

Random Covariant Quantum Channels

Sang-Jun Park ¹

Joint work with Ion Nechita ¹

¹CNRS, LPT, University of Toulouse

Ghent University, February 26th, 2024

Outline

1 Covariance and quantum entanglement

2 Random quantum channels

3 Random covariant quantum channels

Choi matrix, PPT, and EB properties

$M_d := M_d(\mathbb{C})$, $\{e_{ij}\}_{i,j=1}^d$: matrix units in M_d .

- Quantum channel = CP trace-preserving map $\Phi : M_d \rightarrow M_d$
- The Choi–Jamiołkowski matrix of $\Phi : M_d \rightarrow M_d$ is defined by
$$J(\Phi) := \sum_{i,j=1}^d e_{ij} \otimes \Phi(e_{ij}) = (\Phi(e_{ij}))_{1 \leq i,j \leq d} \in M_d \otimes M_d.$$
- (Choi 1975) Φ is CPTP $\iff J(\Phi) \geq 0$ and $(\text{id}_d \otimes \text{Tr})(J(\Phi)) = I_{d^2}$.

Choi matrix, PPT, and EB properties

$M_d := M_d(\mathbb{C})$, $\{e_{ij}\}_{i,j=1}^d$: matrix units in M_d .

- **Quantum channel** = CP trace-preserving map $\Phi : M_d \rightarrow M_d$
- The **Choi–Jamiołkowski matrix** of $\Phi : M_d \rightarrow M_d$ is defined by
$$J(\Phi) := \sum_{i,j=1}^d e_{ij} \otimes \Phi(e_{ij}) = (\Phi(e_{ij}))_{1 \leq i,j \leq d} \in M_d \otimes M_d.$$
- (Choi 1975) Φ is CPTP $\iff J(\Phi) \geq 0$ and $(\text{id}_d \otimes \text{Tr})(J(\Phi)) = I_{d^2}$.

Definition

A quantum channel $\Phi : M_d \rightarrow M_d$ is called

- ① **PPT** (positive partial transpose) if $J(\Phi)^\Gamma := (\text{id}_d \otimes \top)(J(\Phi)) \geq 0$,
- ② **EB** (entanglement-breaking) if $J(\Phi) = \sum_i P_i \otimes Q_i$ for $P_i, Q_i \geq 0$.

Choi matrix, PPT, and EB properties

$M_d := M_d(\mathbb{C})$, $\{e_{ij}\}_{i,j=1}^d$: matrix units in M_d .

- **Quantum channel** = CP trace-preserving map $\Phi : M_d \rightarrow M_d$
- The **Choi–Jamiołkowski matrix** of $\Phi : M_d \rightarrow M_d$ is defined by
$$J(\Phi) := \sum_{i,j=1}^d e_{ij} \otimes \Phi(e_{ij}) = (\Phi(e_{ij}))_{1 \leq i,j \leq d} \in M_d \otimes M_d.$$
- (Choi 1975) Φ is CPTP $\iff J(\Phi) \geq 0$ and $(\text{id}_d \otimes \text{Tr})(J(\Phi)) = I_{d^2}$.

Definition

A quantum channel $\Phi : M_d \rightarrow M_d$ is called

- ① **PPT** (positive partial transpose) if $J(\Phi)^\Gamma := (\text{id}_d \otimes \top)(J(\Phi)) \geq 0$,
- ② **EB** (entanglement-breaking) if $J(\Phi) = \sum_i P_i \otimes Q_i$ for $P_i, Q_i \geq 0$.

- EB \implies PPT, but PPT $\not\implies$ EB unless $d = 2$.
- (Gurvits 2003) Determining EB is **NP-hard**.

Compact group symmetry

G : compact group.

Let $\begin{cases} \pi_A : G \rightarrow \mathcal{U}_{d_A} \\ \pi_B : G \rightarrow \mathcal{U}_{d_B} \end{cases}$ be unitary representations of G .

