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The Fourier transform of f P L1 is defined by

f̂ pξq “

ż

Rd

f pxqe´2πix ¨ξdx ,

where x ¨ ξ “ x1ξ1 ` ¨ ¨ ¨ ` xdξd .
The integral converges absolutely to a continuous function
vanishing at infinity, that satisfies

}f̂ }8 ď }f }1.

If also f̂ P L1, then

f pxq “

ż

Rd

f̂ pξqe2πix ¨ξdx .

For f P L1 we will denote by f̌ pξq the integral

f̌ pξq “

ż

Rd

f pxqe2πix ¨ξdx .



A C8 function f is Schwartz if together with all its derivatives
decays at infinity more rapidly than |x |´N for all N P N, that is

}|x |NDαf }8 ă Cα,N ă 8.

The space of Schwartz functions SpRdq is dense in any Lp with
p ă 8 and the Fourier transform is an isomorphism of SpRdq.



If f , g P S their convolution,

f ˚ gpxq “

ż

f px ´ yqgpyqdy ,

is a Schwartz function. We can therefore compute the Fourier
transform

zf ˚ gpξq “ f̂ pξqĝpξq.

We also have

pfgpξq “ f̂ pξq ˚ ĝpξq.



If f is a general L2 function the integral
ż

Rd

f pxqe´2πix ¨ξdx

does not converge absolutely. To define the Fourier transform in
L2, we observe that if g is a Schwartz function (g P S), then g
obeys the Plancherel identity

}g}2 “ }ĝ}2.

For any f P L2 there is tfnu Ă S such that }f ´ fn}2 Ñ 0. Since
tfnu is a Cauchy sequence, by

}fn ´ fm}2 “ }f̂n ´ f̂m}2,

tf̂nu is also Cauchy. We call f̂ the L2 limit of tf̂nu (sometimes we
will call it Fourier-Plancherel transform for clarity).



Since Lp Ă L1 ` L2 for 1 ď p ď 2, the Fourier transform f̂ of a
function f in LppRdq, 1 ă p ă 2, can be defined, by decomposing f
into a sum f1 ` f2 with f1 P L

1pRdq and f2 P L
2pRdq, as

f̂ “ f̂1 ` f̂2,

where

f̂1pξq “

ż

Rd

f1pxqe
´2πix ¨ξdx ,

and f̂2 is the Fourier-Plancherel transform.



The Fourier transform of a function in Lp is a function in Lp
1

,
1
p `

1
p1 “ 1, and satisfies the Hausdorff-Young’s inequality.

Theorem (Hausdorff-Young’s inequality)
Let 1 ď p ď 2 and let f be a Schwartz function. Then

}f̂ }p1 ď }f }p.

Similarly to what we did for the Fourier transform in L2, one can
also define f̂ for f in LppRdq (1 ď p ď 2), showing first that the
Hausdorff-Young inequality holds for Schwartz functions and then
exploit the density of SpRdq in LppRdq.



The Hausdorff-Young inequality can be proved by interpolating
between

}f̂ }8 ď }f }1

and

}f̂ }2 “ }f }2

with the Riesz-Thorin theorem.



Theorem (M.Riesz-O.Thorin)
Let p0, p1, q0, q1 be Lebesgue exponents and let T be a linear
operator mapping Lp0 ` Lp1 Ñ Lq0 ` Lq1 . Suppose that we have

}Tf }q0 ď C0}f }p0 , }Tf }q1 ď C1}f |p1 .

Define for 1 ď t ď 1,

1
p
“
p1´ tq

p0
`

t

p1
,

1
q
“
p1´ tq

q0
`

t

q1
,

then

}Tf }q ď C 1´t
0 C t

1}f }p.



Young’s convolution inequality,

}f ˚ g}q ď }f }p}g}r

holds for

1
q
` 1 “

1
p
`

1
r
,

and can also be proved using the Riesz-Thorin theorem.



It may be proved by interpolating between

}f ˚ g}r ď }f }r }g}1 and }f ˚ g}8 ď }f }r }g}r 1 .

Setting q0 “ r , p0 “ 1, q1 “ 8, p1 “ r 1 and Tg “ f ˚ g , we get

}f ˚ g}q “ }Tg}q ď }f }r }g}p,

with

1
q
“

1´ t

r
`

1
8
“

1´ t

r
,

1
p
“

1´ t

1
`

t

r 1
“ 1´

t

r
.

Note that

1
p
`

1
r
“ 1´

t

r
`

1
q
`

t

r
“ 1`

1
q
.



Restriction of the Fourier transform

Functions in L1 have a Fourier transform f̂ that is continuous and
may be evaluated at every point; in particular, it may be restricted
to a set of measure zero, like, for instance, the unit sphere,

Sd´1 “ tx P Rd : x2
1 ` ¨ ¨ ¨ ` x2

d “ 1u.

On the other hand, by the Plancherel theorem any function in L2 is
a Fourier transform. Since L2 functions are defined only almost
everywhere, their restriction to sets of measure zero does not make
sense. As a consequence, for f P L2 the restriction of f̂ to Sd´1 is
meaningless.



For f P Lp, 1 ă p ă 2, we have

f̂ “ f̂1 ` f̂2,

where f1 P L
1 and f2 P L

2 and

f “ f1 ` f2.

