) = o * or(x) = RV(R(]x| — 1))

with W € S(R) such that W(0) =1 and supp V¥ < (—1/2,1/2).



Given a 1/4/R separated set A = {w} in S971, which is maximal
with respect to this property, the caps C VR yield a covering of

S971. Hence, introducing a partition of unity, we decompose
V(R(|x| — 1)) into bump functions 7, g-1/2 € S(RY) adapted to
the sets D, g-1/2, where D, g1/ is a cylinder centered at w with
axis w, radius 1/\/§ and thickness 1/R:

R(|x] — 1)) Zn R*?X'

wel



So we get
or(x) = RY(R(x| ~ 1) = R Y0 ().
weh

so that

16 (&)X (Rr/2<|¢|<3R/2} (&) = |6(€)Pr(E)]
= 16r()l = R X, 7, 1)

weN




By the Knapp example we know that for £ in the dual cylinder D}
(with length R and radius v/R), we have

T30 ~ 10| ~ (RTHIIR = R@HD22
Hence,
R nwVRi% (€)| RR™ (d+1)/2 Rf(dfl)/Z'

Note that if || ~ R, then ¢ essentially lies in a unique cylinder D}
(since the directions of the cylinders are 1/4/R separated) hence

5(&)IX(Rrj2<iel<ry () ~ R D7

weN

,l
w,R™2

<R Z ‘77 Ri% ‘ ~ (d—l)/27

weN

which proves the claim.



RESTRICTION ESTIMATES FOR
SUB-LAPLACIANS

joint work with V. Casarino

Gent, September 2023



If fis a Schwartz function, the Fourier inversion formula in polar
coordinates yields

f(x) = f ’ ( Ldl f(rw)e2”irw'xda(w)> rd=tdr,

0

where do is the measure on the unit sphere and

f(&) = JRd f(x)e 2™ dx.



If A is the Laplacian, then

A f f(rw)e?™ o xdg(w) = —4m2r? f f(rw)e®™r>do(w).
§d—1 §d—1

So
w .
f(x) = J J f(rw)e®™ < do(w)r?=tdr,
0 Jsa1

may be thought of as the spectral decomposition of f.



Replacing 472r? with X in the Fourier inversion formula, we obtain
© N .
f(x) = J f f(rw)e®™ > do(w)rd=tdr
0 Sd-1
w . —
- J f F (/N 21w) eV X do (w)A 2 dA
gd—1
OOO
:J Pirf(x)dA,
0
where
Pyf(x) = J f(«/)\/27rw) eVAX o (1)
Sd—1

are the spectral components of f with respect to A.



For A\ = 27 we have

Parf(x) = J f(w) e do(w).

Ssd—1

If g is a continuous function on S9! the extension operator is

defined by
R*g(x) = f g(w)e?m > do(w).
Sd—1

R* is bounded from [2(§9-1) — [P/(RY) if 1 < p < 29+L,



RESTRICTION PROBLEM:
The bounds
|Fliacsa-1) < IFllio(re)

hold if and only if 1 < p < d+1 and g > zﬁp’

Settled for d = 2:
THEOREM (C. FEFFERMAN, E. STEIN-A. ZYGMUND)

The estimate

1Fllagsty < IF]l o2

/

holds if and only if 1 < p < % and q = %.



The proof of the Stein-Tomas theorem is based on the observation
that R : LP(RY) — L2(S971) is equivalent to
R* o R : LP(R?) — LP'(R?). The operator R* o R is given by

R*(Rf)(x) = f = &(x).






Since the spectral components of f with respect to A are given by
Porf(x) = f % 6(x) = R*Rf (x),

the Stein-Tomas theorem is the assertion that
Por 1 LP(RY) — LP'(RY).



In R3 with coordinates (t, x, y), define
xzax—gat, Y:ay+gat, T =0,

then [X, Y] = T. R3 equipped with this bracket gives rise to the
Heisenberg Lie algebra b.

The sublaplacian is the operator

1 1
L=-X?—Y2=—-02-02+ 5 (x0y = y0x)0: - Z(x2 +y?)e2.

L has a unique positive self adjoint extension to L?(R3).



Let o
f(X7y7t) :J P/\f(X,y, t)d)‘
0

be the spectral decomposition of a Schwartz function f with

respect to L,
LPyf = APyf.

The task is studying the mapping properties between Lebesgue

spaces of the operators Pj.



The first positive result is due to D. Miiller in 1990 (A restriction
theorem for the Heisenberg group, Ann. of Math., 1990 ). It is
expressed in terms mixed lebesgue norms:

0 2 %
HfHL;Liy = (J <J ‘f(t7 Xay)|r dt> dXdy) .
R2 —o0

Warning: The estimate
[Pxfllesea, <a lflisee,

is false for (r,s) # (1, ).
THEOREM (D. MULLER)

The estimate
e PRSI L TETES

holds for 1 < p < 2.



Improving on Miiller's result,
XN

means obtaining estimates in which the exponent p’ on the left is
replaced by g < p’

IPrfllecs., sxlflie, -



We got g = 2.

THEOREM (V.CASARINO, C.; ADV.MATH.2013)
The estimate

IPafllizrz, <x Ifllee,
holds for 1 < p < 2.

Analogous results holds on more general groups (H,, groups of
Heisenberg type).



Using classical tools it is not difficult to show that P, is bounded
from L, L} to LY, L¥ in the range 1 < p < & and § < g in Hy.

More generally, on H, the range of exponents for which is known

that the estimates hold is given by 1 < p < 2%21% and 2;‘_’;1 <q.