Definition

A linear map $\Phi : M_{d_A} \rightarrow M_{d_B}$ is called (π_A, π_B) -covariant if

$$\Phi(\pi_A(g)Z\pi_A(g)^*) = \pi_B(g)\Phi(Z)\pi_B(g)^* \text{ for } \forall Z \in B(H_A) \text{ and } g \in G.$$

Compact group symmetry

G : compact group.

Let $\begin{cases} \pi_A : G \rightarrow \mathcal{U}_{d_A} \\ \pi_B : G \rightarrow \mathcal{U}_{d_B} \end{cases}$ be unitary representations of G .

Definition

A linear map $\Phi : M_{d_A} \rightarrow M_{d_B}$ is called (π_A, π_B) -covariant if

$$\Phi(\pi_A(g)Z\pi_A(g)^*) = \pi_B(g)\Phi(Z)\pi_B(g)^* \text{ for } \forall Z \in B(H_A) \text{ and } g \in G.$$

- Covariance property can be captured through Choi matrix:
 Φ is (π_A, π_B) -covariant $\iff [J(\Phi), \overline{\pi_A}(g) \otimes \pi_B(g)] = 0 \forall g \in G$.
- Decomposition of $\overline{\pi_A} \otimes \pi_B$ into irreducible representations can characterize the (π_A, π_B) -covariant maps.

Example 1: Orthogonal covariance

- **Unitary covariance** ($= (U, U)$ -covariance)

$$\Phi(U \cdot U^*) = U\Phi(\cdot)U^*, \forall U \in \mathcal{U}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ.$$

- **Conjugate unitary covariance** ($= (U, \overline{U})$ -covariance)

$$\Phi(U \cdot U^*) = \overline{U}\Phi(\cdot)U^\top, \forall U \in \mathcal{U}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ^\top.$$

- **Orthogonal covariance** ($= (O, O)$ -covariance)

$$\Phi(O \cdot O^\top) = O\Phi(\cdot)O^\top, \forall O \in \mathcal{O}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ + rZ^\top.$$

Example 1: Orthogonal covariance

- **Unitary covariance** ($= (U, U)$ -covariance)

$$\Phi(U \cdot U^*) = U\Phi(\cdot)U^*, \forall U \in \mathcal{U}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ.$$

- **Conjugate unitary covariance** ($= (U, \overline{U})$ -covariance)

$$\Phi(U \cdot U^*) = \overline{U}\Phi(\cdot)U^\top, \forall U \in \mathcal{U}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ^\top.$$

- **Orthogonal covariance** ($= (O, O)$ -covariance)

$$\Phi(O \cdot O^\top) = O\Phi(\cdot)O^\top, \forall O \in \mathcal{O}_d \iff \Phi(Z) = p \frac{\text{Tr}(Z)}{d} I_d + qZ + rZ^\top.$$

Theorem (Vollbrecht and Werner 2001)

An orthogonal covariant quantum channel is PPT iff EB

Example 2: Diagonal orthogonal covariance

Let $\mathcal{DO}_d := \left\{ \sum_{i=1}^d s_i e_{ii} \mid s_i \in \{\pm 1\} \right\} \cong \mathbb{Z}_2^d$ be the set of **diagonal orthogonal matrices**.

Definition (Singh and Nechita 2021)

A linear map $\Phi : M_d \rightarrow M_d$ is called **DOC (Diagonal Orthogonal Covariant)** if

$$\Phi(DZD^\top) = D\Phi(Z)D^\top, \quad D \in \mathcal{DO}_d, \quad Z \in M_d.$$

Example 2: Diagonal orthogonal covariance

Let $\mathcal{DO}_d := \left\{ \sum_{i=1}^d s_i e_{ii} \mid s_i \in \{\pm 1\} \right\} \cong \mathbb{Z}_2^d$ be the set of **diagonal orthogonal matrices**.