The function f̂1 is continuous and may be restricted to Sd´1.
However, the function f̂2 is in L2 and cannot in general be
meaningfully restricted.



The first hint that things might be quite different is the observation
that for certain p in p1, 2q if f in Lp is radial, then f̂ is continuous
away from the origin.

Proposition
Suppose f P Lp is a radial function. If 1 ď p ă 2d

d`1 , then f̂ is
continuous away from the origin. In particular f̂ may be restricted
to Sd´1.

This proposition is a consequence of the decay of the Fourier
transform of dσ: the surface measure on Sd´1.



Fourier transform of complex measures
In these lectures we will only consider measures dµ “ ψdλ, where
ψ P L1 and λ is a (positive) Borel measure with bounded support or
dx .
Examples are: dµ “ fdx with f P L1; dµ “ dσ; the Dirac mass δ0.

Definition
The Fourier transform of µ is

µ̂pξq “

ż

e´2πix ¨ξdµpxq.

The integral converges absolutely and µ̂ is a bounded function since

|µ̂pξq| ď

ż

|ψpxq|dλpxq “ }µ}.

In general, however, µ̂ does not decay at infinity (δ̂0 “ 1).



An application of dominated convergence shows that µ̂ is a
continuous function. If in addition we assume that dµ has a
bounded support (like dσ or δ0), then µ̂ extends to an entire
function on Cd .
The convolution of f P L1 and dµ is

f ˚ µpxq “

ż

f px ´ yqdµpyq.

By Fubini’s theorem, we have

zf ˚ µpξq “ f̂ pξqµ̂pξq.



The main point for us is that σ̂ decays at infinity and in fact enjoys
the bound

|σ̂pξq| À p1` |ξ|q´
pd´1q

2 .

This is due the curvature of the sphere. Indeed, letting

γ “ tpx1, 0q P R2 : 0 ď x1 ď 1u

and dµ “ dx1, we get

µ̂pξ1, ξ2q “

ż

γ
e´2πiξ¨xdµpxq “

ż 1

0
e´2πiξ1x1dx1,

so that γ̂pξ1, ξ2q “ γ̂pξ1, 0q and does not decay in the vertical
direction.



Proposition
Suppose f P Lp is a radial function (f pxq “ f prq, r “ |x |). If
1 ď p ă 2d

d`1 , then f̂ is continuous away from the origin.

Proof: f χBp0,1q P L
1 has a continuous Fourier transform.

Write x “ rω with ω P S and ρ “ |ξ|. We have

{p1´ χBqf pξq “

ż 8

1
f prq

ˆ
ż

Sd´1
e´2πirω¨ξdσpωq

˙

rd´1dr

“

ż 8

1
f prqσ̂prρqrd´1dr

“ ρ´
d´1

2

ż 8

1
f prqρ

d´1
2 σ̂prρqrd´1dr “ ρ´

d´1
2 I pρq.



By dominated convergence it is easy to see that I pρq is continuous
for ρ ą 1, since

|f prqρ
d´1

2 σ̂prρq|rd´1 À |f prq|ρ
d´1

2 prρq´
d´1

2 rd´1

“ |f prq|r´
d´1

2 rd´1 P L1pdrq

by
ż 8

1
|f prq|r´

d´1
2 rd´1dr “

ż 8

1
|f prq|r´

d´1
2 r

pd´1q
´

1
p
` 1

p1

¯

dr

À

ˆ
ż 8

1
|f prq|prd´1dr

˙
1
p
ˆ
ż 8

1
r
pd´1q

´

1´ p1

2

¯

dr

˙
1
p1

À }f }p

since

´1 ą pd ´ 1q
ˆ

1´
p1

2

˙

ðñ p1 ą
2d

d ´ 1
.



Definition
Given a Borel set E in Rd and a measure dµ on E , we say that E
enjoys the Rpp Ñ qq-restriction property if the estimate

}f̂ }LqpE ,dµq “

ˆ
ż

E
|f̂ pξq|qdµpξq

˙
1
q

À }f }LppRd q

holds for all f P S.

The Rp1Ñ8q estimate holds trivially for any Borel set E Ă Rd . A
less trivial example is given by the Hausdorff-Young inequality,
which tells that E “ Rd satisfies the Rpp Ñ p1q-restriction
estimate (with the Lebesgue measure).



If E enjoys the Rpp Ñ qq-restriction property, we may define the
restriction of f̂ to E (in the Lq sense) for all f P Lp:
Since the Schwartz space is dense in Lp (for p ă 8), there is a
sequence tfnu Ă S converging to f in the Lp norm. The functions
in tf̂nu are Schwartz and hence continuous, so

E Q ξ ÞÑ Rfnpξq “ f̂n|E pξq “

ż

e´2πiξ¨x fnpxqdx

is well defined. Since tfnu is a Cauchy sequence in Lp, we deduce
from Rpp Ñ qq that tf̂nu is a Cauchy sequence in LqpE q. Finally,
we define Rf “ f̂ |E as the LqpE q limit of tf̂n|Eu.



