

Tracial weights on topological graph C^* -algebras

Johannes Christensen

27/2 2024

1. Topological graphs and their C^* -algebras
2. Traces on topological graph C^* -algebras
3. Loops in graphs

Table of Contents

1. Topological graphs and their C^* -algebras
2. Traces on topological graph C^* -algebras
3. Loops in graphs

Topological graphs

Definition

A topological graph $E = (E^0, E^1, r, s)$ consists of

- two locally compact Hausdorff spaces E^0 and E^1 ,
- a local homeomorphism $s : E^1 \rightarrow E^0$, and
- a continuous map $r : E^1 \rightarrow E^0$.

Definition

A topological graph $E = (E^0, E^1, r, s)$ consists of

- two locally compact Hausdorff spaces E^0 and E^1 ,
- a local homeomorphism $s : E^1 \rightarrow E^0$, and
- a continuous map $r : E^1 \rightarrow E^0$.

Definition

A map $\varphi : X \rightarrow Y$ is a local homeomorphism if it satisfies that for every $x \in X$ there exists an open neighbourhood U of x with $\varphi(U)$ open and $\varphi|_U : U \rightarrow \varphi(U)$ a homeomorphism.

Example (Directed graphs)

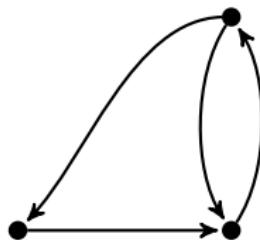
Recall: A countable directed graph $E = (E^0, E^1, r, s)$ is

- a countable set of vertices E^0 and edges E^1 ,
- two maps $r, s : E^1 \rightarrow E^0$ identifying the range and source of an edge.

Example (Directed graphs)

Recall: A countable directed graph $E = (E^0, E^1, r, s)$ is

- a countable set of vertices E^0 and edges E^1 ,
- two maps $r, s : E^1 \rightarrow E^0$ identifying the range and source of an edge.

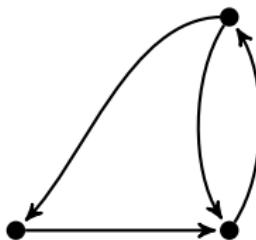


Topological graphs

Example (Directed graphs)

Recall: A countable directed graph $E = (E^0, E^1, r, s)$ is

- a countable set of vertices E^0 and edges E^1 ,
- two maps $r, s : E^1 \rightarrow E^0$ identifying the range and source of an edge.



~~ A directed graph is a second countable discrete topological graph.

Example (\mathbb{Z} -actions)

Let X be a locally compact Hausdorff space and let $\varphi : X \rightarrow X$ be a homeomorphism. Then we can define a topological graph

$E_X = (E_X^0, E_X^1, r, s)$ where

Example (\mathbb{Z} -actions)

Let X be a locally compact Hausdorff space and let $\varphi : X \rightarrow X$ be a homeomorphism. Then we can define a topological graph

$E_X = (E_X^0, E_X^1, r, s)$ where

- $E_X^0 = E_X^1 = X$,
- $s = \text{id}_X : E_X^1 \rightarrow E_X^0$ and
- $r = \varphi : E_X^1 \rightarrow E_X^0$.

Construction (Katsura 2004)

We can associate a topological graph C^ -algebra $C^*(E)$ to any topological graph E .*

Construction (Katsura 2004)

We can associate a topological graph C^ -algebra $C^*(E)$ to any topological graph E .*

Remark

The C^ -algebra $C^*(E)$ is separable if and only if E^0 and E^1 are second countable.*

Construction (Katsura 2004)

We can associate a topological graph C^ -algebra $C^*(E)$ to any topological graph E .*

Remark

The C^ -algebra $C^*(E)$ is separable if and only if E^0 and E^1 are second countable.*

- ☞ We assume that E^0 and E^1 are second countable

Example (Directed graphs)

Example (Directed graphs)

Let $E = (E^0, E^1, r, s)$ be a countable directed graph, and consider it as a topological graph with the discrete topology on E^0 and E^1 .

Example (Directed graphs)

Let $E = (E^0, E^1, r, s)$ be a countable directed graph, and consider it as a topological graph with the discrete topology on E^0 and E^1 . Then the topological graph C*-algebra $C^*(E)$ is the Cuntz-Krieger graph C*-algebra.