Definition (Singh and Nechita 2021)

A linear map $\Phi : M_d \rightarrow M_d$ is called **DOC** (Diagonal Orthogonal Covariant) if

$$\Phi(DZD^\top) = D\Phi(Z)D^\top, \quad D \in \mathcal{DO}_d, \quad Z \in M_d.$$

Proposition (Singh and Nechita 2021)

Φ is DOC if and only if there exists $A, B, C \in M_d$ such that

$$\Phi(Z) = \Phi_{A,B,C}(Z) = \sum_{i,j=1}^d A_{ij} Z_{jj} e_{ii} + B \odot \mathring{Z} + C \odot (\mathring{Z})^\top,$$

where $A \odot B := (A_{ij}B_{ij})$ is the Hadamard product and $\mathring{Z} := Z - \text{diag}(Z)$.

Example 2: Diagonal orthogonal covariance

- $\Phi_{A,B,C}$ is CP $\iff \begin{cases} A \in M_d(\mathbb{R}_+), & B \geq 0, & C^* = C \\ A_{ij}A_{ji} \geq |C_{ij}|^2, & \forall i \neq j. \end{cases}$
- $J(\Phi_{A,B,C})^\Gamma = J(\Phi_{A,C,B}).$

Example 2: Diagonal orthogonal covariance

- $\Phi_{A,B,C}$ is CP $\iff \begin{cases} A \in M_d(\mathbb{R}_+), & B \geq 0, & C^* = C \\ A_{ij}A_{ji} \geq |C_{ij}|^2, & \forall i \neq j. \end{cases}$
- $J(\Phi_{A,B,C})^\Gamma = J(\Phi_{A,C,B}).$

Theorem (Singh and Nechita 2021)

A DOC quantum channel $\Phi_{A,B,C}$ is

- ① PPT iff $C \geq 0$ and $A_{ij}A_{ji} \geq |B_{ij}|^2, \forall i \neq j.$
- ② EB iff $\exists V, W \in M_{d \times k}$ for some k such that
$$A = (V \odot \overline{V})(W \odot \overline{W})^*, \quad B = (V \odot W)(V \odot W)^*, \quad C = (V \odot \overline{W})(V \odot \overline{W})^*.$$

Example 2: Diagonal orthogonal covariance

- $\Phi_{A,B,C}$ is CP $\iff \begin{cases} A \in M_d(\mathbb{R}_+), & B \geq 0, & C^* = C \\ A_{ij}A_{ji} \geq |C_{ij}|^2, & \forall i \neq j. \end{cases}$
- $J(\Phi_{A,B,C})^\Gamma = J(\Phi_{A,C,B}).$

Theorem (Singh and Nechita 2021)

A DOC quantum channel $\Phi_{A,B,C}$ is

- ① PPT iff $C \geq 0$ and $A_{ij}A_{ji} \geq |B_{ij}|^2, \forall i \neq j.$
- ② EB iff $\exists V, W \in M_{d \times k}$ for some k such that
$$A = (V \odot \overline{V})(W \odot \overline{W})^*, \quad B = (V \odot W)(V \odot W)^*, \quad C = (V \odot \overline{W})(V \odot \overline{W})^*.$$

REMARK:

- There are many examples of DOC channels which are **PPT not EB**.
- (Dickinson and Gijben 2014) Determining whether a given DOC channel is EB or not is **NP-hard**.

Outline

1 Covariance and quantum entanglement

2 Random quantum channels

3 Random covariant quantum channels

Random Stinespring quantum channels

- (Stinespring representation) Any quantum channel $\Phi : M_d \rightarrow M_d$ can be represented by

$$\Phi(Z) = (\text{id}_d \otimes \text{Tr}_s)(VZV^*) \quad (*)$$

for some isometry $V : \mathbb{C}^d \rightarrow \mathbb{C}^d \otimes \mathbb{C}^s$.

Random Stinespring quantum channels

- (Stinespring representation) Any quantum channel $\Phi : M_d \rightarrow M_d$ can be represented by

$$\Phi(Z) = (\text{id}_d \otimes \text{Tr}_s)(VZV^*) \quad (*)$$

for some isometry $V : \mathbb{C}^d \rightarrow \mathbb{C}^d \otimes \mathbb{C}^s$.