It is often more convenient to consider the adjoint of R , which for
g P C8compS

d´1q is given by

R˚gpxq “

ż

Sd´1
e2πiξ¨xgpξqdσpξq

and is called extension operator. Indeed,
ż

Rd

f pξq ĞR˚gpξqdσpξq “

ż

S
Rf pξqĚgpξqdσpξq

“

ż

Sd´1

ˆ
ż

Rd

f pxqe´2πiξ¨xdx

˙

Ěgpξqdσpξq

“

ż

Rd

f pxq

ˆ
ż

Sd´1
e2πiξ¨xgpξqdσpξq

˙

dx .



By duality Sd´1 enjoys an Rpp Ñ qq restriction estimate if and
only if it satisfies the R˚pq1 Ñ p1q-extension inequality:

}R˚g}p1 “

ˆ
ż

Rd

|R˚gpxq|p
1

dx

˙
1
p1

À

ˆ
ż

Sd´1
|gpξq|q

1

dσpξq

˙
1
q1

,

for all continuous g on M. In other words:

Lemma
The restriction operator R maps LppRdq to LqpSd´1, dσq if and
only if R˚ maps Lq

1

pSd´1, dσq to Lp
1

pRdq.



It is easy to see that when a hypersurface M Ă Rd (endowed with
the surface measure) contains a non trivial portion of a hyperplane,
then there are no non-trivial restriction estimate: for d “ 2 consider
M “ tpξ1, 0q : 1 ă ξ1 ă 1u with dξ1, then

R˚gpx1, x2q “

ż 1

0
e2πix1ξ1gpξ1qdξ1

is independent of x2 and thus does not belong to any Lp
1

pR2q with
p1 ă 8.



We can also see that there are not Rpp Ñ qq estimates for Sd´1 if
p1 ď 2d

d´1 or p ě 2d
d`1 . This follows by testing the extension

estimate on the constant function g “ 1. Since

R˚gpxq “

ż

S
e2πiω¨xdσpωq “ σ̂pxq

and |σ̂pxq| « |x |´
d´1

2 for |x | ą 1, we have

}R˚g}p
1

p1 Á

ż

|x |ą1
|x |´p

1 d´1
2 dx “ 8,

if p1 d´1
2 ď d or p1 ď 2d

d´1 , that is p ě
2d
d`1 .

From this computation we see that σ̂ P Lr if and only if r ą 2d
d´1 .



Hystorically, the first non trivial restriction estimate was obtained in
the sixties of the last century by E. Stein, who proved a
pp, 2q-estimate holding on the sphere, by conjugating the decay of
the Fourier transform of dσ and the Hardy-Littlewood-Sobolev
inequality.
This estimate is based on the following observation holding for
q “ 2.



Lemma
The following estimates are equivalent:

}Rf }L2pdσq ď C}f }LppRd q, p1q

}R˚g}Lp1 pRd q
ď C}g}L2pdσq, p2q

}R˚Rf }Lp1 pRd q
ď C 2}f }LppRd q, p3q

for all f P SpRdq and all g P CcompE q.

Proof.
(1) and (2) are equivalent by the previous lemma. The bound in
(3) follows by composition of those in (1) and (2). Finally,
assuming (3), we have

}Rf }2L2pEq “ pRf ,Rf qL2pEq “ pf ,R
˚Rf qL2pRd q

ď }f }LppRd q}R
˚Rf }Lp1 pRd q

ď C 2}f }2LppRd q
.



We prove an estimate holding for R˚R . The advantages of that are
first that R˚Rf is still a function on Rd (like f ) and second that
R˚R is a convolution operator and the effects of the oscillations are
all contained in its kernel.



First we obtain an expression for the operator R˚R ,

R˚pRf qpxq “

ż

Sd´1
e2πiω¨xRf pωqdσpωq “

ż

Sd´1
e2πiω¨x f̂ pωqdσpωq

“

ż

Sd´1
e2πiω¨x

ˆ
ż

Rd

f pyqe´2πiy ¨ωdy

˙

dσpωq,

which by Fubini’s theorem yields

R˚R f pxq “

ż

Rd

f pyq

ˆ
ż

Sd´1
e´2πipx´yq¨ωdσpωq

˙

dy

“

ż

Rd

f pyqσ̂px ´ yqdy

“ f ˚ σ̂pxq.



Being

|σ̂pξq| À p1` |ξ|q´
pd´1q

2 ,

σ̂ lies in Lr pRdq if and only if

r ą
2d

d ´ 1
.

Hence, by Young’s inequality we get

}R˚Rf }Lp1 pRd q
“ }f ˚ σ̂}Lp1 pRd q

ď }f }LppRd q}σ̂}Lr pRd q À }f }LppRd q,

if

1`
1
p1
“

1
p
`

1
r
ă

1
p
`

d ´ 1
2d

which is equivalent to p ă 4d
3d`1 .



Using the Hardy-Littlewood-Sobolev estimate instead of Young’s
convolution inequality Stein proved the estimate for p ď 4d

3d`1 .
Stein himself and P. Tomas eventually showed that the restriction
inequality holds exactly for 1 ď p ď 2d`2

d`3 .



We first show that there are not L2 restriction estimate in the
range: p ą 2d`2

d`3 . To do that we introduce the Knapp example.
We test the inequality

}ygdσ}Lp1 pRd q
À }g}L2pSq,

on the characteristic function g of a cap Cδ of radius 0 ă δ ! 1
centered at the north pole ed “ p0, ¨ ¨ ¨ , 0, 1q.
We have

Cδ “ Sd´1 X Dδ,

where Dδ is the cylinder around the xd coordinate axis, with radius
δ and top face tangent to the sphere at ed . The bottom of the
cylinder lies at hight

?
1´ δ2, so

Dδ “ ty “ py
1, ydq P Rd´1 ˆ R : |y 1| ď δ, 1´ yd ď 1´

a

1´ δ2 « δ2u.