Example (\mathbb{Z} -actions)

Example (\mathbb{Z} -actions)

Let X be a locally compact Hausdorff space and let $\varphi : X \rightarrow X$ be a homeomorphism. Consider the associated topological graph

$$E_X = (E_X^0, E_X^1, r, s) = (X, X, \varphi, id_X) .$$

Example (\mathbb{Z} -actions)

Let X be a locally compact Hausdorff space and let $\varphi : X \rightarrow X$ be a homeomorphism. Consider the associated topological graph

$$E_X = (E_X^0, E_X^1, r, s) = (X, X, \varphi, id_X) .$$

Then the topological graph C^* -algebra is isomorphic to the crossed product C^* -algebra of the homeomorphism φ , i.e.

$$C^*(E) = C(X) \rtimes_{\varphi} \mathbb{Z} .$$

Example

The following C^* -algebras can be realised as topological graph C^* -algebras

Example

The following C^* -algebras can be realised as topological graph C^* -algebras

- All commutative C^* -algebras.

Example

The following C^* -algebras can be realised as topological graph C^* -algebras

- All commutative C^* -algebras.
- All approximately finite-dimensional (AF) C^* -algebras.

Example

The following C^* -algebras can be realised as topological graph C^* -algebras

- All commutative C^* -algebras.
- All approximately finite-dimensional (AF) C^* -algebras.
- All Kirchberg algebras satisfying the UCT.

Example

The following C*-algebras can be realised as topological graph C*-algebras

- All commutative C*-algebras.
- All approximately finite-dimensional (AF) C*-algebras.
- All Kirchberg algebras satisfying the UCT.

Can all nuclear separable C*-algebras satisfying the UCT be realised as topological graph algebras?

Notation

Let $E = (E^0, E^1, r, s)$ be a topological graph.

Notation

Let $E = (E^0, E^1, r, s)$ be a topological graph. We call

→ E^0 the space of vertices,

Notation

Let $E = (E^0, E^1, r, s)$ be a topological graph. We call

- E^0 the space of vertices,
- E^1 the space of edges,

Notation

Let $E = (E^0, E^1, r, s)$ be a topological graph. We call

- E^0 the space of vertices,
- E^1 the space of edges,
- E^* the set of finite paths, i.e. concatenations $\alpha_1\alpha_2\cdots\alpha_n$ with $n \in \mathbb{N}$ and $s(\alpha_i) = r(\alpha_{i+1})$ for all $i < n$.

Notation

Let $E = (E^0, E^1, r, s)$ be a topological graph. We call

- E^0 the space of vertices,
- E^1 the space of edges,
- E^* the set of finite paths, i.e. concatenations $\alpha_1\alpha_2\cdots\alpha_n$ with $n \in \mathbb{N}$ and $s(\alpha_i) = r(\alpha_{i+1})$ for all $i < n$.
- E^∞ the set of infinite paths $\alpha_1\alpha_2\cdots$ with $s(\alpha_i) = r(\alpha_{i+1})$ for all i .

Theorem (Yeend 2007)

*Let $E = (E^0, E^1, r, s)$ be a second countable topological graph.
There exists an amenable locally compact second countable
Hausdorff étale groupoid \mathcal{G}_E such that*

Theorem (Yeend 2007)

Let $E = (E^0, E^1, r, s)$ be a second countable topological graph.
There exists an amenable locally compact second countable
Hausdorff étale groupoid \mathcal{G}_E such that

- $C^*(\mathcal{G}_E) \simeq C^*(E)$,

Theorem (Yeend 2007)

Let $E = (E^0, E^1, r, s)$ be a second countable topological graph.

There exists an amenable locally compact second countable Hausdorff étale groupoid \mathcal{G}_E such that

- $C^*(\mathcal{G}_E) \simeq C^*(E)$,
- the unit space $\mathcal{G}_E^{(0)}$ of \mathcal{G}_E is homeomorphic to a subset ∂E of $E^* \sqcup E^\infty$ equipped with a natural cylinder topology,

Theorem (Yeend 2007)

Let $E = (E^0, E^1, r, s)$ be a second countable topological graph.

There exists an amenable locally compact second countable Hausdorff étale groupoid \mathcal{G}_E such that

- $C^*(\mathcal{G}_E) \simeq C^*(E)$,
- the unit space $\mathcal{G}_E^{(0)}$ of \mathcal{G}_E is homeomorphic to a subset ∂E of $E^* \sqcup E^\infty$ equipped with a natural cylinder topology, and
- there exists a canonical groupoid homomorphism $\Phi : \mathcal{G}_E \rightarrow \mathbb{Z}$.

Theorem (Yeend 2007)

Let $E = (E^0, E^1, r, s)$ be a second countable topological graph.

There exists an amenable locally compact second countable Hausdorff étale groupoid \mathcal{G}_E such that

- $C^*(\mathcal{G}_E) \simeq C^*(E)$,
- the unit space $\mathcal{G}_E^{(0)}$ of \mathcal{G}_E is homeomorphic to a subset ∂E of $E^* \sqcup E^\infty$ equipped with a natural cylinder topology, and
- there exists a canonical groupoid homomorphism $\Phi : \mathcal{G}_E \rightarrow \mathbb{Z}$.
 Φ gives rise to an action of \mathbb{T} on $C^*(E)$ which we denote the gauge-action.