Definition

A *random Stinespring quantum channel* $\Phi = \Phi_V$ is defined by $(*)$, where V is a *Haar-random isometry* (i.e. unitarily invariant random isometry).

The probability distribution of Φ_V depends on the parameters (d, s) .

Threshold phenomenon

QUESTION: What are the behaviors of $\begin{cases} P(\Phi_V \text{ is PPT}) \\ P(\Phi_V \text{ is EB}) \end{cases}$ for asymptotic regimes $d \rightarrow \infty$ and $s = s(d)$?

Threshold phenomenon

QUESTION: What are the behaviors of $\begin{cases} P(\Phi_V \text{ is PPT}) \\ P(\Phi_V \text{ is EB}) \end{cases}$ for asymptotic regimes $d \rightarrow \infty$ and $s = s(d)$?

Theorem (Aubrun 2012)

For $\forall \varepsilon > 0$, we have

- ① $s \leq (4 - \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 0$ as $d \rightarrow \infty$,
- ② $s \geq (4 + \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 1$ as $d \rightarrow \infty$.

In particular, a sharp **threshold** occurs when $s_0 = 4d^2$

Threshold phenomenon

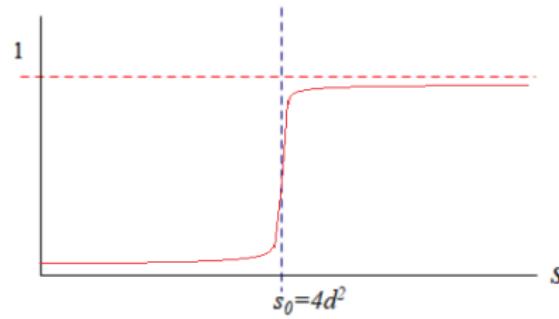
QUESTION: What are the behaviors of $\begin{cases} P(\Phi_V \text{ is PPT}) \\ P(\Phi_V \text{ is EB}) \end{cases}$ for asymptotic regimes $d \rightarrow \infty$ and $s = s(d)$?

Theorem (Aubrun 2012)

For $\forall \varepsilon > 0$, we have

- ① $s \leq (4 - \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 0 \text{ as } d \rightarrow \infty$,
- ② $s \geq (4 + \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 1 \text{ as } d \rightarrow \infty$.

In particular, a sharp **threshold** occurs when $s_0 = 4d^2$



Threshold phenomenon

QUESTION: What are the behaviors of $\begin{cases} P(\Phi_V \text{ is PPT}) \\ P(\Phi_V \text{ is EB}) \end{cases}$ for asymptotic regimes $d \rightarrow \infty$ and $s = s(d)$?

Theorem (Aubrun 2012)

For $\forall \varepsilon > 0$, we have

- ① $s \leq (4 - \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 0 \text{ as } d \rightarrow \infty,$
- ② $s \geq (4 + \varepsilon)d^2 \implies P(\Phi_V \text{ is PPT}) \rightarrow 1 \text{ as } d \rightarrow \infty.$

Theorem (Aubrun, Szarek, and Ye 2014)

There exist universal constants $C_1, C_2 > 0$ such that $\forall \varepsilon > 0$,

- ① $s \leq (1 - \varepsilon)C_1 d^3 \implies P(\Phi_V \text{ is EB}) \rightarrow 0 \text{ as } d \rightarrow \infty,$
- ② $s \geq (1 + \varepsilon)C_2 d^3 (\log d)^2 \implies P(\Phi_V \text{ is EB}) \rightarrow 1 \text{ as } d \rightarrow \infty.$

Outline

1 Covariance and quantum entanglement

2 Random quantum channels

3 Random covariant quantum channels

Twirling operation

QUESTION: Can we define a **natural probability** on the set of (π_A, π_B) -covariant quantum channels for unitary representations π_A and π_B of a compact group G ?

