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Ω
1 a((db)c)=(a(db))c bimodule

d : A → Ω
1 d(ab)=(da)b+a(db) Leibniz rule

space of 1-forms, e.g. `differentials’

  Differential calculus

Extend to DGA of differential forms Ω = TAΩ
1/I = ⊕nΩ

n, d
2

= 0

surjectivity
{
∑

adb} = Ω
1

Classically, C1(M) = ⌦0(M) ⇢ ⌦(M) = �i⌦
i(M)

⌦1 df =
X

i

@f

@xi
dxi

fdg = (dg)f 2 ⌦1

^ : ⌦⌦A ⌦ ! ⌦, d(! ^ ⌘) = (d!) ^ ⌘ + (�1)|!|! ^ d⌘

! ^ ⌘ = (�1)|!||⌘|⌘ ^ !, d2 = 0

Algebra A over ;  drop the (graded) commutativity but keep:k

graded Leibniz rule

(generated by A, dA)

Propn. Every  has a maximal prolongation Ω1 Ωmax
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⊗
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→ A (i) bimodule map inverse             

Metric 

Lemma: bimodule connections extend to tensor products

∇(ω⊗ η) = ∇ω⊗ η + (σ⊗ id)(ω⊗∇η)

∇(fω) = df ⊗ω + f∇ω

σ : Ω
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⊗
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Ω
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→ Ω
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⊗
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Ω
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Connection/covariant derivative

∇(ωf) = σ(ω⊗df) + (∇ω)f
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Ω
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ds2 = ∑
μ,ν

gμνdxμdxν

metrics and connections

Lemma.  a quantum metric is necessarily central

(ω, ag1)g2 = (ωa, g1)g2 = ωa = (ω, g1)g2aProof: 

(ii) some form of quantum symmetry e.g. ∧ (g) = 0



T∇ = ∧∇− d

Quantum Levi-Civita connection (QLC) Tr = rg = 0

QLCs, curvature, *-structure and Dirac op

torsion tensor

* extends to  as an antilinear graded anti-involution commuting with d(Ω, d)

† (g) = g, † = flip( * ⊗ * ) : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1

For A a *-algebra, require

`real’

† ∇ = σ−1 ∇ * *-preserving  *-compatible† σ = σ−1 †

∫ : A → ℂ positive linear functional and e.g. trace, ∫ δ = 0, δ = ( , )∇ : Ω1 → A

Defer functional analysis to the point where actually solve equations

Curvature tensor

T∇ : Ω
1
→ Ω

2

R∇ : Ω1 → Ω2 ⊗A Ω1, R∇ = (d ⊗ id − id ∧ ∇)∇

Geometric spectral triples  for Cliff action and spinor bundle/connD = ▹ ∘ ∇S



Quantum differentials on finite sets 

Propn: X a finite set ,        A = ℂ(X) Ω1 Directed graph 
with vertices X

df = ∑
x→y

( f(y) − f(x))ex→y

Ω1 = spanℂ{ex→y} f . ex→y = f(x)ex→y, ex→y . f = ex→y f(y)

bilocal object    bimodule

Path algebra, in degree i   TAΩ1 = Ω1⊗i = {ex1→x2→⋯→xi
}

 =  relations  Ωmax TAΩ1/ ∑
y:p→y→q

ep→y ∧ ey→q = 0

p ≠ q, not p → q

e*x→y = − ey→x

metric g = ∑
x→y

gx→yex→y ⊗ ey→x, gx→y ∈ ℝ∖{0}

edge symmetric if gx→y = gy→x  real `square-length’ on each edge

if bidirected

if bidirected

For  take all p,qΩmin



dust particles moving on geodesics  tangents define vector field  
obeying geodesic velocity equation 

density  obeys continuity equation 

Xs

ρ

·ψ = − Xs(dψ) − 1
2 ψdiv(Xs)

·Xs + ∇Xs
Xs = 0

·ρ = − Xs(dρ) − ρdiv(Xs)

