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Kinetic and quantum theories
Classical setting: Phase space z = (x , v) ∈ R2d

▶ Probability distribution f = f (t, z)
▶ Position density ϱf (x) =

∫
Rd f (x , v) dv

▶ pair interaction K(x − y), mean-field potential

Vf (x) = (K ∗ ϱf )(x) =
∫
Rd

K(x − y) ϱf (y) dy

▶ Vlasov equation
∂t f + v · ∇x f − ∇Vf · ∇v f = 0

Quantum setting: phase space (x ,p) = (x ,−iℏ∇), with ℏ = h/(2π)
▶ density operator ρ ∈ L∞(L2(Rd))

ρ ≥ 0, hd Tr(ρ) = 1

▶ Position density ϱρ(x) = hdρ(x , x)
▶ Hartree(–Fock) equation

iℏ ∂tρ = [H,ρ] with H = −ℏ2∆
2 + Vρ − Xρ

with mean-field potential Vρ = K ∗ ϱρ
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Mean-field and semiclassical limit

Lower densities of
bosons and fermions

Higher densities of bosons
ℏ = N−1/3 ℏ = N−1/2

Schrödinger Hartree(-Fock)

Newton Vlasov

N−1 → 0 (ℏ = 1)

ℏ → 0
ℏ → 0

(N = ∞)

N−1 → 0 (ℏ = 0)
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Weyl quantization and Wigner transform

Symmetric quantization of operators

ρf :=
∫
R2d

f̂ (y , v) e2iπ(y ·x+v ·p) dy dv

fρ(x , v) :=
∫
Rd

e−i y ·v/ℏ ρ(x + y
2 , x − y

2 ) dy

Analogue of the classical kinetic density (see e.g. [Lions–Paul ’93])

∂t fρ + v · ∇x fρ = Bh ∗ fρ −→
h→0

∇Vf · ∇v f

hd Tr((A(x) + B(p)) ρ) =
∫∫

R2d
(A(x) + B(v)) fρ(x , v) dx dv

But
▶ not necessarily positive, Lebesgue norms Lp

x,v not preserved (p ̸= 2)
▶ Husimi transform f̃ρ = 1

(πℏ)d e−|z|2/ℏ ∗ fρ positive but worse equation
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Classical to quantum dictionary

Classical Quantum

∂t f = {Hf , f } ,Hf = |v |2

2 + Vf iℏ ∂tρ = [Hρ,ρ]∫
R2d

f |v |n dx dv hd Tr
(
|p|n ρ

)
, |p|2 = p∗p = −ℏ2∆

∥f ∥Lp(R2d ) ∥ρ∥Lp = h
d
p Tr

(
|ρ|p

) 1
p

f (z − z0) Tz0ρ = e i(ξ0·x−x0·p)/ℏ ρ e i(x0·p−ξ0·x)/ℏ

(f ∗ g)(z ′) =
∫
R2d

f (z) g(z ′ − z) dz f ⋆ ρ =
∫
R2d

f (z) Tzρ dz

∇x f = {−v , f }, ∇v f = {x , f } ∇x ρ = [∇,ρ] , ∇ξρ =
[ x

iℏ ,ρ
]

=⇒ Quantum Sobolev norms (remain bounded along the dynamic!)

∥ρ∥Ẇ1,p = ∥∇ρ∥Lp ≃ ∥∇x ρ∥Lp + ∥∇ξρ∥Lp
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Quantum Sobolev inequalities
Gagliardo and Bessel semi-norms

∥ρ∥p
Ẇs,p := γs,p

∫
R2d

hd Tr
(
|Tzρ − ρ|p

)
|z |2d+sp dz s ∈ (0, 1)

∥ρ∥Ḣs,p :=
∥∥∥(−∆)s/2ρ

∥∥∥
Lp

s ∈ [0, 2]

with (−∆)sρ := ρ(−∆z )s fρ
, that is ∆ = ∆x + ∆ξ = ∇ · ∇ and

(−∆)sρ = cs

∫
Rd

ρ − Tzρ

|z |2d+2s dz s ∈ (0, 1)

