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Classic Vector calculus - Algebraic View

Iron rule for students: Never divide vectors!
Comes from the problem of multiplication of vectors
Known products: scalar product ⟨x , y⟩ and cross product x × y
(in R3)
Problem for scalar product: ⟨x , y⟩ = 1 with |x | = |y | = 1 does
only imply y = ±x
Same problem for cross product: ⟨x , y⟩ = 1 only implies x ⊥ y
Inverse is not well defined!
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Classic Vector calculus - Geometric View
Inversion on the unit ball - Kelvin inverse

Reflection on the unit disk:

Figure: Inversion on the circle - Wikipedia

Kelvin inverse in vector calculus: x → x/|x |2

What is the algebraic meaning of the Kelvin inverse?

3/23 U. Kähler Geometric Calculus



Complex numbers and complex plane

Vector a = (a1.a2) → complex number a = a1 + ia2

Geometric meaning of multiplication of complex numbers a,b:

Figure: Complex Multiplication - Wikipedia

Given a = |a|eiφ geometrically multiplication with a is a rotation
by φ plus a dilation by a.
Inverse a−1 = a/|a|2 corresponds to the Kelvin inverse plus a
reflection on the real axis
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Multiplication of vectors

Vectors (a1,a2) = a1e1 + a2e2 and (b1,b2) = b1e1 + b2e2

Critical point in Multiplication: What to do with e1e2?
Rotations in dimensions higher than 2 are not commutative
⇒ e1e2 = −e2e1

What is the meaning of e1e2?
e1e2 = e1 or e1e2 = e2? No good geometric meaning.
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Small historic remark
R.W. Hamilton 1843: e1e2 is a new vector:

x

Figure: Broom Bridge - Wikipedia

i = e1, j = e2, k = e1e2

Rather dogmatic approach → Gibbs and others developed vector
calculus in response
German secondary school teacher Grassmann: e1e2 is an
(oriented) plane!
W.K. Clifford 1878: New algebra (Geometric or Clifford algebra)
A. Einstein 1913: Semi-vector calculus
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Clifford Algebras

Universal Clifford Algebra Cℓp,q

generated by e0 = 1 and e1, · · · , en satisfying to

eiej = −ejei , i ̸= j,

e2
i = +1, i = 1, . . . , p, e2

j = −1, j = p + 1, . . . , n = p + q.

Clifford number:

a = a0 + e1a1 + . . .+ enan + e1e2a12 + . . .+ e1e2e3a123

+ . . .+ e1 . . . ena12...n

Then dim(Cℓp,q) = 2n.
Conjugation defined as

1 = 1, ei = −ei , ab = ba.

Hence for a vector x =
∑

eixi we have x2 = −|x |2 and x−1 = x
|x|2 .
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Geometric interpretation

Scalars and Vectors
Bi-vectors → oriented planes
Tri-vectors → oriented volumes
Clifford number = Scalar plus vector plus oriented plane plus · · ·
plus pseudoscalar (n-dimensional volume)

Figure: DeRham Cohomology
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Rotations - Classic Approach in 3D

Given rotation axis ω and rotation angle φ
Standard approach: Euler angles ϕ, θ, ψ

Figure: Euler Angles - Wolfram Alpha

Example: Rotation in e1e2-plane - Multiplication by matrix cosϕ sinϕ 0
sinϕ cosϕ 0

0 0 1


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Rotations - Clifford Approach in 3D
Given rotation axis ω and rotation angle θ
Rotation in the eiej -plane

s = cos(ϕ/2) + eiej sin(ϕ/2) → sxs

General rotation

s = cos(φ/2) + ω sin(φ/2) → sxs

3D: Computer implementation cost one operation less
Computer game Elite (David Braben 1984 - vector graphics)

Figure: Frontier: Elite II - Amiga 1993
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Classic vector calculus with Clifford algebras

Consider two vectors x = x1e1 + . . .+ xnen, y = y1e1 + . . .+ ynen

xy = xy−yx
2 + xy+yx

2

Inner product (scalar): ⟨x , y⟩ = xy−yx
2

Outer product (bi-vector): x ∧ y = xy+yx
2

In 3D: x ∧ y = x × y (right-hand rule)
Does not work in other dimensions: number of basic vectors n ̸=
number of basic planes n(n − 1)/2.
Commuting vectors are parallel
Anti-commuting vectors are perpendicular
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Coordinate-free working and Möbius transformations