Let for a wave function  obeying the  amplitude flow equationρ = |ψ |2 ψ

we reverse usual concept 
and first solve for this  
for flow to time s

Xs

Convective derivative  of the divergence is the Ricci tensor
D
Ds

:= ∂
∂s

+ Xs

Ddiv(Xs)
Ds

= − Xj
; iXi

; j − XiXjRicciij

Wave function  on spacetime, s is external geodesic proper timeψ(x, t)

Classical geodesic flows



Quantum geodesic equations

A, Ω1, d, g, ∇ : Ω1 → Ω1 ⊗A Ω1 left conn,  eg.  QLC

right conn    on    ∇χ : χ → χ ⊗A Ω1 Ω−1 := AHom(Ω1, A)

·ψs = − ψsκs − Xs(dψs)
velocity flow  

∫ Xs(ω*) − Xs(ω)* = 0

∀a ∈ A,

∀ω ∈ Ω1

·Xs + [Xs, κs] + (id ⊗ Xs)∇χ(Xs) = 0
amplitude flow

Lemma  Then   constant in s  ∫ ψ*s ψs probabilistic picture

 non-deg      defined by ∫ div∫ ∫ (adiv∫(X) + X(da)) = 0

κs = 1
2 div∫(Xs)

Need say  real with respect to Xs ∫

Can add driving force F to velocity equation to ensure  real    realX0 Xs

flow divergence

Can extend to E = C∞(ℝ, ℋ) ∋ ψ, A acts on  e.g. Schroedinger repnℋ



  QRG of the n-star graph
w/ Beggs arXiv 2023
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Figure 2. configurations in the undirected graph for Prop. 3.3
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Figure 3. configurations in the undirected graph for Prop. 3.3
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Figure 4. n-star graph which we decorate with metric values gi→0 = �−10→i and
g0→i = �−1i→0 for i ∈ {1,2,�n} on the arrows.

Proposition 3.3. Given a Hermitian-metric compatible connection on a graph, ∗-compatibility
(i.e. � †� † = id) reduces to

�
z

�u→y�x→zLz→x,u→yLx→z,v→u = �v,y
where Figure 2 shows the configurations of the points (which may degenerate). If this holds then
the connection is ∗-preserving if and only if

Ny→x,v→x = −�x→y�
z

Nx→y,z→y
∗
�y→zLy→z,v→x

where Figure 3 shows the configurations of the points.

Proof. It is known [4, Prop. 8.11] that if ∇ is ∗ compatible then the inner part is also ∗-preserving
hence for the connection to be ∗-preserving in the presence of ↵ we just need � †↵(⇠∗) = ↵(⇠),
which reduces as shown for ⇠ = !y→x. ⇤

In both propositions, one can set ↵ = 0 so full torsion and ∗-preserving hold for these such
inner connections as soon as they are torsion and ∗-compatible. This applies similarly to all
inner calculi[4, Prop. 8.11]. Also, when our connection is torsion free and ∗-preserving then by
our general comments it is metric compatible in the usual (non hermitian sense) also, i.e. a QLC.

3.1. QRG of star graphs. We consider the n-star graph with n vertices labelled {1,2, . . . , n}
joined to a central vertex labelled 0 as shown in Figure 4. We use the notation i, j, k ∈ {1,2, . . . , n}
for the exterior vertices.

Theorem 3.4. For the n-star graph, hermitian-metric compatible and ∗-compatible connections
exist only if

�0→i

�i→0
= 1√

n

n

∑
i=1

e0→i→0 = 0,   is  dimensionalΩ2
min n − 1 =0Ωi>3

min

Thm.  There exists QLC iff   and   n ≤ 4 gi→0
g0→i

= nQUANTUM GEODESIC FLOWS ON GRAPHS 11

and are necessarily ∗-preserving with ↵ = 0. Using ⌦min, torsion free such connections are the
moduli of QLCs and exist only for n ≤ 4. They consist of (a) solutions

�0→k L0→k,j→0 = 1 − �j,k + s
−1
k√
n
; sk =

�����������
e

3i⇡
4 n = 2

e
5i⇡
6 n = 3
−1 n = 4

up to complex conjugation (i.e. 2 connections for each n), where sk is independent of k, and (b),
when n = 2, more general solutions of the form

�s1� = 1, s2 = − s1 +√2√
2s1 + 1 .