Table of Contents

1. Topological graphs and their C^* -algebras
2. Traces on topological graph C^* -algebras
3. Loops in graphs

Definition

Let \mathcal{A} be a C^* -algebra. We call a state ψ on \mathcal{A} a tracial state if

$$\psi(ab) = \psi(ba) \quad \text{for all } a, b \in \mathcal{A}.$$

Definition

Let μ be a regular Borel measure on E^0 . We call μ a vertex-invariant measure if it satisfies

$$\int_{E^1} f \circ r \, ds^* \mu \leq \int_{E^0} f \, d\mu$$

for all positive functions $f \in C_c(E^0)$, and with equality when $\text{supp}(f) \subseteq E_{\text{reg}}^0$.

Tracial states on topological graphs

Definition

Let μ be a regular Borel measure on E^0 . We call μ a vertex-invariant measure if it satisfies

$$\int_{E^1} f \circ r \, ds^* \mu \leq \int_{E^0} f \, d\mu$$

for all positive functions $f \in C_c(E^0)$, and with equality when $\text{supp}(f) \subseteq E_{\text{reg}}^0$.

Definition

Let ν be a regular Borel measure on ∂E .

Definition

Let μ be a regular Borel measure on E^0 . We call μ a vertex-invariant measure if it satisfies

$$\int_{E^1} f \circ r \, ds^* \mu \leq \int_{E^0} f \, d\mu$$

for all positive functions $f \in C_c(E^0)$, and with equality when $\text{supp}(f) \subseteq E_{\text{reg}}^0$.

Definition

Let ν be a regular Borel measure on ∂E . We let σ on $\partial E (\subseteq E^* \sqcup E^\infty)$ denote the shift map, i.e. $\sigma(\alpha_1 \alpha_2 \dots) = \alpha_2 \dots$.

Definition

Let μ be a regular Borel measure on E^0 . We call μ a vertex-invariant measure if it satisfies

$$\int_{E^1} f \circ r \, ds^* \mu \leq \int_{E^0} f \, d\mu$$

for all positive functions $f \in C_c(E^0)$, and with equality when $\text{supp}(f) \subseteq E_{\text{reg}}^0$.

Definition

Let ν be a regular Borel measure on ∂E . We let σ on $\partial E (\subseteq E^* \sqcup E^\infty)$ denote the shift map, i.e. $\sigma(\alpha_1 \alpha_2 \dots) = \alpha_2 \dots$. We call ν an invariant measure if it satisfies

$$\nu(\sigma(A)) = \nu(A) \quad \text{for all Borel } A \subseteq \partial E \setminus E^0 \text{ with } \sigma \text{ injective on } A.$$

Theorem (Schafhauser 2016)

Let $E = (E^0, E^1, r, s)$ be a topological graph. There is a bijection between

- (1) The vertex-invariant probability measures μ on E^0 .
- (2) The σ -invariant probability measures ν on ∂E .
- (3) The gauge-invariant tracial states on $C^*(E)$.

Theorem (Schafhauser 2016)

Let $E = (E^0, E^1, r, s)$ be a topological graph. There is a bijection between

- (1) The vertex-invariant **probability measures** μ on E^0 .
- (2) The σ -invariant **probability measures** ν on ∂E .
- (3) The gauge-invariant **tracial states** on $C^*(E)$.

Theorem (C. 2022)

Let $E = (E^0, E^1, r, s)$ be a topological graph. There is a bijection between

- (1) The vertex-invariant **regular measures** μ on E^0 .
- (2) The σ -invariant **regular measures** ν on ∂E .
- (3) The gauge-invariant **tracial weights** on $C^*(E)$.

Conjecture (Schafhauser 2016)

Let E be a topological graph. All tracial states on $C^(E)$ are gauge-invariant when E is free.*

Conjecture (Schafhauser 2016)

Let E be a topological graph. All tracial states on $C^(E)$ are gauge-invariant when E is free.*

Remark

Free is a simultaneous generalisation of the notion of condition (K) for directed graphs and the notion of freeness for actions of \mathbb{Z} .

Conjecture (Schafhauser 2016)

Let E be a topological graph. All tracial states on $C^(E)$ are gauge-invariant when E is free.*

Remark

Free is a simultaneous generalisation of the notion of condition (K) for directed graphs and the notion of freeness for actions of \mathbb{Z} .

Theorem (Katsura 2006)

Simplicity of the C^ -algebra $C^*(E)$ implies that the topological graph E is free.*

Theorem (C. 2018)

We can, loosely speaking, associate a non-gauge invariant tracial weight to a σ -invariant measure ν on ∂E if and only if $\text{Per}(x) := \{k - l \in \mathbb{Z} \mid \sigma^k(x) = \sigma^l(x)\} \neq \{0\}$ on a set of positive ν -measure.