Theorem (LL ’22)
Let s ∈ [0, 1], 1 ≤ p ≤ q < ∞ such that 1

p − 1
q = s

2d , then there exists Cs,p and
C′

s,p independent of ℏ such that for any compact operator ρ,

∥ρ∥Lq ≤ Cs,p ∥ρ∥Ẇs,p

∥ρ∥Lq ≤ C′
s,p ∥ρ∥Ḣs,p if p > 1
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Uncertainty for the skew information
In the case s = 1,

∥ρ∥Lq ≤ Cd,p ∥∇x ρ∥1/2
Lp ∥∇ξρ∥1/2

Lp if 1
q = 1

p − 1
2d

Wigner–Yanase skew information: for an operator A ≥ 0,

IA(ρ) = 1
2 Tr

(
|[A,√ρ]|2

)
Smaller than the variance IA(ρ) ≤ σA(ρ)2 := Tr

(
ρ |A − Tr(ρA)|2

)
, but Sobolev

inequality with p = 2 still implies√
Ix (ρ) Ip(ρ) ≥ ℏ

8π C2
1,2

∥ρ∥ d
d−1

In the case of projection operators ρ = ρ2 in dimension d = 3 with Tr(ρ) = N

∥[x ,ρ]∥2 ∥[∇,ρ]∥2 ≥ N2/3

4π
(
C̃S

1,2
)2
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Semiclassical convolution

f ⋆ ρ =
∫
R2d

f (z) Tzρ dz

Convolution inequalities.
▶ Young’s inequality (Werner ’84)
▶ Hardy–Littlewood–Sobolev’s inequality. Let (p, q, r) ∈ (1,∞)3. There exists C

independent of ℏ such that for any f ∈ Lq,∞ and ρ ∈ Lr ,

∥f ⋆ ρ∥Lp ≤ C ∥f ∥Lq,∞ ∥ρ∥Lr if 1 + 1
p = 1

q + 1
r

Toeplitz operators (Wick quantization)

ρ̃f = 1
hd

∫
R2d

f (z) |ψz⟩ ⟨ψz | dz = gh ⋆ ρf , gh(z) = 1
(πℏ)d e−|z|2/ℏ

∥ρ̃f ∥Lp ≤ ∥f ∥Lp(R2d )

Sobolev inequalities - idea of the proof: Since ˜̃ρ = ρ̃f̃ρ
,

∥ρ∥Lq ≤
∥∥f̃ρ

∥∥
Lq(R2d ) +

∥∥ρ − ˜̃ρ∥∥Lq
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Quantum optimal transport
Quantum pseudo-distance [Golse–Mouhot–Paul ’16]

▶ Quantum–quantum coupling γ ∈ C(ρ,ρ2) ⊂ L1(L2(Rd) ⊗ L2(Rd))

hd Tr1(γ) = ρ2, hd Tr2(γ) = ρ

▶ Analogue to Monge–Kantorovich–Wasserstein distance

W2,ℏ(ρ,ρ2) = min
γ∈C(ρ,ρ2)

h2d Tr(ch γ) ≥ 2 d ℏ

with cost chφ(y1, y2) =
(
|y1 − y2|2 + |p1 − p2|2

)
φ(y1, y2)

Semiclassical pseudo-distance [Golse–Paul ’17]
▶ Semiclassical coupling γ ∈ C(f ,ρ)

hd Tr(γ(z)) = f (z),
∫
R2d

γ(z) dz = ρ

▶ Classical to quantum pseudo-distance

W2,ℏ(f ,ρ)2 = min
γ∈C(f ,ρ)

hd
∫
R2d

Tr(ch(z) γ(z)) dz ≥ d ℏ

with ch(z)φ(y) =
(
|x − y |2 + |v − p|2

)
φ(y)
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Quantum optimal pseudometrics properties
Theorem (Golse–Mouhot–Paul ’16, Golse–Paul ’17 ’22)