Here, s1 is a free phase parameter and s2 is obtained from s1 by a Möbius transform that maps
phases to phases and has the special values in (a) as its fixed points. Moreover, Lj→0,0→k =
L0→k,j→0

∗ fully specifies �.

Proof. From Proposition 4.2 we have the two conditions, for i, j, k ∈ {1,2, . . . , n}
�
k

�0→i�0→kLk→0,0→iL0→k,j→0 = �j,i
�i→0�j→0L0→j,i→0Lj→0,0→i = 1 .(19)

Note that we must have non-vanishing L’s from the second equation. Substituting one condition
into the other gives for all i, j

�0→i

�i→0
�
k

�0→k

�k→0

L0→k,j→0

L0→k,i→0
= �j,i

In the case where i = j the ratio of the Ls cancels and it follows that the fraction �0→i

�i→0
is

independent of i, and we can solve to find the first stated condition. Now for i ≠ j we have the
restriction

�
k

L0→k,j→0

L0→k,i→0
= 0 .(20)

We then have Lj→0,0→k = L0→k,j→0
∗ and ↵ = 0. Note that so far we have used a subset of the

metric preserving relations, but if solutions exist then by [4, Thm 8.11], due to the calculus being
in the inner case, they have a form given by � and a bimodule map ↵. The latter, however, must
be zero since there are no triangles in the graph. In this case ∗-compatible implies ∗-preserving.

Next, proceeding with this partial solution for Ls, torsion compatibility (which in the present
inner case is equivalent to torsion freeness) becomes

L0→k,j→0 = Q0→k + (1 − �j,k) gk→0

and substituting this in the sum (20) gives for all i ≠ j,
n − 2 + Q0→i + gi→0

Q0→i
+ Q0→j

Q0→j + gj→0
= 0.(21)

The solutions of this simplify when n ≠ 2 as we can show that Q0→2�g2→0 = Q0→1�g1→0. In this
case the solutions are, using the same choice of sign ✏ = ±1 for all i,

Q0→i + gi→0

Q0→i
= −n + 2 + ✏

√
n2 − 4n

2
,

which simplifies to
gk→0

Q0→k
= −n + ✏

√
n2 − 4n
2

.

q =

σ(e0→i ⊗ ei→0) = q−1

n
e0→i ⊗ ei→0 + (1 + q−1

n
)∑

j≠i
e0→j ⊗ ej→0,

σ(ei→0 ⊗ e0→i) = qei→0 ⊗ e0→i,

σ(ei→0 ⊗ e0→j) = −
gj→0

gi→0
q−1ei→0 ⊗ e0→j

∇e0→i = ∑
j

ej→0 ⊗ e0→i − σ(e0→i ⊗ ei→0)

∇ei→0 = e0→i ⊗ ei→0 − ∑
j

σ(ei→0 ⊗ e0→j)
(extends to  moduli
of QLCs for )

U(1)
n = 2

Similarly for  graph, QRG needs greater metric pointing into the bulkAn



  Quantum geodesic flow on n-star graph
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Figure 5. configurations in the undirected graph defining N and L in equation
(22)

−�
s

�s→y Ns→y,z→y �y←s⊗!s→z(22)

where the sums for L,N are over the patterns (possibly degenerate) given by Fig. 5. It then
follows that

(id⊗X)∇�(X) = − �
s∶z→s

X
y←z

�y←z X
s←z + �

s→r

X
y←z

�s→r Ls→r,z→y �r←sX
z←s

−�
s

X
y←z

�s→y Ns→y,z→y �y←sX
z←s(23)

as needed for the geodesic velocity equations.
Next, we consider ∫ of the form

� f =�
X

µ(x)f(x)
for all functions f on the vertex set, with ‘measure’ µ ∶ X → R � {0} so that ∫ is hermitian
and non-degenerate. We preferably also want µ to be positive for the usual interpretation of the
amplitude flow.

