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atomic decomposition

Atomic decomposition plays a fundamental role in the classical
martingale theory or harmonic analysis. Atoms for martingales are
usually defined in terms of stopping times.

Unfortunately, the concept of stopping times is, up to now, not
well-defined in the generic noncommutative setting (there are some
works on this topic, see [1] and references therein).

1 J. L. Doob, Stochastic processes, John Wiley & Sons, New York, 1953.
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atoms

However, we note that atoms can be defined without help of stopping
times. Let us recall this in classical martingale theory. Given a
probability space (Ω,F , µ), let (Fn)n≥1 be an increasing filtration of
σ-subalgebras of F such that F = σ

(
∪n Fn

)
and let (En)n≥1 denote

the corresponding family of conditional expectations.

1 S. Attal and A. Coquio, Quantum stopping times and quasi-left continuity, Ann.I.H.Poincaré-PR 40,
497-512(2004).



atoms

An F-measurable function a ∈ L2 is said to be an atom if there exist
n ∈ N and A ∈ Fn such that

(i) En(a) = 0;

(ii) {a ̸= 0} ⊂ A;

(iii) ∥a∥2 ≤ µ(A)−1/2.

Such atoms are called simple atoms by Weisz [3] and are extensively
studied by him (see [2] and [3]).

2. F. Weisz, Martingale Hardy Spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84, 361-376(1990).

3. F. Weisz, “Martingale Hardy Spaces and their Applications in Fourier Analysis,” Lecture notes in mathematics,
Vol.1568, Springer-Verlag, Berlin, 1994.



atomic decomposition

Let us point out that atomic decomposition was first introduced in
harmonic analysis by Coifman [4]. It is Herz [5] who initiated atomic
decomposition for martingale theory.

Recall that we denote by H1(Ω) the space of martingales f with
respect to (Fn)n≥1 such that the quadratic variation

S(f) =
(∑

n |dfn|2
)1/2

belongs to L1(Ω), and by h1(Ω) the space of

martingales f such that the conditioned quadratic variation

s(f) =
(∑

n En−1|dfn|2
)1/2

belongs to L1(Ω).

4. R.A. Coifman, A real variable characterization of Hp, Studia Math.51, 269-274(1974).

5. C. Herz, Bounded mean oscillation and regulated martingales, Trans.Amer.Math.Soc.193, 199-215(1974).
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atomic decomposition

We say that a martingale f = (fn)n≥1 is predictable in L1 if there
exists an adapted sequence (λn)n≥0 of non-decreasing, non-negative
functions such that |fn| ≤ λn−1 for all n ≥ 1 and such that
supn λn ∈ L1(Ω). We denote by P1(Ω) the space of all predictable
martingales.

In a disguised form in the proof of Theorem A∞ in [5], Herz
establishes an atomic description of P1(Ω). Since P1(Ω) = H1(Ω)
for regular martingales, this gives an atomic decomposition of H1(Ω)
in the regular case.
Such a decomposition is still valid in the general case but for h1(Ω)
instead of H1(Ω), as shown by Weisz [2].
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atomic decomposition

In this talk, we will present the noncommutative version of atoms and
prove that atomic decomposition for the Hardy spaces of
noncommutative martingales is valid for those noncommutative
atoms.

Since there are two kinds of Hardy spaces, i.e., column and row
Hardy spaces in the noncommutative setting, we need to define the
corresponding two type atoms.
This is a main difference from the commutative case, but can be
done by considering the right and left supports of martingales as
being operators on Hilbert spaces.
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atomic decomposition

Roughly speaking, replacing the support of atoms in the above (ii) by
the right (resp. left) support we obtain the concept of
noncommutative right (resp. left) atoms, which are proved to be
suitable for the column (resp. row) Hardy spaces in later.

On the other hand, due to the noncommutativity some basic
constructions based on the stopping times for classical martingales
are not valid in the noncommutative setting, our approach to the
atomic decomposition for the conditioned Hardy space of
noncommutative martingales is via the h1 − bmo duality.
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atomic decomposition

Recall that the duality equality (h1)∗ = bmo was established
independently by [6] and [7]. However, this method does not give an
explicit decomposition.

6. M. Junge and T. Mei, Noncommutative Riesz transforms - A probabilistic approach, Amer. J. Math. 132 (3),
611-680 (2010).

