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Kinetic and quantum theories

o Classical setting: Phase space z = (x, v) € R??
» Probability distribution f = f(t, z)
> Position density or(x) = [, f(x,v)dv
> pair interaction K(x — y), mean-field potential

Vi(x) = (K * 07)(x) = / e — i)y

Rd
» Vlasov equation
Oef +v-Vif —=VV; -V, f =0
@ Quantum setting: phase space (x, p) = (x, —ihV), with h = h/(27)
> density operator p € L>=(L*(R?))

p>0, h Tr(p) =1

» Position density 0,(x) = h?p(x, x)
> Hartree(—Fock) equation

—h2A
2

ihdep=1[H,p] with H= +V,—X,

with mean-field potential V, = K * g,
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Mean-field and semiclassical limit

Lower densities of 2:v Higher densities of bosons
bosons and fermions N = N-1/3 N B = N-1/2
N=! =0 (=1

Schrodinger

Hartree(-Fock)

F 0 h—0
7 (N = 00)
Newton Vlasov

N-1 =0 (h =0)
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Weyl quantization and Wigner transform

@ Symmetric quantization of operators
pr = / Fly, v) eXm>tvp) 4y dv
R2d
Bev) = [ e Mol ox— D)y

@ Analogue of the classical kinetic density (see e.g. [Lions—Paul '93])

atfp+V'VXfp: Bh*fp ?OVvavf

HTH(AG) + B(6)) ) = [[ | (AG)+ BW) flx,v) dxdv

o But
> not necessarily positive, Lebesgue norms L, not preserved (p # 2)
-~ 2
» Husimi transform f, = ﬁ e I?I'/7 & £, positive but worse equation
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Classical to quantum dictionary

Classical Quantum
2
8ef = {Hy, F},Hr = L + v; ih8:p = [Hp, p]
/ flv|"dxdv h Tr(lp|" p) . P = p*p = —H2A
R2d

d 1
11l o (e ol 2o = h» Tr(|pl”)*
f(z—z) T,p = el(€o-x=x0-p)/ R pef(Xo-p—ﬁo-X)/ﬁ
(f*g)(z’):/ f(z)g(z' — z)dz f*p:/ f(z) T,pdz

R2d R2d
X

Vif = {—v,f}, Vof = {x,f} Vo=Vl Vep= | ]

= Quantum Sobolev norms (remain bounded along the dynamic!)

lolhire = Vol 2o 2 IVxpll 2o + I Vel 2o
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Quantum Sobolev inequalities

Gagliardo and Bessel semi-norms

W Te([T.p - I
el =00 [ |(z|;,+sp ) 42 sc(01)

A)s/? s€[0,2]

lples = |[(~2)

with (—A)*p := p(_p, )¢, thatis A = A, + D¢ =V -V and

P—sz
(_A)Sp:CS/RdeZ 56(0,1)

Theorem (LL '22)

Let s €[0,1], 1 < p < g < oo such that & — = = 5, then there exists Cs , and
C. , independent of h such that for any compact operator p,

1Pl 2o < Cspp llPI1isn
el 2o SC/,,HPHHS,, if p>1
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Uncertainty for the skew information

In the case s =1,

1/2 1/2 L1 1
1ol o < Ca IVl [ VepllZ? if =z

T

Wigner—Yanase skew information: for an operator A > 0,

(o) = 5 To(IIA VA

Smaller than the variance Ia(p) < cga(p)? == Tr(p |A— Tr(pA)|2), but Sobolev
inequality with p = 2 still implies

Vo) bo) 2 5 ol s,

In the case of projection operators p = p? in dimension d = 3 with Tr(p) = N
N2/3

— < 2

4t (Cﬁz)
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Semiclassical convolution

fxp :/ f(z2)T,pdz
R2d

@ Convolution inequalities.
> Young's inequality (Werner '84)

» Hardy-Littlewood—Sobolev's inequality. Let (p, q,r) € (1,00)3. There exists C
independent of 7 such that for any f € L9°° and p € L',

. 1 1 1
% pllze < Clifll g lloll2r If1+13:5+7
e Toeplitz operators (Wick quantization)
~ 102
Pr = hld /2d f(z) |7/)z> <wz| dz = gn * pr, gh(Z) = (ﬂ,}i)d e~lZI'/R
R

16l 2o < (11l o(aay

@ Sobolev inequalities - idea of the proof: Since Z = ;N)?
P

lollze < 1ol ey + Il = 2l 2o
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Quantum optimal transport

@ Quantum pseudo-distance [Golse-Mouhot—Paul '16]
» Quantum—quantum coupling v € C(p, p,) C L} (L*(R?) ® L*(R?))

h? Tri(y) = po, h? Tro(y) =p
> Analogue to Monge—Kantorovich—\Wasserstein distance

Wan(p,p,) = min  h9Tr(chy) >2dh
Yy

€C(p,p2)

with cost chp(v1,¥2) = (Iy1 — y2I* + Py — poI*) (31, 32)

@ Semiclassical pseudo-distance [Golse-Paul '17]
» Semiclassical coupling v € C(f, p)