From the definitions, it is is immediate that a vector field X = ∑X
r←s

�r←s is real with respect
to ∫ (i.e. the second half of (9) holds) if and only if

(24) (Xy←x)∗ = −µy

µx
X

x←y

Likewise, it is immediate that

(25) div∫ (X)(x) = �
y∶x→y

X
y←x − �

y∶y→x

µy

µx
X

x←y

It then follows that

[X,div∫ (X)] =�X
x←y

�x←y (div∫ (X)(y) − div∫ (X)(x))
=�X

x←y
�x←y � �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
(26)

as also needed for the geodesic velocity equation for the choice  = 1
2div∫ (X). We put these

results together and add the possibility of a driving force F ∈ X.
Proposition 4.1. On a graph, the geodesic velocity equation with driving term F ∈ X is

−Ẋx←y =Xx←y 1

2
� − �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
+�

r,z

X
r←z

�y→xLy→x,z→r X
z←y −�

z

X
x←z

�y→xNy→x,z→xX
z←y + F x←y

If we suppose that X is real with respect to ∫ and stays so then then we also simultaneously
impose

−Ẋx←y =Xx←y 1

2
� �
z∶x→z

µz

µx
X

x←z + �
z∶z→x

X
z←x + �

z∶y→z

µz

µy
X

y←z − �
z∶z→y

X
z←y�
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where the sums for L,N are over the patterns (possibly degenerate) given by Fig. 5. It then
follows that

(id⊗X)∇�(X) = − �
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X
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s→r

X
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−�
s

X
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�s→y Ns→y,z→y �y←sX
z←s(23)

as needed for the geodesic velocity equations.
Next, we consider ∫ of the form

� f =�
X

µ(x)f(x)
for all functions f on the vertex set, with ‘measure’ µ ∶ X → R � {0} so that ∫ is hermitian
and non-degenerate. We preferably also want µ to be positive for the usual interpretation of the
amplitude flow.

From the definitions, it is is immediate that a vector field X = ∑X
r←s

�r←s is real with respect
to ∫ (i.e. the second half of (9) holds) if and only if

(24) (Xy←x)∗ = −µy

µx
X

x←y

Likewise, it is immediate that

(25) div∫ (X)(x) = �
y∶x→y

X
y←x − �

y∶y→x

µy

µx
X

x←y

It then follows that

[X,div∫ (X)] =�X
x←y

�x←y (div∫ (X)(y) − div∫ (X)(x))
=�X

x←y
�x←y � �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
(26)

as also needed for the geodesic velocity equation for the choice  = 1
2div∫ (X). We put these

results together and add the possibility of a driving force F ∈ X.
Proposition 4.1. On a graph, the geodesic velocity equation with driving term F ∈ X is

−Ẋx←y =Xx←y 1

2
� − �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
+�

r,z

X
r←z

�y→xLy→x,z→r X
z←y −�

z

X
x←z

�y→xNy→x,z→xX
z←y + F x←y

If we suppose that X is real with respect to ∫ and stays so then then we also simultaneously
impose

−Ẋx←y =Xx←y 1

2
� �
z∶x→z

µz

µx
X

x←z + �
z∶z→x

X
z←x + �

z∶y→z

µz

µy
X

y←z − �
z∶z→y

X
z←y�

real w.r.t. ∫
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where the sums for L,N are over the patterns (possibly degenerate) given by Fig. 5. It then
follows that

(id⊗X)∇�(X) = − �
s∶z→s

X
y←z

�y←z X
s←z + �

s→r

X
y←z

�s→r Ls→r,z→y �r←sX
z←s

−�
s

X
y←z

�s→y Ns→y,z→y �y←sX
z←s(23)

as needed for the geodesic velocity equations.
Next, we consider ∫ of the form

� f =�
X

µ(x)f(x)
for all functions f on the vertex set, with ‘measure’ µ ∶ X → R � {0} so that ∫ is hermitian
and non-degenerate. We preferably also want µ to be positive for the usual interpretation of the
amplitude flow.