Bound by below

W2(f , f̃ρ)2 ≤ W2,ℏ(f ,ρ)2 + d ℏ

W2(f̃ρ1 , f̃ρ2)
2 ≤ W2,ℏ(ρ1,ρ2)2 + 2 d ℏ

Special case: Toeplitz operators ρ = ρ̃f

W2,ℏ(f , ρ̃g )2 ≤ W2(f , g)2 + d ℏ
W2,ℏ(ρ̃f , ρ̃g )2 ≤ W2(f , g)2 + 2 d ℏ

Triangle inequalities

W2,ℏ(f ,ρ) ≤ W2(f , g) + W2,ℏ(g ,ρ)
W2,ℏ(ρ,ρ2) ≤ W2,ℏ(ρ, g) + W2,ℏ(g ,ρ2)

In particular,
W2,ℏ(f , ρ̃f )2 = d ℏ and W2,ℏ(ρ̃f , ρ̃f )2 = 2 d ℏ
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Quantum optimal transport versus Sobolev norms
Theorem (LL ’23)

"Self-distance bound"

W2,ℏ(f̃ρ,ρ)2 ≤ d ℏ + ℏ2 ∥∇√
ρ∥2

L2

W2,ℏ(ρ,ρ)2 ≤ 4 d ℏ + 4 ℏ2 ∥∇√
ρ∥2

L2

If 0 ≤ ρ,ρ2 ≤ 1 then
∥ρ − ρ2∥Ḣ−1 < W2,ℏ(ρ,ρ2) + 2

√
d ℏ

If hd Tr
(
(|x |n + |p|n) (ρ + ρ2)

)
is bounded uniformly in ℏ

W2,ℏ(ρ,ρ2) ≤ C ∥ρ − ρ2∥θ
Ẇ−1,1 +

√
2 d ℏ + ℏ ∥∇√

ρ∥L2 + ℏ
∥∥∇√

ρ2
∥∥

L2

=⇒ Small self-distances for thermal states, powers of Toeplitz operators, Slater
determinants ...
Self-distance bound - Idea of proof: Use the coupling

γ(z) := ρ1/2 Tzρgh
ρ1/2
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Open questions

1 Are the norms H1,p and W1,p equivalent?
▶ Equivalently, quantum analogue to the boundedness of Fourier multipliers:

∇(−∆)−1/2 bounded on Lp?
▶ Known in the case ∇ξ(−∆ξ)−1/2, which is the Schur multiplier by x−y

|x−y| , see
e.g. [Conde-Alonso–González-Pérez–Parcet–Tablate ’23]

2 Can commutators be bounded by Sobolev norms?
▶ Is a bound of the form ∥[A,B]∥Lp ≤ C ℏ ∥A∥W1,q ∥B∥W1,r true ?
▶ Known if q = ∞, 1 < r = p < ∞ and A is a multiplication operator

[Potapov–Sukochev ’11]
▶ It can be proved that ∥[A,B]∥Lp ≤ C ℏ ∥A∥Hd+1 ∥B∥W1,p

3 Is there a general uncertainty inequality for the Wigner–Yanase skew
information?

▶ Assuming [A,B] = ℏ, is there C > 0 independent of ℏ such that√
IA(ρ) IB(ρ) ≥ C ℏ ∥ρ∥ d

d−1
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Thank you for your attention!