Twirling operation

QUESTION: Can we define a **natural probability** on the set of (π_A, π_B) -covariant quantum channels for unitary representations π_A and π_B of a compact group G ?

Proposition

For a linear map $\Phi : M_{d_A} \rightarrow M_{d_B}$, define $\mathcal{T}_{\pi_A, \pi_B} \Phi : M_{d_A} \rightarrow M_{d_B}$ by

$$(\mathcal{T}_{\pi_A, \pi_B} \Phi)(Z) := \int_G \pi_B(g)^* \Phi(\pi_A(g) Z \pi_A(g)^*) \pi_B(g) dg,$$

where dg is a (normalized) Haar measure on G . Then

- ① $\mathcal{T}_{\pi_A, \pi_B} \Phi$ is (π_A, π_B) -covariant.
- ② Φ is (π_A, π_B) -covariant $\iff \mathcal{T}_{\pi_A, \pi_B} \Phi = \Phi$.

In particular, we can regard $\mathcal{T}_{\pi_A, \pi_B}$ as a **projection** onto the set of (π_A, π_B) -covariant maps.

Random covariant quantum channel

RECALL: $\Phi_V := (\text{id}_d \otimes \text{Tr}_s)(V \cdot V^*)$ where $V : \mathbb{C}^d \rightarrow \mathbb{C}^d \otimes \mathbb{C}^s$ is a Haar-random isometry.

Definition (Nechita and P., in progress)

We define random (π_A, π_B) -covariant quantum channels (of parameters (d, s)) by

$$\Phi_{\pi_A, \pi_B}^{(d, s)} := \mathcal{T}_{\pi_A, \pi_B} \Phi_V = \int_G \pi_B(g)^* \Phi_V \left(\pi_A(g) \cdot \pi_A(g)^* \right) \pi_B(g) dg.$$

Random covariant quantum channel

RECALL: $\Phi_V := (\text{id}_d \otimes \text{Tr}_s)(V \cdot V^*)$ where $V : \mathbb{C}^d \rightarrow \mathbb{C}^d \otimes \mathbb{C}^s$ is a Haar-random isometry.

Definition (Nechita and P., in progress)

We define random (π_A, π_B) -covariant quantum channels (of parameters (d, s)) by

$$\Phi_{\pi_A, \pi_B}^{(d, s)} := \mathcal{T}_{\pi_A, \pi_B} \Phi_V = \int_G \pi_B(g)^* \Phi_V \left(\pi_A(g) \cdot \pi_A(g)^* \right) \pi_B(g) dg.$$

QUESTION: What is the limit

$$\lim_{d \rightarrow \infty} P(\Phi_{\pi_A, \pi_B}^{(d, s)} \text{ is PPT / EB})$$

for choices of (π_A, π_B) and regimes $s = s(d)$?

Result: Random DOC channels

For a random stinespring channel Φ_V , take **DOC-twirling**

$$\Phi_{\text{DOC}} := \mathcal{T}_{\text{DOC}} \Phi_V = \frac{1}{|\mathcal{DO}_d|} \sum_{D \in \mathcal{DO}_d} D^\top \Phi_V (D \cdot D^\top) D.$$

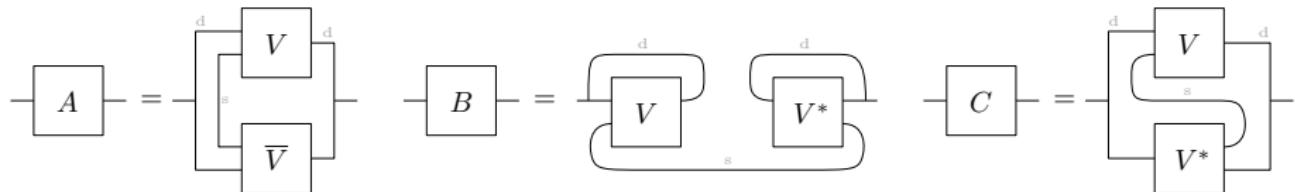
Result: Random DOC channels

For a random stinespring channel Φ_V , take **DOC-twirling**

$$\Phi_{\text{DOC}} := \mathcal{T}_{\text{DOC}} \Phi_V = \frac{1}{|\mathcal{DO}_d|} \sum_{D \in \mathcal{DO}_d} D^\top \Phi_V (D \cdot D^\top) D.$$