7. M. Perrin, A noncommutative Davis’ decomposition for martingales, J. Lond. Math. Soc. (2) 80 (3), 627-648
(2009).



Noncommutative martingales

Let us now recall the general setup for noncommutative martingales.
M will always denote a von Neumann algebra with a normal faithful
normalized trace τ . In the sequel, we always denote by (Mn)n≥1 an
increasing sequence of von Neumann subalgebras of M whose union
∪n≥1Mn generates M (in the w∗-topology). (Mn)n≥1 is called a
filtration of M.

For n ≥ 1, let En from M onto Mn be the trace preserving
conditional expectation. Note that En extends to a contractive
projection from Lp(M, τ) onto Lp(Mn, τn) for all 1 ≤ p ≤ ∞.
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Noncommutative martingales

A sequence x = (xn) in L1(M) is called a noncommutative
martingale with respect to (Mn)n≥1 if En(xn+1) = xn for every
n ≥ 1.

If in addition, all xn’s are in Lp(M) for some 1 ≤ p ≤ ∞, x is called
a noncommutative Lp-martingale. In this case we set

∥x∥p = sup
n≥1

∥xn∥p.

If ∥x∥p < ∞, then x is called a bounded Lp-martingale.
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Noncommutative martingales

Let x = (xn) be a noncommutative martingale with respect to
(Mn)n≥1. Define dxn = xn − xn−1 for n ≥ 1 with the usual
convention that x0 = 0. The sequence dx = (dxn) is called the
martingale difference sequence of x. x is called a finite martingale if
there exists N such that dxn = 0 for all n ≥ N. In the sequel, for any
operator x we denote xn = En(x) for n ≥ 1.



Noncommutative martingales

For 1 ≤ p < ∞ and any finite sequence a = (an)n≥1 in Lp(M), we
set

∥a∥Lp(M;ℓ2c)
=

∥∥∥(∑
k≥1

|ak|2
)1/2∥∥∥

p
, ∥a∥Lp(M;ℓ2r)

=
∥∥∥(∑

k≥1

|a∗k|2
)1/2∥∥∥

p
.

Then ∥ · ∥Lp(M;ℓ2c)
(resp. ∥ · ∥Lp(M;ℓ2r)

) defines a norm on the family
of finite sequences of Lp(M). The corresponding completion is a
Banach space, denoted by Lp(M; ℓ2c) (resp. L

p(M; ℓ2r)).



Noncommutative martingales

Recall that Lp(M; ℓ2c) (resp. L
p(M; ℓ2r)) can be identified with the

closed subspace of Lp(M⊗B(ℓ2)) consisting of column (resp. row)
matrices with values in Lp(M).

For p = ∞, we define L∞(M; ℓ2c) (respectively L∞(M; ℓ2r)) as the
Banach space of the sequences in L∞(M) such that

∑
n≥1 x

∗
nxn

(respectively
∑

n≥1 xnx
∗
n) converge for the weak operator topology.

Thus L∞(M; ℓ2c) (resp. L
∞(M; ℓ2r)) is isometric to the subspace of

L∞(M⊗B(ℓ2)) consisting of column (resp. row) matrices.
Then, as observed in [8], both Lp(M; ℓ2c) and Lp(M; ℓ2r) are
one-complemented subspaces of Lp(M⊗B(ℓ2)).

8. G. Pisier and Q.Xu, Non-commutative martingale inequalities, Commun. Math. Phys. 189, 667-698 (1997).
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Noncommutative martingales

Let us now recall the definitions of the square functions and
martingale Hardy spaces for noncommutative martingales. Following
[8], we introduce the column and row versions of square functions
relative to a (finite) martingale x = (xn):

Sc,n(x) =
( n∑

k=1

|dxk|2
)1/2

, Sc(x) =
( ∞∑

k=1

|dxk|2
)1/2

;

and

Sr,n(x) =
( n∑

k=1

|dx∗k|2
)1/2

, Sr(x) =
( ∞∑

k=1

|dx∗k|2
)1/2

.



Noncommutative martingales

Let 1 ≤ p < ∞. Observe that for a finite Lp-martingale x, we have

∥dx∥Lp(M;ℓ2c)
= ∥Sc(x)∥p and ∥dx∥Lp(M;ℓ2r)

= ∥Sr(x)∥p.