From the definitions, it is is immediate that a vector field X = ∑X
r←s

�r←s is real with respect
to ∫ (i.e. the second half of (9) holds) if and only if

(24) (Xy←x)∗ = −µy

µx
X

x←y

Likewise, it is immediate that

(25) div∫ (X)(x) = �
y∶x→y

X
y←x − �

y∶y→x

µy

µx
X

x←y

It then follows that

[X,div∫ (X)] =�X
x←y

�x←y (div∫ (X)(y) − div∫ (X)(x))
=�X

x←y
�x←y � �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
(26)

as also needed for the geodesic velocity equation for the choice  = 1
2div∫ (X). We put these

results together and add the possibility of a driving force F ∈ X.
Proposition 4.1. On a graph, the geodesic velocity equation with driving term F ∈ X is

−Ẋx←y =Xx←y 1

2
� − �

z∶y→z

X
z←y − �

z∶z→y

µz

µy
X

y←z − �
z∶x→z

X
z←x + �

z∶z→x

µz

µx
X

x←z�
+�

r,z

X
r←z

�y→xLy→x,z→r X
z←y −�

z

X
x←z

�y→xNy→x,z→xX
z←y + F x←y

If we suppose that X is real with respect to ∫ and stays so then then we also simultaneously
impose

−Ẋx←y =Xx←y 1

2
� �
z∶x→z

µz

µx
X

x←z + �
z∶z→x

X
z←x + �

z∶y→z

µz

µy
X

y←z − �
z∶z→y

X
z←y�

κs = 1
2 div∫(Xs)

Propn.  For n-star graph the geodesic velocity eqn with driving force is
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=X0←y �
i

X
i←0�1 − �0→y

�0→i
� − 1

2

µ0

µy
�
i

X
i←0

X
0←i + 2�1 + µ0

µy
� X0←y

X
y←0

If we assume F is imaginary with respect to ∫ then this amounts to requiring

F
0←y = µ0

µy
(F y←0)∗ = 1

2
X

0←y �
i

X
i←0�1 − �0→y

�0→i
� − 1

4

µ0

µy
�
i

X
i←0

X
0←i + �1 + µ0

µy
� X0←y

X
y←0

.

(28)

We interpret F as an external force defined by this and needed so as to keep X real with respect
to ∫ during the evolution.

Proposition 5.1. With the driving term (28), the geodesic velocity equation on the 4-star be-
comes

−Ẋ0←y = 1

2
X

0←y � −X0←y +�
i

µi

µ0
X

0←i −�
i

(X0←i)∗ µi �0→y

µ0�0→i
+ �2µy

µ0
− 1� (X0←y)∗� + 1

4
�
i

µi

µy
�X0←i�2

for four complex fields X
0←i.

Proof. We now put the found F into our original geodesic velocity equation to give

−Ẋ0←y =X0←y 1

2
� −X0←y − µ0

µy
X

y←0 −�
i

X
i←0 +�

i

µi

µ0
X

0←i�
+�

r

X
r←0

�y→0Ly→0,0→r X
0←y + F 0←y

=X0←y �1
2
� −X0←y − µ0

µy
X

y←0 −�
i

X
i←0 +�

i

µi

µ0
X

0←i�
+�

i

X
i←0

�y→0Ly→0,0→i + 1

2
�
i

X
i←0�1 − �0→y

�0→i
� + �1 + µ0

µy
�Xy←0� − 1

4

µ0

µy
�
i

X
i←0

X
0←i

= 1

2
X

0←y � −X0←y +�
i

µi

µ0
X

0←i +�
i

X
i←0 �2�y→0Ly→0,0→i − �0→y

�0→i
� + �2 + µ0
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for the value of L, which we write as shown. ⇤

Example 5.2. Figure 6 shows solutions for the geodesic velocity equation on the 4-star graph
for constant �0→i (independent of i), constant µ and initial X0←i(0) = �i,1. A special feature
of n = 4 (not true for n = 2,3) is that both the velocity and amplitude coe�cients remain real
numbers if they start real, so we stick to this for simplicity. For the constant measure case we
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Proof. We use (26) and (23) to write the geodesic velocity equations in (8) as stated. Next we
conjugate this equation and suppose that X is real with respect to µ as in (24) to obtain the
second equation. ⇤