FTa@) =D, [ @iz=p

» Classical to quantum pseudo-distance

Wain(f,p)*> = min h° Tr(ch(z)v(z))dz > dh
veC(f,p)  Jpad

with cp(2)p(y) = (|x —yP+v- P|2)SD(Y)
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Quantum optimal pseudometrics properties
Theorem (Golse-Mouhot—Paul '16, Golse-Paul '17 '22)
@ Bound by below
Wa(f, f,)? < Wan(f, p)* + d i
Wa(fo,, fp,)* < Won(py, p2)* +2d b

o Special case: Toeplitz operators p = ps

Wai(f,p,)? < Wa(f,g)* +dh
Wa,n(Pr, Pg)” < Wa(f,g)* +2dh

o Triangle inequalities

W 1 (f, p) < Wa(f,g) + War(g,p)
Wa n(p, po) < Wan(p, g) + Wan(g, po)

In particular,
Waorn(f,pe)> =dh and  Wan(ps, pe)’ =2dh
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Quantum optimal transport versus Sobolev norms

Theorem (LL '23)
e "Self-distance bound"

W2,h(;:p7p)2 <dh+h? ||V\/ﬁ||2£2
Wa(p,p)> < 4dh+41 ||V /pl2

e If0< p,p, <1 then
lp = pally—» < Wan(p,py) +2Vdh

o IFh?Tr((|x|"+ |p|") (p + po)) is bounded uniformly in h
Wan(p, p2) < Cllp = pollyy-1a + V2d b+ |V /Bl 2 + B || V55 2

— Small self-distances for thermal states, powers of Toeplitz operators, Slater
determinants ...

o Self-distance bound - Idea of proof: Use the coupling

1/2 T 1/2

v(z) = 2Pg, P
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Open questions

@ Are the norms H*P and W' equivalent?
» Equivalently, quantum analogue to the boundedness of Fourier multipliers:
V(—A)2 bounded on £P?
» Known in the case Ve(—A¢)~Y/2, which is the Schur multiplier by oy, see
e.g. [Conde-Alonso—Gonzalez-Pérez—Parcet—Tablate '23]
@ Can commutators be bounded by Sobolev norms?
> Is a bound of the form ||[A, B]|| ., < Ch||Allyy1.q |Bllyp.r true ?

» Knownifg=o00,1<r=p< oo and A s a multiplication operator
[Potapov—Sukochev '11]
> It can be proved that ||[A, B]|| ., < CT[|All; 441 | Bllypre
© Is there a general uncertainty inequality for the Wigner—Yanase skew
information?

» Assuming [A, B] = P, is there C > 0 independent of % such that

Via(p) Is(p) = Chlpll o,
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Thank you for your attention!
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The case of projection operators

@ Slater determinants
> Py = ‘\UN> <\UN‘ with th =1 and \VN(Xl, .. .XN) = ﬁ det(wj(xk))lgj,kg,\,
» First marginal is not "semiclassically smooth" [LL '23]

N
Pni1 = Z |¢1> <wj‘ = p?\l:l = Pn:1 and Py ¢ Ws,p» s> %7 p> 1
j=1

» Spectral functions with V' nice [Fournais—Mikkelsen '20]
pv =1z (-WA+ V) eWH = |[Vpyllp < Cv/Vh
» By the "self-distance bound" for W s,

Wz,h(%;,ﬂf <dh+ Cvh

Wl,x — Hl — Wl,l
W0
1/p
L £2 |

Ll



Schatten norm estimates

Theorem (LL-Saffirio '23)

If f is initially sufficiently smooth, p a solution of Hartree(—Fock) equation and ps
is the Weyl quantization of f, then

lp = pellr < ([ = PPl o2 + Ce(2) B) M)

Classical case: weak-strong uniqueness

)
1~ Bllaguey < 1B = 71 oy o0 (c / AT dr) ,

Proof: (0: +v-Vx—VWi-V,)(A—H)=(VVi—VV)- V.,f, so that, since
V = K % p, we obtain

at/ |f1—f2\dxdv:—/ (01 — 02) VK */ sgn(fi — k) V,hdvdx
R2d R2d Rd

< I =l

)
Lo

VK*/ |V, f|dv
Rd




Mean-field limit

Theorem (Chong—LL-Saffirio '21)

Let p be a solution of the Hartree—Fock equation initially smooth in a
semiclassical sense. Then there exists k, T > 0, pi,{,‘ﬁ € LY(F) such that for any
py solution of Schrédinger equation with initial condition pi € L1(F)
commuting with N/, for any t € [0, T]

)

Ce)\t k in in
oy — el S NIz (1 + H(N+ N) (PN — P/v,p)‘

where X is independent of i if a < 1/2.

@ Other LP estimates possible with p > 1 and other rates
@ Schrédinger to Vlasov?

» For a < 1/2 and "regular" mixed states
Example: thermal states [Chong—LL—Saffirio '23]
> Pure states cannot be that regular!



Main steps of the proof of the mean-field

@ Uniform-in-7 regularity for the Hartree—Fock equation
» Let m=1+ |p|” with n > 3 and p such that

P/ pm € £2°(m) N W (m) n W (m).
Then there exists T > 0 such that uniformly in £ it holds
p,v/p € LZ([0, T], £ (m) N\ W2 (m) N W (m)),
@ Mean-Field

» Purification of mixed states: take an appropriate square root
py € LNF(L%)) = vy € L2(F(L?)) such that |vn|> = py
> Identify the kernel of the operator with a function of a double Fock space
vn € LAF(L%)) = V,, € F(LP @ L)
» Bogoliubov transformation R: = Ry,
V. =R; VR
> Number of particles outside the Bogoliubov state p , such that

v, =R!e™R,Q

PN,p
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