The thickness of Dδ is chosen in order to maximize the intersection
with Sd´1.



The norm on the right hand side is given by

}g}L2pSq “ |Cδ|
1
2 « δ

d´1
2 .

We need an estimate from below for }ygdσ}p1 . So we need a bound
from below for

|ygdσpxq| “

ˇ

ˇ

ˇ

ˇ

ż

Cδ

e2πix ¨ωdσpωq

ˇ

ˇ

ˇ

ˇ

.



Observe that

|ygdσpxq| “

ˇ

ˇ

ˇ

ˇ

e2πix ¨ed
ż

Cδ

e2πix ¨pω´ed qdσpωq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Cδ

e2πix ¨pω´ed qdσpωq

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

Re

ż

Cδ

e2πix ¨pω´ed qdσpωq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Cδ

cosp2πx ¨ pω ´ edqqdσpωq

ˇ

ˇ

ˇ

ˇ

.



We look for a subset of Rd where

cosp2πx ¨ pω ´ edqq ě
1
2

for all ω P Cδ Ă Dδ.

For c ą 0, let

D˚δ,c “ tpx
1, xdq : |x 1| ď c{δ, |xd | ď c{δ2u.

If x “ px 1, xdq P D˚δ,c and ω “ pω1, ωdq P Cδ Ă Dδ, then

|2πx ¨ pω ´ edq| ď 2π|x 1 ¨ ω1| ` 2π|xd ||ωd ´ 1|

ď 2π|x 1||ω1| ` 2π|xd ||ωd ´ 1| ď 2πc ` 2πc ď
π

3
,

if c is sufficiently small.



This yields the bound

|ygdσpxq| ě
1
2

ż

Cδ

dσpωq Á |Cδ| « δd´1

for x P D˚δ,c .
Since |D˚δ,c | « δ´pd´1qδ´2 “ δ´pd`1q, we obtain

}ygdσ}Lp1 pRd q
ě }ygdσ}Lp1 pD˚δ,c q

Á δd´1|D˚δ,c |
1
p1 Á δd´1δ

´ d`1
p1 .



Assuming

}ygdσ}Lp1 pRd q
À }g}L2pSq,

we get

δd´1δ
´ d`1

p1 À δ
d´1

2 or δ
d´1

2 ´ d`1
p1 À 1,

for all 0 ă δ ! 1. This implies

d ´ 1
2

´
d ` 1
p1

ě 0,
d ´ 1
2

ě
d ` 1
p1

,

or

p1 ě 2
d ` 1
d ´ 1

or p ď 2
d ` 1
d ` 3

proving the claim.



The same example applied to

}ygdσ}Lp1 pRd q
À }g}Lq1 pSd´1q,

leads to the condition (}g}Lq1 pSd´1q « δ
d´1
q1 )

δd´1δ
´ d`1

p1 À δ
d´1
q1 ,

that is

1 Á δ
pd´1q

´

1´ 1
q1

¯

δ
´ d`1

p1 “ δ
d´1
q
´ d`1

p1 ,

which implies

d ´ 1
q

ě
d ` 1
p1

or p1 ě q
d ` 1
d ´ 1

.



The Restriction Conjecture

This lead to Stein to conjecture that the estimate

}f̂ }LqpSd´1q À }f }LppRd q

should be true for

1 ď p ă
2d

d ` 1
and p1 ě q

d ` 1
d ´ 1

.

Known for d “ 2 (1 ď p ă 4{3 and p1 ď 3q) (due to C.
Fefferman-Stein and A. Zygmund).



Theorem (P. Tomas)
The inequality

}R˚Rf }Lp1 pRd q
À }f }LppRd q,

holds for 1 ď p ă 2d`2
d`3 “ p˚.

The proof is based on an interpolation theorem due to R. Hunt.



Theorem (R. Hunt)
Let pX , µq and pY , νq be measure spaces. Let T be a linear
operator mapping measurable functions on X to measurable
functions on Y . Let p0, p1, q0, q1 be Lebesgue exponents, with
p0 ă p1 and q0 ă q1. Suppose that for any measurable set E Ă X
we have

}TχE }Lq0 pY q À |E |
1
p0 , }TχE }Lq1 pY q À |E |

1
p1 .

Define for 0 ă t ă 1,

1
p
“

1´ t

p0
`

t

p1
,

1
q
“

1´ t

q0
`

t

q1
,

then

}Tf }LqpY q À }f }LppX q

for all measurable functions f .



Proof of the Tomas theorem (A. Carbery):

Let E be a Borel set in Rd , we will show that

}RχE }L2pSd´1q À |E |
d`3
2d`2 ,

then the theorem will follow from Hunt’s theorem interpolating
with the trivial L1 to L8 estimate,

}RχE }L8pSd´1q À |E |.



The argument is based on two geometric properties of the measure
σ: the dimensional estimate

σpBpx ,Rqq À Rd´1

and the decay of the Fourier transform

|σ̂pξq| À p1` |ξ|q´
d´1

2 ,

which is due to the curvature of Sd´1.