RECALL: $\Phi_{\text{DOC}} = \Phi_{A,B,C}$ is PPT $\iff \begin{cases} C \geq 0, \\ A_{ij}A_{ji} \geq |B_{ij}|^2 \ \forall i \neq j, \end{cases}$ where

$$A_{ij} := J(\Phi_V)_{ij,ij}, \quad B_{ij} := J(\Phi_V)_{ii,jj}, \quad C_{ij} := J(\Phi_V)_{ij,ji}, \quad 1 \leq i, j \leq d.$$



Result: Random DOC channels

RECALL: $\Phi_{\text{DOC}} = \Phi_{A,B,C}$ is PPT $\iff \begin{cases} C \geq 0, \\ A_{ij}A_{ji} \geq |B_{ij}|^2 \ \forall i \neq j, \end{cases}$.

Proposition (Nechita and P., in progress)

① If $s \sim cd$ for some $c > 0$, then almost surely, we have,

$$\forall p \geq 1, \quad \frac{1}{d} \text{Tr}((sC)^p) \rightarrow \int x^p dSC_{c,c}(x).$$

i.e., the empirical eigenvalue distribution

$$\frac{1}{d} \sum_{i=1}^d \delta_{\lambda_i(sC)}$$

of sC converges to $SC_{c,c}$ in moments.

Here SC_{m,σ^2} is the **semicircle distribution** of mean m and variance σ^2 :

$$dSC_{m,\sigma}(x) = \frac{1}{2\pi\sigma} \sqrt{4\sigma^2 - (x - m)^2} \mathbf{1}_{[m-2\sigma, m+2\sigma]}(x) dx.$$

Result: Random DOC channels

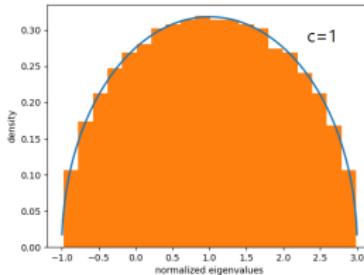
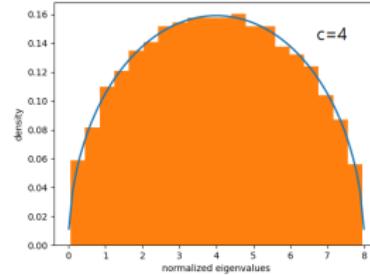
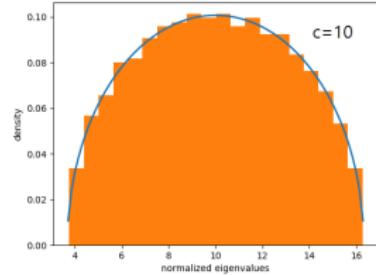
RECALL: $\Phi_{\text{DOC}} = \Phi_{A,B,C}$ is PPT $\iff \begin{cases} C \geq 0, \\ A_{ij}A_{ji} \geq |B_{ij}|^2 \forall i \neq j, \end{cases}$.

Proposition (Nechita and P., in progress)

- 1 If $s \sim cd$ for some $c > 0$, then $sC \rightarrow SC_{c,c}$ in moments.