Define Hp
c(M) (resp. Hp

r(M)) as the completion of all finite
Lp-martingales under the norm ∥x∥Hp

c
= ∥Sc(x)∥p (resp.

∥x∥Hp
r
= ∥Sr(x)∥p).

For p = ∞, we define H∞
c (M) (resp. H∞

r (M)) as the Banach space
of the L∞(M)-martingales x such that

∑
k≥1 |dxk|2 (resp.∑

k≥1 |dx∗k|2) converge for the weak operator topology.



Noncommutative martingales

Let 1 ≤ p < ∞. Observe that for a finite Lp-martingale x, we have

∥dx∥Lp(M;ℓ2c)
= ∥Sc(x)∥p and ∥dx∥Lp(M;ℓ2r)

= ∥Sr(x)∥p.

Define Hp
c(M) (resp. Hp

r(M)) as the completion of all finite
Lp-martingales under the norm ∥x∥Hp

c
= ∥Sc(x)∥p (resp.

∥x∥Hp
r
= ∥Sr(x)∥p).

For p = ∞, we define H∞
c (M) (resp. H∞

r (M)) as the Banach space
of the L∞(M)-martingales x such that

∑
k≥1 |dxk|2 (resp.∑

k≥1 |dx∗k|2) converge for the weak operator topology.



Noncommutative martingales

Let 1 ≤ p < ∞. Observe that for a finite Lp-martingale x, we have

∥dx∥Lp(M;ℓ2c)
= ∥Sc(x)∥p and ∥dx∥Lp(M;ℓ2r)

= ∥Sr(x)∥p.

Define Hp
c(M) (resp. Hp

r(M)) as the completion of all finite
Lp-martingales under the norm ∥x∥Hp

c
= ∥Sc(x)∥p (resp.

∥x∥Hp
r
= ∥Sr(x)∥p).

For p = ∞, we define H∞
c (M) (resp. H∞

r (M)) as the Banach space
of the L∞(M)-martingales x such that

∑
k≥1 |dxk|2 (resp.∑

k≥1 |dx∗k|2) converge for the weak operator topology.



Noncommutative martingales

The Hardy space of noncommutative martingales is defined as
follows: if 1 ≤ p < 2,

Hp(M) = Hp
c(M) +Hp

r(M)

equipped with the norm

∥x∥Hp = inf
{
∥y∥Hp

c
+ ∥z∥Hp

r

}
where the infimum is taken over all y ∈ Hp

c(M) and z ∈ Hp
r(M)

such that x = y + z.



Noncommutative martingales

For 2 ≤ p ≤ ∞,

Hp(M) = Hp
c(M) ∩Hp

r(M)

equipped with the norm

∥x∥Hp = max
{
∥x∥Hp

c
, ∥x∥Hp

r

}
.

The reason that Hp(M) is defined differently according to 1 ≤ p < 2
or 2 ≤ p ≤ ∞ is presented in [8].

In that paper Pisier and Xu prove the noncommutative
Burkholder-Gundy inequalities which imply that Hp(M) = Lp(M)
with equivalent norms for 1 < p < ∞.
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Noncommutative martingales

We now consider the conditioned version of square functions and
Hardy spaces developed in [9, 10].
Let 1 ≤ p < ∞. For a finite sequence in M, we define (with E0 = E1)

∥a∥Lp
cond(M;ℓ2c)

=
∥∥∥(∑

k≥1

Ek−1|ak|2
)1/2∥∥∥

p
.

It is shown in [9] that ∥ · ∥Lp
cond(M;ℓ2c)

is a norm on the vector space of

all finite sequences in M. Then let Lp
cond(M; ℓ2c) be the

corresponding completion.
Note that Lp

cond(M; ℓ2c) is the conditioned version of Lp(M; ℓ2c)
defined earlier. Similarly, we define the conditioned row space
Lp
cond(M; ℓ2r).

9. M. Junge, Doob’s inequality for non-commutative martingales, J.Reine Angew.Math.549, 149-190(2002).

10. M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann.Probab.31, 948-995(2003).
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Recall that Lp
cond(M; ℓ2c) and Lp

cond(M; ℓ2r) can be viewed as column
and row (resp.) closed subspaces of the noncommutative space
Lp(M⊗B(ℓ2(N 2))).