1. Topological graphs and their C^* -algebras

2. Traces on topological graph C^* -algebras

3. Loops in graphs

Definition

Let E be a topological graph. We call $\alpha = \alpha_1 \cdots \alpha_n \in E^*$ a loop if $|\alpha| = n \geq 1$ and $s(\alpha) = r(\alpha)$ where $s(\alpha) = s(\alpha_n)$ and $r(\alpha) = r(\alpha_1)$.

Definition

Let E be a topological graph. We call $\alpha = \alpha_1 \cdots \alpha_n \in E^*$ a loop if $|\alpha| = n \geq 1$ and $s(\alpha) = r(\alpha)$ where $s(\alpha) = s(\alpha_n)$ and $r(\alpha) = r(\alpha_1)$.

Definition

We call an element $x \in \partial E$ an eventually cyclic path if there exists a loop $\alpha \in E^*$ and a $\beta \in E^*$ with $s(\beta) = r(\alpha)$ such that

$$x = \beta\alpha^\infty.$$

Definition

Let E be a topological graph. We call $\alpha = \alpha_1 \cdots \alpha_n \in E^*$ a loop if $|\alpha| = n \geq 1$ and $s(\alpha) = r(\alpha)$ where $s(\alpha) = s(\alpha_n)$ and $r(\alpha) = r(\alpha_1)$.

Definition

We call an element $x \in \partial E$ an eventually cyclic path if there exists a loop $\alpha \in E^*$ and a $\beta \in E^*$ with $s(\beta) = r(\alpha)$ such that

$$x = \beta\alpha^\infty.$$

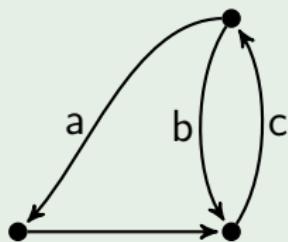
Observation

An element $x \in \partial E$ satisfies $\text{Per}(x) \neq \{0\}$ if and only if x is an eventually cyclic path.

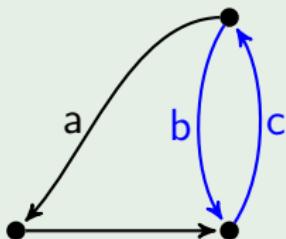
Example



Example



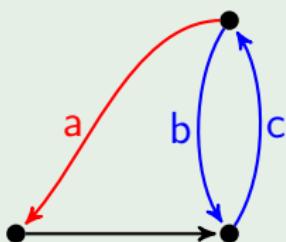
Example



The path cb is an example of a loop.

Eventually cyclic paths

Example



The infinite path $acbcacbcb\cdots$ is an eventually cyclic path.

Definition (C. 2022)

Let E be a topological graph and let α be a loop in E . Set

$$E_\alpha^* = \{\beta \in E^* \mid s(\beta) = r(\alpha), \beta \neq \beta'\alpha \text{ for some } \beta'\}.$$

Definition (C. 2022)

Let E be a topological graph and let α be a loop in E . Set

$$E_\alpha^* = \{\beta \in E^* \mid s(\beta) = r(\alpha), \beta \neq \beta'\alpha \text{ for some } \beta'\}.$$

We call a loop $\alpha \in E^*$ summable if

- α is not on the form γ^n for a $\gamma \in E^*$ and a $n > 1$, and
- for all $w \in E^0$ there exists an open neighbourhood V_w of w with

$$|\{x \in E_\alpha^* \mid r(x) \in V_w\}| < \infty.$$

Theorem (C. 2022)

Let E be a topological graph. All tracial weights on $C^(E)$ are gauge-invariant if and only if there does not exist a summable loop α in E .*

Theorem (C. 2022)

Let E be a topological graph. All tracial weights on $C^(E)$ are gauge-invariant if and only if there does not exist a summable loop α in E .*

Theorem (C. 2022)

Let E be a topological graph. All tracial states on $C^(E)$ are gauge-invariant if and only if there does not exist a summable loop α in E with $|E_\alpha^*| < \infty$.*

Theorem

Let E be a topological graph. If E is free, then all tracial weights on $C^(E)$ are gauge-invariant.*

Theorem (C. 2022)

Let $E = (E^0, E^1, r, s)$ be a topological graph. If E is free then all tracial weights are gauge-invariant.

Theorem (C. 2022)

Let $E = (E^0, E^1, r, s)$ be a topological graph. If E is free then all tracial weights are gauge-invariant. This implies that there is a bijection between

- (1) The vertex-invariant regular measures μ on E^0 .
- (2) The σ -invariant regular measures ν on ∂E .
- (3) The tracial weights on $C^*(E)$.

Thank you for your attention