Here SC_{m,σ^2} is the **semicircle distribution** of mean m and variance σ^2 :

$$dSC_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma} \sqrt{4\sigma^2 - (x - m)^2} \mathbf{1}_{[m-2\sigma, m+2\sigma]}(x) dx.$$



Result: Random DOC channels

RECALL: $\Phi_{\text{DOC}} = \Phi_{A,B,C}$ is PPT $\iff \begin{cases} C \geq 0, \\ A_{ij}A_{ji} \geq |B_{ij}|^2 \forall i \neq j, \end{cases} \quad .$

Proposition (Nechita and P., in progress)

- ① If $s \sim cd$ for some $c > 0$, then $sC \rightarrow SC_{c,c}$ in moments.
- ② If $s \lesssim d^{1-\varepsilon}$ for some ε , $(ds)^{1/2}C \rightarrow SC_{0,1}$ in moments.
- ③ If $s \gtrsim d^{1+\varepsilon}$ for some $\varepsilon > 0$, then $dC \rightarrow 1$ in moments.
- ④ If $s \gtrsim d^\varepsilon$ for some $\varepsilon > 0$, we have

$$\min_{i \neq j} d^2 (A_{ij}A_{ji} - |B_{ij}|^2) \rightarrow 1 \text{ almost surely as } d \rightarrow \infty.$$

Here SC_{m,σ^2} is the **semicircle distribution** of mean m and variance σ^2 :

$$dSC_{m,\sigma}(x) = \frac{1}{2\pi\sigma} \sqrt{4\sigma^2 - (x - m)^2} \mathbf{1}_{[m-2\sigma, m+2\sigma]}(x) dx.$$

Result: Random DOC channels

Note that $\text{supp}(SC_{c,c}) = [c - 2\sqrt{c}, c + 2\sqrt{c}] \subset [0, \infty)$ iff $c \geq 4$.

Theorem (Nechita and P., in progress)

For any $\varepsilon > 0$, we have as $d \rightarrow \infty$,

$$P(\Phi_{\text{DOC}} \text{ is PPT}) \rightarrow \begin{cases} 0 & \text{if } s \lesssim d^{1-\varepsilon} \text{ or } s \sim (4-\varepsilon)d, \\ 1 & \text{if } s \gtrsim d^{1+\varepsilon} \text{ or } s \sim (4+\varepsilon)d. \end{cases}$$

In particular, **threshold** occurs when $s_0 = 4d$.

Result: Random DOC channels

Note that $\text{supp}(SC_{c,c}) = [c - 2\sqrt{c}, c + 2\sqrt{c}] \subset [0, \infty)$ iff $c \geq 4$.

Theorem (Nechita and P., in progress)

For any $\varepsilon > 0$, we have as $d \rightarrow \infty$,

$$P(\Phi_{\text{DOC}} \text{ is PPT}) \rightarrow \begin{cases} 0 & \text{if } s \lesssim d^{1-\varepsilon} \text{ or } s \sim (4-\varepsilon)d, \\ 1 & \text{if } s \gtrsim d^{1+\varepsilon} \text{ or } s \sim (4+\varepsilon)d. \end{cases}$$

In particular, **threshold** occurs when $s_0 = 4d$.

Theorem (Nechita and P., in progress)

If $s \gtrsim d^{2+\varepsilon}$ for some $\varepsilon > 0$, We have

$$P(\Phi_{\text{DOC}} \text{ is EB}) \rightarrow 1 \text{ as } d \rightarrow \infty.$$

Results: Thresholds for other types of covariance

Group symmetry	PPT property	EB property	Not EB property
(U, U) -cov.	Always	Always	Never
(U, \overline{U}) -cov.	$s_0 \sim \text{const.}$	$s_0 \sim \text{const.}$	$s_0 \sim \text{const.}$
(O, O) -cov.	$s_0 \sim \text{const.}$	$s_0 \sim \text{const.}$	$s_0 \sim \text{const.}$
DOC	$s_0 \sim 4d$	$s \gtrsim d^{2+\epsilon}$	$s \leq (4 - \epsilon)d$
No symmetry (Stinespring)	$s_0 \sim 4d^2$ [Aub 12]	$s \gtrsim d^3 \log^2 d$ [ASY14]	$s \lesssim d^3$ [ASY14]

Further works:

- EB properties of DOC channels in the regimes $(4 + \epsilon)d \leq s \lesssim d^2$
- Other applications of random DOC channels (e.g. additivity violation of classical capacities).

Thank you for your attention!