Furthermore, for 1 < p < ∞, Lp
cond(M; ℓ2c) and Lp

cond(M; ℓ2r) are
complemented in Lp(M; ℓ2c(N 2)) via Stein’s projection.
We refer to [9] for more details on this.



Recall that Lp
cond(M; ℓ2c) and Lp

cond(M; ℓ2r) can be viewed as column
and row (resp.) closed subspaces of the noncommutative space
Lp(M⊗B(ℓ2(N 2))).
Furthermore, for 1 < p < ∞, Lp

cond(M; ℓ2c) and Lp
cond(M; ℓ2r) are

complemented in Lp(M; ℓ2c(N 2)) via Stein’s projection.
We refer to [9] for more details on this.



Let x = (xn)n≥1 be a finite martingale in L2(M); we set

sc,n(x) =
( n∑

k=1

Ek−1|dxk|2
)1/2

, sc(x) =
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k=1

Ek−1|dxk|2
)1/2

;

and
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, sr(x) =
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k=1

Ek−1|dx∗k|2
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.

These will be called the column and row conditioned square
functions, respectively.



Observe that for 1 ≤ p < ∞,
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= ∥sc(x)∥p and ∥dx∥Lp
cond(M;ℓ2r)

= ∥sr(x)∥p.

Let hpc(M) (resp. hpr(M)) denote the closure in Lp
cond(M; ℓ2c) (resp.

Lp
cond(M; ℓ2r)) of all finite martingales in M. (As usual we have

identified a martingale with its difference sequence.)
For p = ∞, we define h∞c (M) (resp. h∞r (M)) as the Banach space
of the L∞(M)-martingales x such that

∑
k≥1 Ek−1|dxk|2

(respectively
∑

k≥1 Ek−1|dx∗k|2) converge for the weak operator
topology.
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We also need ℓp(Lp(M)), the space of all sequences a = (an)n≥1 in
Lp(M) such that

∥a∥ℓp(Lp(M)) =
(∑

n≥1

∥an∥pp
)1/p

< ∞ if 1 ≤ p < ∞,

and
∥a∥ℓ∞(L∞(M)) = sup

n
∥an∥∞ if p = ∞.

Let hdp(M) be the subspace of ℓp(Lp(M)) consisting of all
martingale difference sequences.
It is easy to check the following duality identity

hpd(M)∗ = hqd(M)

if 1 ≤ p < ∞ with q = p/(p− 1).



We also need ℓp(Lp(M)), the space of all sequences a = (an)n≥1 in
Lp(M) such that

∥a∥ℓp(Lp(M)) =
(∑

n≥1

∥an∥pp
)1/p

< ∞ if 1 ≤ p < ∞,

and
∥a∥ℓ∞(L∞(M)) = sup

n
∥an∥∞ if p = ∞.

Let hdp(M) be the subspace of ℓp(Lp(M)) consisting of all
martingale difference sequences.

It is easy to check the following duality identity

hpd(M)∗ = hqd(M)

if 1 ≤ p < ∞ with q = p/(p− 1).



We also need ℓp(Lp(M)), the space of all sequences a = (an)n≥1 in
Lp(M) such that

∥a∥ℓp(Lp(M)) =
(∑

n≥1

∥an∥pp
)1/p

< ∞ if 1 ≤ p < ∞,

and
∥a∥ℓ∞(L∞(M)) = sup

n
∥an∥∞ if p = ∞.

Let hdp(M) be the subspace of ℓp(Lp(M)) consisting of all
martingale difference sequences.
It is easy to check the following duality identity

hpd(M)∗ = hqd(M)

if 1 ≤ p < ∞ with q = p/(p− 1).



Following [10], we define the conditioned version of martingale Hardy
spaces as follows: If 1 ≤ p < 2,

hp(M) = hpd(M) + hpc(M) + hpr(M)

equipped with the norm

∥x∥hp = inf
{
∥w∥hpd + ∥y∥hpc + ∥z∥hpr

}
,

where the infimum is taken over all w ∈ hpd(M), y ∈ hpc(M) and
z ∈ hpr(M) such that x = w + y + z.