The di↵erence between the two can be viewed as an ‘improved auxiliary equation’ that ensures
that evolution stays real with respect to ∫ . Setting F = 0 is the standard approach in [8] but here
we make the minimal assumption that F is imaginary but otherwise whatever it needs to be to
maintain real evolution for X. Finally, given a geodesic velocity field X, we have the amplitude
flow

(27)  ̇x = −1
2
 xdiv∫ (X)x − �

p←x

( p −  x)Xp←x

where div∫ is the function in (25).
The above is the basic framework where µ is arbitrary. Usually we would take the measure

adapted to the geometry and the natural way to do this is to ask further that ∫ is divergence
compatible. Then we have a further structure of a ∗ operation on vector fields.

Proposition 4.2.

div(�p←q) = �q − �p �p→q
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�
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−1
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= �
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and so ẽv ∶= ev ○ �−1X is

ẽv(�p←q ⊗!q→p) = �p �p→q

�q→p
�

z ∶p→z

Lp→q,z→p �p→z

where �y←x is the dual basis to !x→y. Next, we observe that any connection on an inner calculus,
we have

div(X) = ev(✓⊗X) − ẽv(X ⊗ ✓) − (ẽv⊗ ev)(ei⊗↵(ei)⊗X)
for dual bases, which in our case means coev(1) = ∑r,s �r←s⊗!s→r. This gives the formula for
div(�p←q) stated on noting that the ↵ term does not contribute. From this, the divergence-
compatibility immediately follows.



 constantμi, gi→0
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  Gaussian-interpolated movie of flow for n=4
initial X0←i = ψi = δi,1
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which we recognise as stated. In the first four lines Dk acts on DlX
i but as a single upper index

tensor for given l. The fourth equality recognised DkDlX
i and after that we expanded out in

terms of � in order the obtain the final expression. ⇤

Next, we study the geodesic velocity equations. Given the above, and Theorem 4.7, we set

 = 1
2 div∇̂(X) = 1

2 @kX
k
, X

k∗ =Xk

for the divergence of a vector field X = fkXk ∈ XL and its reality property (since & = id). One
can check that then (@jXi)∗ = @jXi also. For the velocity field equation we first calculate

(id⊗ ev)(∇X ⊗X) = �i
jkfiX

k
X

j + fi(@jXi)Xj
, [,X] = 1

2 [@jXj
,X

i]fi.
Then the geodesic velocity equations in the form in Corollary 2.2 become

Ẋ
i = 1

2 [@jXj
,X

i] − �i
jkX

k
X

j − (@jXi)Xj
.(19)

The auxiliary conditions �X,X(X ⊗X) =X ⊗X as in [5] comes down to

(20) [Xi
,X

j] = 0
while the most general secondary condition of this type needed to maintain reality of flow under
the geodesic velocity equations is

(21) @j[Xi
,X

j] = (T i
jk + 2✏ijk)Xj

X
k
.

This is obtained by applying ∗ to (19) and comparing. It agrees with the condition in Corol-
lary 4.11 EDWIN TO CHECK. Remember that � is assumed real and constant-valued (a multiple
of the identity in the algebra) for a ∗-preserving connection in our context. We therefore to solve
both of these. If we use the quantum Levi-Civita connection then the torsion is zero.

After this, we have to solve the for e ∈ A⊗C∞(R) with respect to a chosen geodesic velocity
field. These are such that ė +X(de) + e = 0, which comes out as the amplitude flow equation

(22) ė = −Xi
@ie − e1

2
@iX

i
.