Laurent Lafleche (UMPA, ENS Lyon) Quantum Sobolev and optimal transport Ghent 2024 13 / 13



The case of projection operators
Slater determinants

▶ ρN = |ΨN⟩ ⟨ΨN | with Nhd = 1 and ΨN(x1, . . . xN) := 1√
N! det(ψj(xk))1≤j,k≤N

▶ First marginal is not "semiclassically smooth" [LL ’23]

ρN:1 =
N∑

j=1

|ψj⟩ ⟨ψj | =⇒ ρ2
N:1 = ρN:1 and ρN:1 /∈ W s,p, s > 1

p , p > 1

▶ Spectral functions with V nice [Fournais–Mikkelsen ’20]

ρV := 1R− (−ℏ2∆ + V ) ∈ W1,1 =⇒ ∥∇ρV ∥L2 ≤ CV /
√
ℏ

▶ By the "self-distance bound" for W2,ℏ,

W2,ℏ(f̃ρ,ρ)2 ≤ d ℏ + CV ℏ

1/p

s
W1,∞ H1 W1,1

W 1
2 ,∞

L∞ L2 L1



Schatten norm estimates
Theorem (LL–Saffirio ’23)
If f is initially sufficiently smooth, ρ a solution of Hartree(–Fock) equation and ρf
is the Weyl quantization of f , then

∥ρ − ρf ∥L1 ≤
(∥∥ρin − ρin

f
∥∥

L1 + Cf (t) ℏ
)

eλf (t)

Classical case: weak-strong uniqueness

∥f1 − f2∥L1(R6) ≤
∥∥f in

1 − f in
2
∥∥

L1(R6) exp
(

C
∫ T

0
∥∇v f2∥L3,1

x L1
v

dt
)
,

Proof: (∂t + v · ∇x − ∇V1 · ∇v ) (f1 − f2) = (∇V1 − ∇V2) · ∇v f2, so that, since
V = K ∗ ϱ, we obtain

∂t

∫
R2d

|f1 − f2| dx dv = −
∫
R2d

(ϱ1 − ϱ2) ∇K ∗
∫
Rd

sgn(f1 − f2) ∇v f2 dv dx

≤ ∥f1 − f2∥L1

∥∥∥∥∇K ∗
∫
Rd

|∇v f2| dv
∥∥∥∥

L∞
,



Mean-field limit

Theorem (Chong–LL–Saffirio ’21)
Let ρ be a solution of the Hartree–Fock equation initially smooth in a
semiclassical sense. Then there exists k,T > 0, ρin

N,ρ ∈ L1(F) such that for any
ρN solution of Schrödinger equation with initial condition ρin

N ∈ L1(F)
commuting with N , for any t ∈ [0,T ]

∥ρN:1 − ρ∥L1 ≲
C eλ t

N1/2

(
1 +

∥∥∥(N + N)k (
ρin

N − ρin
N,ρ

)∥∥∥
L1(F)

)
where λ is independent of ℏ if a < 1/2.

Other Lp estimates possible with p > 1 and other rates
Schrödinger to Vlasov?

▶ For a < 1/2 and "regular" mixed states
Example: thermal states [Chong–LL–Saffirio ’23]

▶ Pure states cannot be that regular!



Main steps of the proof of the mean-field
Uniform-in-ℏ regularity for the Hartree–Fock equation

▶ Let m = 1 + |p|n with n ≥ 3 and ρ such that

ρin,
√

ρin ∈ L∞(m) ∩ W1,2(m) ∩ W1,4(m).

Then there exists T > 0 such that uniformly in ℏ it holds

ρ,
√

ρ ∈ L∞([0,T ],L∞(m) ∩ W1,2(m) ∩ W1,4(m)),

Mean-Field
▶ Purification of mixed states: take an appropriate square root

ρN ∈ L1(F(L2)) → νN ∈ L2(F(L2)) such that |νN |2 = ρN

▶ Identify the kernel of the operator with a function of a double Fock space

νN ∈ L2(F(L2)) → ΨρN ∈ F
(
L2 ⊕ L2)

▶ Bogoliubov transformation Rt = Rρt

Ψt = R∗
t e i t LN RtΨin

▶ Number of particles outside the Bogoliubov state ρN,ρ such that

ΨρN,ρ
= R∗

t e itLN RtΩ
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