We will use the T ˚T method, writing

}RχE }
2
L2pSd´1q “ xRχE ,RχE yL2pSd´1q “ xχE ,R

˚RχE yL2pRd q.



We split R˚Rf “ f ˚ σ̂ in two operators corresponding to the low
and the high frequency parts of σ:
Let φ P SpRdq satisfy χBp0,1q ď φ ď χBp0,2q and let λ ą 0. Define

σ̂low pξq “ σ̂pξqφpξ{λq

and

σ̂highpξq “ σ̂pξqp1´ φpξ{λqq

and

Tlow f “ f ˚ σ̂low , Thighf “ f ˚ σ̂high,

so that

R˚Rf “ Tlow f ` Thighf .



Then

}RχE }
2
L2pSd´1q “ xχE ,R

˚RχE y “ xχE ,TlowχE y ` xχE ,ThighχE y.

We will bound the two terms on the right hand side separately.



We start with the high frequency part,

|xχE ,ThighχE y| ď }χE }1}ThighχE }8 “ |E |}ThighχE }8.

We have

}ThighχE }8 “ }χE ˚ σ̂high}8 ď |E |}σ̂high}8 À |E |λ
´ d´1

2

by the decay rate of σ̂. Hence, we obtain

|xχE ,ThighχE y| À |E |
2λ´

d´1
2 .



For the low frequency part we first use Cauchy-Schwarz,

|xχE ,TlowχE y| ď }χE }2}TlowχE }2 “ |E |
1
2 }TlowχE }2.

The Plancherel identity yields

}TlowχE }2 “ }χE ˚ σ̂low }2 “ }χ̂Eσlow }2

ď }χ̂E }2}σlow }8 “ }χE }2}σlow }8 “ |E |
1
2 }σlow }8.



Recall that

σ̂low pξq “ σ̂pξqφpξ{λq “ σ̂pξqφλpξq,

so that

σlow pxq “ σ ˚xφλpxq “ λd
ż

Sd´1
φ̂pλpx ´ ωqqdσpωq.

Since φ has compact support, by the uncertainty principle the
support of φ̂ cannot be bounded. However, φ̂ is Schwartz, so we
can assume that φ̂ is 1 on Bp0, 1q and decay rapidly outside of it,

|σlow pxq| ď λd
ż

Sd´1
|φ̂pλpx ´ ωqq|dσpωq

À λd
ż

Sd´1
χBp0,2qpλpx ´ ωqqdσpωq

“ λdσpBpx , 2{λq X Sd´1q.



σ
`

Bpx , 1{λq X Sd´1
˘

attains the supremum for x P Sd´1 and this
is σ

`

Bpx , 1{λq
˘

« λ´pd´1q, so that

|σlow pxq| À λdλ´pd´1q “ λ.

Hence,

}ThighχE }2 ď |E |
1
2 }σlow }8 À λ|E |

1
2 ,

which yields

|xχE ,TlowχE y| ď |E |
1
2 }ThighχE }2 À λ|E |.



Therefore,

}RχE }
2
L2pSd´1q “ xχE ,TlowχE y ` xχE ,ThighχE y

À |E |λ` |E |2λ´
d´1

2 .

By optimizing in λ, we get the claim:

}RχE }L2pSd´1q À |E |
d`3
2d`2 .



Why do we have |σ̂pξq| À |ξ|´
d´1

2 for |ξ| " 1?

We want to estimate σ̂pξq for R{2 ă |ξ| ă R for some R " 1. This
is the same as understanding

σ̂Rpξq “ σ̂pξqφRpξq

with φR a smooth bump function localized at |ξ| « R . We take
g P SpRq essentially supported at t “ 1, that is, we suppose that
gp1q “ 1 and that |gptq| ! 1 for t ă 1

2 and t ą 3
2 . We also assume

that ĝp0q “ 1, supp ĝ Ă p´1, 1q.
Define

φRpξq “ gp|ξ|{Rq.



Since

xφRpξq “ Rd φ̂pRξq,

taking the Fourier transform of σ̂R “ σ̂φR we get

σR “ σ ˚ xφR ,

a function of total mass 1 supported in a neighborhood of Sd´1 of
radius 1{R .



Indeed,
ż

Rd

σ ˚ pRd φ̌pR| ¨ |qqpxqdx “

ż

Rd

ż

Sd´1
Rd φ̌pR|x ´ ω|qdσpωqdx

“

ż

Sd´1

ż

Rd

Rd φ̌pR|x ´ ω|qdxdσpωq

“

ż

Sd´1

ż

Rd

Rd φ̌pR|x |qdxdσpωq

“

ż

Rd

Rd φ̌pR|x |qdx

ż

Sd´1
dσpωq

“ |Sd´1|

ż

Rd

φ̌p|x |qdx

« 1.



So far we showed that

σR “ σ ˚ xφR

is a function of total mass 1 supported in a neighborhood of Sd´1

of radius 1{R . Therefore σR can be written as

σRpxq “ σ ˚ xφRpxq “ RΨpRp|x | ´ 1qq

with Ψ P SpRq such that Ψp0q “ 1 and supp Ψ Ă p´1{2, 1{2q.