Basic principle: Work coordinate-free!
H. Weyl: The introduction of numbers as coordinates is an act of
violence.
Good example: Möbius transformations (Vahlen 1902, Ahlfors
1982)

f (x) = (ax + b)(cx + d)−1

Maps spheres into spheres and preserves angles

Figure: Möbius transformations of the unit disk - M.C. Escher
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Monogenic signal
Signal f (x) is mapped to F (x) = s(x)eω(x)θ(x) with f (x) = ReF (x)
a(x)- amplitude, θ(x) - phase, ω - phase angle, θ′(x) -
(instantaneous) frequency
Edge detection - detect singularities which are singular in a point
and in one direction
Find x such that θ′(x) is very large (ideally θ′(x) = +infty )
ω is perpendicular to the edge

Figure: Singularity - singular in one point and one direction
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Monogenic signal
Example

Monogenic signal of a checkerboard image with its directional
components
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Wavelets

Take analyzing function (mother wavelet) ψ
Classic Clifford wavelets: ψ

(
s x−b

a s
)

F. Brackx, N. de Schepper, F. Sommen (from 2002 onwards)
Spherical wavelets: ψ (φten(sxs))

Figure: Spherical dog-wavelet
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Conformal model and Robotics

In Robotics we have two types of movements: Rotations and
Translations
Classic case: Use matrix multiplication and addition
Embed Rn into R1,n+1:

x ∈ Rn 7→ (x ,
1 − |x |2

2
,

1 + |x |2

2
)

x 7→ sxs with s ∈ Spin(n + 1,1) include now rotations and
translations
Translation by t : s = 1 + t/2(e+ − e−)

In fact Spin(n + 1,1) includes all Möbius transformations
Interesting fact: Patented under U.S. Patent 6,853,964
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Outlook 1 - Manifolds and integral geometry
Classic approach to manifolds: Atlas and charts ⇒ local
coordinates
Connections, structure equations usually are given in terms of
coordinates
Work coordinate-free!
Particular helpful when integrating over a manifold
One application: Tomography - determining informations on the
interior by integrating over rays

Figure: Diffraction tomography - Barium titanate
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Outlook 1 - Manifolds and integral geometry
Example of diffraction tomography
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Outlook 1 - Manifolds and integral geometry
Example of diffraction tomography

Figure: Diffraction tomography - pole figure

Integration over all rotations which send angular vector x into
angular vector y
Such rotations are great circles in S3 generated by orthogonal
quaternions

1 − yx
|1 − yx |

and
y + x
|y + x |
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Outlook 2 - Morphological calculus / F. Sommen 2016

Extension of Calculus of natural numbers where geometric
objects are seen as generalized natural numbers
Examples: natural numbers 1,2,3, . . . , set N, real line R,
cartesian spaces, projective spaces, spheres Sn−1, CSn−1,
groups, Grassmann manifolds, homogeneous spaces
Addition: Disjoint union and glueing whenever possible
Subtraction t1 − t2: means that t2 is deleted from object t1, e.g,
R− 1 means to delete a point from a line.
Multiplication v ·w : every point of v is replace by a copy of w and
all those copies are glued together (like cartesian product or fibre
bundle E = M · F with base space M and fibre F )
Decomposition of real line: R = 2R+ + 1
(2R+ + 1)2 = 4R2

+ + 4R+ + 1
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Outlook 2 - Morphological calculus / F. Sommen 2016
Grassmann manifolds

Grassmann’s division problem:

Can one work out the polynomial division Sn−1·Sn−2···Sn−k

Sk−1···S0 , and
does it result in an integral (seens as polynomial in “R” with
natural number coefficients)?
Morphologically we have

Sn−1 · Sn−2 · · ·Sn−k

Sk−1 · · ·S0 =
(Rn − 1) · · · (Rn − Rk−1)

(Rk − 1) · · · (Rk − Rk−1)

Solution:
Gn,k (R) = Rd + c1Rd−1 + . . .+ cd ,

cj - number of Schubert cells of dimension d − j .
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Outlook 2 - Morphological calculus / F. Sommen 2016

Examples of Grassmann manifolds:

G2n,2(R) = CPn−1 · RP2n−2

G2n+1,2(R) = RP2n · CPn−1

Gα
6,3(R) = RP4 · S3 · S2
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