6.1. Quantum geodesic flow with X
i(t) ∈ R1 i.e. constant on the fuzzy sphere. The

geodesic velocity equation (19) for the QLC becomes in the case of constant coe�cients

Ẋ
i = −�i

jkX
k
X

j = −gilgmj✏lmkX
j
X

k

while the auxiliary condition (20) holds automatically, so we can consistently keep X
i real. In

the diagonal case g = diag(�1,�2,�3) this is
Ẋ

1 = −µ1X
2
X

3
, Ẋ

2 = −µ2X
1
X

2
, Ẋ

3 = −µ3X
1
X

2; µ1 = �2 − �3

�1
, µ2 = �3 − �1

�2
, µ3 = �1 − �2

�3

where ∑µi + µ1µ2µ3 = 0 and the µi depend on the �i up to an overall scale, i.e. on (�i) ∈ RP 2.
The velocity equation has solutions in terms of Jacobi elliptic sn and cn functions. For example,
if µ1, µ2 are not both negative, then

X
1(t) = −ic1√µ1sn (c2 t�µ) , X

2(t) = c1√µ2cn (c2 t�µ) , X
3(t) = c1

�
µ3

µ

�
1 − µ sn2 (c2 t�µ)

where we assume the ellipticity

µ = −µ1µ2µ3
c
2
1

c
2
2

Strict quantum geodesic flows (no driving force)
∇̂ = σ−1

χ ∇χ left connection     div∇̂ = ev ∇̂

Lemma.   and   then  gets a * structure such

that X real w.r.t            

∫ ab = ∫ ba ∫ div∇̂ = 0 Ω−1

∫ X* = X

∫ = spin 0 component

{fi} dual basis to   has      real iff {si} f*i = fi X = fiXi Xi* = Xi

velocity flow eqn 

aux eqn (from conjugate velocity flow eqn)

·ψ = − Xi∂iψ − ψ
2 ∂iXi amplitude flow eqn

∂j[Xi, Xj] = 2ϵijkXjXk
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so it can be useful to impose the WQLC condition first, being linear in ∇ compared
to the QLC condition which is quadratic (due to the �, which is linear in ∇) and
hence much harder to solve.

Finally, over C, we need everything to be ‘unitary’ or ‘real’ in a suitable sense.
It means that A is a ∗-algebra in the usual sense, and that ∗ extends to ⌦ in a way
that commutes with d and is a graded-order reversing involution (it means there is
an extra minus sign on a product of odd degree forms). We require the metric to
and connection to be ‘real’ in the sense

flip(∗⊗∗)g = g, � ○ flip(∗⊗∗)∇ = ∇ ○ ∗
In the classical case with self-adjoint local coordinates, this would ensure that the
metric and connection coe�cients are real. These are a well-studied set of axioms
for which many interesting examples are known, eg [6, 21, 22, 24].

2.1. Fuzzy sphere and its 3D di↵erential calculus. We work over C and start
with the enveloping algebra U(su2) of the angular momentum Lie algebra, with
basis xi normalised so that

[xi, xj] = 2ı�p✏ijkxk

for a parameter �p. We call this C�[R3] as a quantisation of functions on R3. We
take it as a ∗ algebra with x

∗
i = xi and �p real. Note that this has finite-dimensional

irreducible representations ⇢j labelled by a non-negative half-integer j of dimension
n = 2j + 1 and in which ∑i x

2
i = (n2 − 1)�2

p in our normalisation. We define the unit

fuzzy sphere A = C�[S2] as the quotient U(su2) modulo the relation

�
i

x
2
i = 1 − �2

p

which we see descends to the spin j representation precisely when �p = 1�n. We
keep �p as a free parameter, however. Note that in all cases A = C�[S2] is infinite-
dimensional and therefore never a matrix algebra.

Next we define ⌦(C�[R3]) as a free 3D calculus with central basis si, i = 1,2,3.
This means we impose [si, xj] = 0, and we define a di↵erential

dxi = ✏ijkxjs
k

which one can check is translation and rotation invariant calculus, but not con-
nected. Indeed, d∑i x

2
i = 0 so there are di↵erent connected components according

to any constant value of ∑i x
2
i . The calculus is inner with

✓ = 1
2ı�p

xis
i = 1(2ı�p)2xidxi = − 1(2ı�p)2 (dxi)xi.

Finally, for the exterior algebra we take s
i to be Grassmann, with

s
i ∧ sj + sj ∧ si = 0, dsi = −1

2✏ijks
j ∧ sk

The reader should be warned, however, that this is no longer inner in higher degree
by ✓. That in turn means it is not the maximal prolongation of the first order
calculus, but is a natural quotient.