Given a 1{
?
R separated set Λ “ tωu in Sd´1, which is maximal

with respect to this property, the caps Cω,2{
?
R yield a covering of

Sd´1. Hence, introducing a partition of unity, we decompose
ΨpRp|x | ´ 1qq into bump functions ηω,R´1{2 P SpRdq adapted to
the sets Dω,R´1{2 , where Dω,R´1{2 is a cylinder centered at ω with
axis ω, radius 1{

?
R and thickness 1{R :

ΨpRp|x | ´ 1qq “
ÿ

ωPΛ

η
ω,R´

1
2
pxq.



So we get

σRpxq “ RΨpRp|x | ´ 1qq “ R
ÿ

ωPΛ

η
ω,R´

1
2
pxq,

so that

|σ̂pξq|χtR{2ă|ξ|ă3R{2upξq « |σ̂pξqφRpξq|

“ |σ̂Rpξq| “ R
ˇ

ˇ

ÿ

ωPΛ

{η
ω,R´

1
2
pξq

ˇ

ˇ.



By the Knapp example we know that for ξ in the dual cylinder D˚ω
(with length R and radius

?
R), we have

ˇ

ˇ

{η
ω,R´

1
2
pξq

ˇ

ˇ « |Dω| « pR
´ 1

2 qd´1R´1 “ R´pd`1q{2.

Hence,
R
ˇ

ˇ

{η
ω,R´

1
2
pξq

ˇ

ˇ « RR´pd`1q{2 “ R´pd´1q{2.

Note that if |ξ| « R , then ξ essentially lies in a unique cylinder D˚ω
(since the directions of the cylinders are 1{

?
R separated) hence

|σ̂pξq|χtR{2ă|ξ|ăRupξq « R
ˇ

ˇ

ÿ

ωPΛ

{η
ω,R´

1
2
pξq

ˇ

ˇ

ď R
ÿ

ωPΛ

ˇ

ˇ

{η
ω,R´

1
2
pξq

ˇ

ˇ « R´pd´1q{2,

which proves the claim.
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If f is a Schwartz function, the Fourier inversion formula in polar
coordinates yields

f pxq “

ż 8

0

ˆ
ż

Sd´1
f̂ prωqe2πirω¨xdσpωq

˙

rd´1dr ,

where dσ is the measure on the unit sphere and

f̂ pξq “

ż

Rd

f pxqe´2πix ¨ξdx .



If ∆ is the Laplacian, then

∆

ż

Sd´1
f̂ prωqe2πirω¨xdσpωq “ ´4π2r2

ż

Sd´1
f̂ prωqe2πirω¨xdσpωq.

So
f pxq “

ż 8

0

ż

Sd´1
f̂ prωqe2πirω¨xdσpωqrd´1dr ,

may be thought of as the spectral decomposition of f .



Replacing 4π2r2 with λ in the Fourier inversion formula, we obtain

f pxq “

ż 8

0

ż

Sd´1
f̂ prωqe2πirω¨xdσpωqrd´1dr

“

ż 8

0

ż

Sd´1
f̂ p
a

λ{2πωqe i
?
λω¨xdσpωqλ

d´2
2 dλ

“

ż 8

0
Pλf pxqdλ,

where

Pλf pxq “
ż

Sd´1
f̂
´

a

λ{2πω
¯

e i
?
λω¨xdσpωq

are the spectral components of f with respect to ∆.



For λ “ 2π we have

P2πf pxq “

ż

Sd´1
f̂ pωq e iω¨xdσpωq.

If g is a continuous function on Sd´1 the extension operator is
defined by

R˚gpxq “

ż

Sd´1
gpωqe2πiω¨xdσpωq.

R˚ is bounded from L2pSd´1q Ñ Lp
1

pRdq if 1 ď p ď 2d`1
d`3 .



RESTRICTION PROBLEM:
The bounds

}f̂ }LqpSd´1q À }f }LppRd q

hold if and only if 1 ď p ă 2d
d`1 and q ě d´1

d`1p
1.

Settled for d “ 2:

Theorem (C. Fefferman, E. Stein–A. Zygmund)
The estimate

}f̂ }LqpS1q À }f }LppR2q

holds if and only if 1 ď p ă 4
3 and q ě p1

3 .



The proof of the Stein-Tomas theorem is based on the observation
that R : LppRdq Ñ L2pSd´1q is equivalent to
R˚ ˝ R : LppRdq Ñ Lp

1

pRdq. The operator R˚ ˝ R is given by

R˚pRf qpxq “ f ˚ σ̂pxq.



Indeed,

R˚Rf pxq “

ż

Sd´1
Rf pωqe2πiω¨xdσpωq

“

ż

Sd´1
f̂ pωqe2πiω¨xdσpωq

“

ż

Sd´1

ż

Rd

f pyqe´2πiω¨ydye2πiω¨xdσpωq

“

ż

Rd

f pyq

ˆ
ż

Sd´1
e´2πiω¨px´yqdσpωq

˙

dy

“

ż

Rd

f pyqσ̂px ´ yqdy

“

ż

Rd

f px ´ yqσ̂pyqdy

“ f ˚ σ̂pxq.



Since the spectral components of f with respect to ∆ are given by

P2πf pxq “ f ˚ σ̂pxq “ R˚Rf pxq,

the Stein-Tomas theorem is the assertion that
P2π : LppRdq Ñ Lp

1

pRdq.