For 2 ≤ p ≤ ∞,

hp(M) = hpd(M) ∩ hpc(M) ∩ hpr(M)

equipped with the norm

∥x∥hp = max
{
∥x∥hpd , ∥x∥hpc , ∥x∥hpr

}
.

The noncommutative Burkholder inequalities proved in [10] state that
hp(M) = Lp(M) with equivalent norms for all 1 < p < ∞.
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supports

Let H be a Hilbert space on which M acts. For x ∈ Lp(M) there
exists a unique polar decomposition x = u|x|, where u is a partial
isometry such that u∗u = P(kerx)⊥ and uu∗ = Prangx.

Let r(x) = u∗u and l(x) = uu∗. We call r(x) and l(x) the right and
left supports of x, respectively.
Note that r(x) (resp. l(x)) is the least projection e on H such that
xe = x (resp. ex = x).
If x is selfadjoint, r(x) = l(x). This common projection is called the
support of x and denoted by s(x).
By von Neumann’s double commutant theorem, one has that
r(x), l(x) ∈ M.
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atoms

Let us now introduce the concept of noncommutative atoms.

Definition

a ∈ L2(M) is said to be a (1, 2)c-atom with respect to (Mn)n≥1, if
there exist n ≥ 1 and a projection e ∈ Mn such that

(i) En(a) = 0;

(ii) r(a) ≤ e;

(iii) ∥a∥2 ≤ τ(e)−1/2.

Replacing (ii) by the inequality (ii)′ l(a) ≤ e, we get the notion of a
(1, 2)r-atom.

Here, (1, 2)c-atoms and (1, 2)r-atoms are noncommutative analogues
of (1, 2)-atoms for classical martingales.
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atoms

In a later remark we will discuss the noncommutative analogue of
(p, 2)-atoms. These atoms satisfy the following useful estimations.

Proposition

If a is a (1, 2)c-atom then

∥a∥H1
c
≤ 1 and ∥a∥h1c ≤ 1.

The same estimations hold for (1, 2)r-atoms.



atoms

Now, atomic Hardy spaces are defined as follows.

Definition

We define h1c,at(M) as the Banach space of x ∈ L1(M) which admit
a decomposition

x =
∑
k

λkak

with for each k, ak a (1, 2)c-atom or an element in L1(M1) of norm
≤ 1, and λk ∈ C satisfaying

∑
k |λk| < ∞. We equip this space with

the norm
∥x∥h1c,at = inf

∑
k

|λk|

where the infimum is taken over all decompositions of x described
above.
Similarly we define h1r,at(M) and ∥ · ∥h1r,at .



atoms

By Proposition 3.1 we have the contractive inclusion
h1c,at(M) ⊂ h1c(M). The following theorem shows that these two
spaces coincide. That establishs the atomic decomposition of the
conditioned Hardy space h1c(M).

Theorem

We have

h1c(M) = h1c,at(M) with equivalent norms.

More precisely, if x ∈ h1c(M)

1

2
√
2
∥x∥h1c,at ≤ ∥x∥h1c ≤ ∥x∥h1c,at . (1)

Similarly, h1r(M) = h1r,at(M) with the same equivalence constants.
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We will show the remaining inclusion h1c(M) ⊂ h1c,at(M) by duality.
Recall that the dual space of h1c(M) is the space bmoc(M) defined
as follows (we refer to [6] and [7] for details).

Let

bmoc(M) =
{
x ∈ L2(M) : sup

n≥1
∥En|x− xn|2∥∞ < ∞

}
and equip bmoc(M) with the norm

∥x∥bmoc = max
(
sup
n≥1

∥En|x− xn|2∥1/2∞ , ∥E1(x)∥∞
)
.

This is a Banach space.
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Similarly, we define the row version bmor(M). Note that

En|x− xn|2 = En
( ∑

k≥n+1

|dxk|2
)
. (2)

Since xn = En(x), we have

En|x− xn|2 = En|x|2 − |xn|2 ≤ En|x|2.