By invariance under translation there cannot be estimates with
q < p. Moreover, we have an example showing that there are no
estimates of the type

IPFllcs i ) a1l i)

4n _ =
forg< 507 =0 -




The Riesz diagram showing what we know is the following.

1 /
q o

1/px
1/ | E
1/2 |
1/8
1/ps’

T =

A1

1111 1
px’ P2 p px

Figure 1. In this picture p = #_’;1, px = 2221;1;

DA



On H; the problem is settled:

THEOREM (V.CASARINO, C.)

The estimate L,

|PAfllpers, < Apalf e,

/

holds if and only if 1 < p < % and q > &.



1
p

Q>



The spectral projectors are given by

0

Paf(x,y,t) = ). %1 (eMktnik’c(M(XJ) + e MMM FN (x, )
k=0 ’
A
Ak = 2k+1"
Here :
[ ]
w -
Dey) = [ ey e,
—00

o I'Iﬁ is the spectral projection of the twisted-laplacian A®)
corresponding to the eigenvalue |A|(2k + 1).



The twisted laplacian is defined by
(LAN (x,y) = AV FN (x, y)
and is given by

] 1
AW = 232 ¢ é)\(xay —yd) + N4 + ).

For A # 0 the operator AW has a pure point spectrum: the
eigenvalues are given by |[\|(2k + 1), k =0,1,2,....



Recall that the spectral projections are

0
1 . L :
Paf(x,y,t) = . %+l (e'Aktnikf(Ak)(Xv)/) + eﬂAkt”kkk’c(W)(Xv)/)/
o

Applying the triangle inequality we get

[Prf(x,y,t

S (I ey + I ()1

and hence

([, Pty orasay )

oo
1 M £(Mi) Xk £ (=)
<l§2k+1(nnkf og, + IMAFM ).




This formula yields

t

1
sup (J |PAf(x,y, t)|qudy> !
R2

0
L A Mg~
< Z (”nkkf(/\k)HLi,ij In, k£ ( /\k)”Li’y)

k=0 2k +1
A
<23 s IM g, ag, 1F O g,
k=0
o 1_1
AP A
= 3 g IMeliz, g, I,
k=0
11 & 1
ST Y I e,

where My = ;.



To show that Py : L}LE, — L¥PL],, we are thus reduced to prove

o0
Z mkHLP 19, Spag L
k=1

In particular,
11
[PAfllizers, < Apallfllpage

fori<p<3 2 and g > ,, is a consequence of (using some
interpolation)
INKf] 2

1y < (0B RI]g 0



THEOREM
For% < g < 2 we have

11
IMkfliare) < (log k)2 a||f | La(m2)

and for1 < g <

Wl

1

g \*,i-2
Mty = (70 ) 087 Wl

These bounds are sharp.
By interpolation with [Mxf] 22y < [[f]12(r2), it suffices to prove

IMefl g o < (log k)] £] o

L3(JR2) L3(R2

or equivalently

1
IMkfllam2y < (log k)4 [ ]| o w2y



We also have:

THEOREM
Let1<p<4andq=23p. Then
ki 2 4 12
a <g<
IMllzr@2)— a2y = 1Mkl Lo @2y 1 R2) = { K~

Qld

qg > 12.



Note that g = 12 is excluded from the previous result. In this case
there is a logarithmic loss and, so far, we have only been able to
prove
—1+e
Mkl a2y r12(m2) Se k™3

for all € > 0.
The sharp estimate should be

anHL“(R2)HL12(R2) < k_%(log k)%.



The goal is
1
IMkfllam2y < (log k)4 [ ]| 2 m2)-
The spectral projections are given by

M (x,y) = £ ulxey) = [ FOx= ey = V)gu(u, )™ dud,
RZ

where i (x,y) = e P (x2 + y2), with

1 et dk
Li(t) = —5——— (e ttk
(t) N dtk( )

a Laguerre polynomial of degree k and type 0.



The oscillations in the kernel of My,
MNkf(z) = J f(x—uy—v)pk(u, v)ei(XV_y“)dudv,
RZ

are due to V=¥ and to .

We know that the zeroes and hence the oscilllations of are
contained in the annulus in ﬁ < (® 4+ v?)2 < 8Vk.



After some standard reductions one is reduced to prove

1
= 3 1
(| 1Pftcylt ) < (108 )% Fluecee

for all e > 0, where

i (x,y) = [ F0x= iy = v Vel v)e™ ) dud,
Rz

here 7y is a smooth cutoff function supported in the annulus
1 . .
ﬁ < r=(x?+y?)2 < 10vk (which contains the zeroes of ;).



The function ¢y behaves like a Bessel function in
1
2[ < r= (v’ + v?)2 < 5Vk and like an Airy function in
4k < r < 10vk. Correspondingly 1,f must be decomposed into
the sum of two terms.

The term with kernel supported in r < 5v/k is given by
J Fx —uy — v)e'X Y5 (u v)6 (\/;(u2 + vz)%) dudv,
R2

where & is the Fourier transform of do and 7j, is another cutoff
function supported in ﬁ < r<5vk.
It is well known that & is a radial function and that

os(Vkr —/4) for r>2\1/;.



Hence, the integral under investigation essentially becomes the sum
of two terms. This is the first

, , 1
k3 f f(x—uy— v)e’(’“’_y“)J”\/E(“ZJ”’Z)2 fik(u, v)dudv,
R2

which after a dyadic decomposition may be treated using a classical
result of L. Carleson and P. Sjélin.
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