In R3 with coordinates pt, x , yq, define

X “ Bx ´
y

2
Bt , Y “ By `

x

2
Bt , T “ Bt ,

then rX ,Y s “ T . R3 equipped with this bracket gives rise to the
Heisenberg Lie algebra h.

The sublaplacian is the operator

L “ ´X 2 ´ Y 2 “ ´B2
x ´ B

2
y `

1
2
pxBy ´ yBxqBt ´

1
4
px2 ` y2qB2

t .

L has a unique positive self adjoint extension to L2pR3q.



Let
f px , y , tq “

ż 8

0
Pλf px , y , tqdλ

be the spectral decomposition of a Schwartz function f with
respect to L,

LPλf “ λPλf .

The task is studying the mapping properties between Lebesgue

spaces of the operators Pλ.



The first positive result is due to D. Müller in 1990 (A restriction
theorem for the Heisenberg group, Ann. of Math., 1990 ). It is
expressed in terms mixed lebesgue norms:

}f }LrtL
p
x,y
“

˜

ż

R2

ˆ
ż 8

´8

|f pt, x , yq|r dt

˙

p
r

dxdy

¸
1
p

.

Warning: The estimate

}Pλf }LstLqx,y Àλ }f }LrtLpx,y

is false for pr , sq ‰ p1,8q.

Theorem (D. Müller)
The estimate

}Pλf }L8t Lp
1

x,y
Àλ }f }L1

t L
p
x,y

holds for 1 ď p ă 2.



Improving on Müller’s result,

}Pλf }L8t Lp1 x,y
Àλ }f }L1

t L
p
x,y
,

means obtaining estimates in which the exponent p1 on the left is
replaced by q ă p1

}Pλf }L8t Lqx,y Àλ }f }L1
t L

p
x,y
.



We got q “ 2.

Theorem (V.Casarino, C., Adv.Math.2013)
The estimate

}Pλf }L8t L2
x,y
Àλ }f }L1

t L
p
x,y

holds for 1 ď p ă 2.
Analogous results holds on more general groups (Hn, groups of
Heisenberg type).



Using classical tools it is not difficult to show that Pλ is bounded
from Lpx ,yL1

t to Lqx ,yL8t in the range 1 ď p ď 6
5 and 4

3 ă q in H1.

More generally, on Hn the range of exponents for which is known
that the estimates hold is given by 1 ď p ď 22n`1

2n`3 and 4n
2n`1 ă q.

By invariance under translation there cannot be estimates with
q ă p. Moreover, we have an example showing that there are no
estimates of the type

}Pλf }Lqx,yL8t pHnq
Àλ }f }Lpx,yL1

t pHnq

for q ď 4n
2n`1 “ p̃. .



The Riesz diagram showing what we know is the following.

1
p˚1

1
p̃1

1
2

1
p̃

1
p˚

1

1{p˚1
1{p̃1
1{2

1{p̃

1{p˚

1

A

B

C 1

C EM

M1

E 1 FGH

O1

O

1
q

1
p

Figure 1. In this picture p̃ “ 4n
2n`1 , p˚ “ 2 2n`1

2n`3 .



On H1 the problem is settled:

Theorem (V.Casarino, C.)
The estimate

}Pλf }L8t Lqx,y
À λ

1
p
´ 1

q }f }L1
t L

p
x,y

holds if and only if 1 ď p ă 4
3 and q ě p1

3 .



1{q

3
4

1
q

1
p



The spectral projectors are given by

Pλf px , y , tq “
8
ÿ

k“0

1
2k ` 1

´

e iλk tΠλk
k f pλk qpx , yq ` e´iλk tΠ´λkk f p´λk qpx , yq

¯

,

λk “
λ

2k`1 .
Here :
‚

f pλqpx , yq “

ż 8

´8

f px , y , tqe iλtdt,

‚ Πλ
k is the spectral projection of the twisted-laplacian ∆pλq

corresponding to the eigenvalue |λ|p2k ` 1q.



The twisted laplacian is defined by

pLf qpλqpx , yq “ ∆pλqf pλqpx , yq

and is given by

∆pλq “ ´B2
x ´ B

2
y `

i

2
λpxBy ´ yBxq `

1
4
λ2px2 ` y2q.

For λ ‰ 0 the operator ∆pλq has a pure point spectrum: the
eigenvalues are given by |λ|p2k ` 1q, k “ 0, 1, 2, . . ..



Recall that the spectral projections are

Pλf px , y , tq “
8
ÿ

k“0

1
2k ` 1

´

e iλk tΠλk
k f pλk qpx , yq ` e´iλk tΠ´λkk f p´λk qpx , yq

¯

.

Applying the triangle inequality we get

|Pλf px , y , tq| ď
8
ÿ

k“0

1
2k ` 1

´

|Πλk
k f pλk qpx , yq| ` |Π´λkk f p´λk qpx , yq|

¯

,

and hence

ˆ
ż

R2
|Pλf px , y , tq|qdxdy

˙
1
q

ď

8
ÿ

k“0

1
2k ` 1

´

}Πλk
k f pλk q}Lqx,y ` }Π

´λk
k f p´λk q}Lqx,y

¯

.