Thus the contractivity of the conditional expectation yields

∥x∥bmoc ≤ ∥x∥∞. (3)
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We will describe the dual space of h1c,at(M) as a noncommutative
Lipschitz space defined as follows. We set

Λc(M) =
{
x ∈ L2(M) : ∥x∥Λc < ∞

}
with

∥x∥Λc = max
(
sup
n≥1

sup
e∈Pn

τ(e)−1/2τ
(
e|x− xn|2

)1/2
, ∥E1(x)∥∞

)
where Pn denote the lattice of projections of Mn.



atoms

Similarly we define

Λr(M) =
{
x ∈ L2(M) : x∗ ∈ Λc(M)

}
equipped with the norm

∥x∥Λr = ∥x∗∥Λc .

The relation between Lipschitz space and bmo space can be stated as
follows.



atoms

Proposition

We have bmoc(M) = Λc(M) and bmor(M) = Λr(M) isometrically.



atoms

We now turn to the duality between the conditioned atomic space
h1c,at(M) and the Lipschitz space Λc(M).

Theorem

We have h1c,at(M)∗ = Λc(M) isometrically. More precisely,

(i) Every x ∈ Λc(M) defines a continuous linear functional on
h1c,at(M) by

φx(y) = τ(x∗y), ∀y ∈ L2(M). (4)

(ii) Conversely, each φ ∈ h1c,at(M)∗ is given as (8) by some
x ∈ Λc(M).

Similarly, h1r,at(M)∗ = Λr(M) isometrically.



atoms

Remark

Remark that we have defined the duality bracket (4) for operators in
L2(M). This is sufficient for L2(M) is dense in h1c,at(M). To see
this we write L2(M) = L2

0(M)⊕ L2(M1), where
L2
0(M) = {x ∈ L2(M) : E1(x) = 0}.



atoms

We can generalize this decomposition to the whole space h1(M). To
this end we need the following definition.

Definition

We set
h1at(M) = h1d(M) + h1c,at(M) + h1r,at(M),

equipped with the sum norm

∥x∥h1at = inf
{
∥w∥h1d + ∥y∥h1c,at + ∥z∥h1r,at

}
,

where the infimum is taken over all w ∈ h1d(M), y ∈ h1c,at(M), and
z ∈ h1r,at(M) such that x = w + y + z.
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Thus Theorem 3 clearly implies the following result.

Theorem

We have

h1(M) = h1at(M) with equivalent norms.

More precisely, if x ∈ h1(M)

1√
2
∥x∥h1at ≤ ∥x∥h1 ≤ ∥x∥h1at .



atoms

The noncommutative Davis’ decomposition presented in [7] state that
H1(M) = h1(M). Thus Theorem 6 yields that H1(M) = h1at(M),
which means that we can decompose any martingale in H1(M) in an
atomic part and a diagonal part. This is the atomic decomposition
for the Hardy space of noncommutative martingales.



recent results

Hong and Mei [11] have obtained the q-atomic and crude atomic
decomposition for noncommutative H1 for all 1 < q ≤ ∞.

The
notion of algebraic atoms for noncommutative martingales first
appeared in the thesis of Perrin. More recently, algebraic atomic
Hardy spaces were extensively used for the study of noncommutative
maximal functions in [12] (for the range 1 ≤ p < 2).

11. G. Hong, T. Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J.
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12. G. Hong, M. Junge, and J. Parcet, Algebraic Davis decomposition and asymmetric Doob inequalities, Comm.
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recent results

Chen, Randrianantoanina and Xu [13] proved an atomic type
decomposition for the noncommutative martingale Hardy space hp for
all 0 < p < 2 by an explicit constructive method using algebraic
atoms as building blocks.

They obtain a weak form of the atomic decomposition of hp for all
0 < p < 1, and provide a constructive proof of the atomic
decomposition for p = 1.

13. Z. Chen, N. Randrianantoanina, Q. Xu, Atomic decompositions for noncommutative martingales,J. Funct.
Anal. 284 (9), 109877 (2023)
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recent results

Using the atomic decompositions, Jiao, Sukochev and Zhou [14]
investigated noncommutative symmetric and asymmetric maximal
inequalities associated with martingale transforms and fractional
integrals.

In [15], Randrianantoanina, Wu and Zhou gave new algebraic atomic
decompositions for both the case of Hardy spaces associated with
separable noncommutative symmetric spaces that are interpolation of
the couple (Lp, Lq) for 1 < p ≤ q < 2 as well as the case of Hardy
spaces associated with convex functions that are p-convex and
q-concave for 1 ≤ p ≤ q < 2.
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