This formula yields

sup
t

ˆ
ż

R2
|Pλf px , y , tq|qdxdy

˙
1
q

ď

8
ÿ

k“0

1
2k ` 1

´

}Πλk
k f pλk q}Lqx,y ` }Π

´λk
k f p´λk q}Lqx,y

¯

ď 2
8
ÿ

k“0

1
2k ` 1

}Πλk
k }L

p
x,yÑLqx,y

}f pλk q}Lpx,y

“

8
ÿ

k“0

λ
1
p
´ 1

q

k

2k ` 1
}Πk}Lpx,yÑLqx,y

}f }L1
t L

p
x,y

À λ
1
p
´ 1

q

8
ÿ

k“0

1

p2k ` 1q1`
1
p
´ 1

q

}Πk}Lpx,yÑLqx,y
}f }L1

t L
p
x,y
,

where Πk “ Π1
k .



To show that Pλ : L1
tL

p
x ,y Ñ L8t Lqx ,y , we are thus reduced to prove

8
ÿ

k“1

k
´1´

´

1
p
´ 1

q

¯

}Πk}Lpx,yÑLqx,y
Àp,q 1.

In particular,
}Pλf }L8t Lqx,y

À λ
1
p
´ 1

q }f }L1
t L

p
x,y
,

for 1 ď p ă 4
3 and q ě p1

3 , is a consequence of (using some
interpolation)

}Πk f }
L

4
3 pR2q

À plog kq
1
4 }f }

L
4
3 pR2q

.



Theorem
For 4

3 ď q ď 2 we have

}Πk f }LqpR2q À plog kq
1
2´

1
q }f }LqpR2q

and for 1 ď q ă 4
3

}Πk f }LqpR2q À

ˆ

q1

q1 ´ 4

˙
1
4

k
1
2´

2
q1 }f }LqpR2q.

These bounds are sharp.
By interpolation with }Πk f }L2pR2q ď }f }L2pR2q, it suffices to prove

}Πk f }
L

4
3 pR2q

À plog kq
1
4 }f }

L
4
3 pR2q

,

or equivalently

}Πk f }L4pR2q À plog kq
1
4 }f }L4pR2q.



We also have:

Theorem
Let 1 ď p ă 4 and q “ 3p1. Then

}Πk}LppR2qÑLqpR2q “ }Πk}Lq1 pR2qÑLp1 pR2q À

#

k
2
q
´ 1

2 4 ă q ă 12

k´
4
q q ą 12.



Note that q “ 12 is excluded from the previous result. In this case
there is a logarithmic loss and, so far, we have only been able to
prove

}Πk}L4pR2qÑL12pR2q Àε k
´ 1

3`ε

for all ε ą 0.
The sharp estimate should be

}Πk}L4pR2qÑL12pR2q À k´
1
3 plog kq

1
4 .



The goal is

}Πk f }L4pR2q À plog kq
1
4 }f }L4pR2q.

The spectral projections are given by

Πk f px , yq “ f ˆ ϕkpx , yq “

ż

R2
f px ´ u, y ´ vqϕkpu, vqe

ipxv´yuqdudv ,

where ϕkpx , yq “ e´px
2`y2qLkpx

2 ` y2q, with

Lkptq “
1

π
1
2

et

k!

dk

dtk
`

e´ttk
˘

a Laguerre polynomial of degree k and type 0.



The oscillations in the kernel of Πk ,

Πk f pzq “

ż

R2
f px ´ u, y ´ vqϕkpu, vqe

ipxv´yuqdudv ,

are due to e ipxv´yuq and to ϕk .

We know that the zeroes and hence the oscillations of are
contained in the annulus in 1?

k
ď pu2 ` v2q

1
2 ď 8

?
k .



After some standard reductions one is reduced to prove

´

ż

R2
|Π̃k f px , yq|

4dxdy
¯

1
4
À plog kq

1
4 }f }L4pR2q,

for all ε ą 0, where

Π̃k f px , yq “

ż

R2
f px ´ u, y ´ vqηkpu, vqϕkpu, vqe

ipxv´yuqdudv ,

here ηk is a smooth cutoff function supported in the annulus
1

2
?
k
ă r “ px2 ` y2q

1
2 ď 10

?
k (which contains the zeroes of ϕk).



The function ϕk behaves like a Bessel function in
1

2
?
k
ď r “ pu2 ` v2q

1
2 ď 5

?
k and like an Airy function in

4
?
k ď r ď 10

?
k . Correspondingly Π̃k f must be decomposed into

the sum of two terms.

The term with kernel supported in r ď 5
?
k is given by

ż

R2
f px ´ u, y ´ vqe ipxv´yuqη̃kpu, vqσ̂

´?
kpu2 ` v2q

1
2

¯

dudv ,

where σ̂ is the Fourier transform of dσ and η̃k is another cutoff
function supported in 1

2
?
k
ă r ď 5

?
k .

It is well known that σ̂ is a radial function and that

σ̂prq «
1
?
r

cosp
?
kr ´ π{4q for r ą

1
2
?
k
.



Hence, the integral under investigation essentially becomes the sum
of two terms. This is the first

k´
1
4

ż

R2
f px ´ u, y ´ vqe ipxv´yuq`i

?
kpu2`v2q

1
2 η̃kpu, vqdudv ,

which after a dyadic decomposition may be treated using a classical
result of L. Carleson and P. Sjölin.
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