We then take the same form of calculus and d for A = C�[S2], where we add the
unit sphere relation. This is compatible with d for reasons already given and this
time we obtain a connected calculus. These facts are all covered in [9, Example 1.46]
and one could do the same for a sphere of any fixed radius.

Lemma 2.1. In ⌦(C�[S2]), one has

s
l = 1(1−�2

p) � 1
2ı�p

xlxidxi + ✏lim(dxi)xm�
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⃗X (t)

t = 0

t � [0,5.66]

⃗� (t)

t = 0

⃗� (t)

t � [0, 54.5]t � [0,3.63]

Figure 3. Quantum geodesic on the fuzzy sphere with fixed metric g =
diag(4,3,1). On the left is an example of a time dependent geodesic veloc-
ity field X = viXi(t) for this metric starting at �X(0) = (0,1,√2). On the right
is the flow this generates in the algebra A for a function of the form e =  i(t)xi

starting at � (0) = (1,0,0).
it more palatable *** . Also note that if we chose the µi then the corresponding metric up to an
overall normalisation is

g = diag(1 + µ2,1 − µ1,1 + µ1µ2)
so this is positive only when µ1 < 1, µ2 > −1, µ1µ2 > −1. We do not insist on this, however.

It remains to solve for geodesic flows e ∈ A⊗C∞(R) with respect to a chosen geodesic velocity
field. These are such that ė +X(de) + e = 0, which comes out as

(22) ė = −[ 1
2i�p

Xixi, e]
We do this concretely for a specific example. Thus we take µ1 = −1

2 , µ2 = 1, so that µ3 = −1
and g = diag(4,3,1) is the metric up to normalisation. For our geodesic velocity field we take
c1 = c2 = 1 so that µ = −1

2 and

X1 = − 1√
2
sn(t� − 1

2), X2 = cn(t� − 1
2), X3 =�2 + sn(t� − 1

2),
which is real and valid for all t, being periodic with period approximately 5.66 and initial value�X(0) = (0,1,√2).

Now we are ready to integrate (22) for this X. This is particularly tractable if we take
e =  ixi ∈ su3⊗C∞(R), which then stays in this space, i.e., we are integrating a time-varying
infinitesimal rotation given by

 ̇k = −✏kijXi j ,

which is easily solved numerically as shown in Figure 3 starting, say, with � = (1,0,0). This
first meets itself at approximately t = 3.63 as shown in the middle but the velocities are not yet
aligned and it precesses, filling out a ‘hairband’ on the sphere in su2 as shown. Note that the
sphere here pertains to the unitarity of the evolution so that a normalised � stays normalised
with  ̄t = 1. Indeed, the metric having constant coe�cients in our basis exists extends over the
fuzzy sphere algebra as if at one point. In particular, a Lorentzian g generates a broadly similar
picture. In our picture the Hilbert space is 3-dimensional and the vector � � = � evolving in time

t is the ‘quantum geodesic’. *** What can we compute? E.g. �xi� = � �xi� �� � � = 0 for the average

location under this flow on the fuzzy sphere?? (if we put xi in the spin 1 representation though
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ẽv(id⊗ ev⊗ id)(∇X ⊗∇X), which is

[ 1
2i�p

xr, [ 1
2i�p

xk,X
k]]Xr + [ 1

2i�p

xi,
1
2 [[ 1

2i�p

xj ,X
j],Xi]] − [ 1

2i�p

xi, [ 1
2i�p

xj ,X
i]Xj]

+ [ 1
2i�p

xj ,X
i] [ 1

2i�p

xi,X
j]

= 1(2i�p)2 �[xr, [xk,X
k]]Xr + [xi,

1
2 [[xj ,X

j],Xi]] − [xi, [xj ,X
i]Xj] + [xj ,X

i] [xi,X
j]�

= 1(2i�p)2 �[xr, xk]XkXr −Xk[xr, xk]Xr + 1
2 [xi, [[xj ,X

j],Xi]]�
= 1(2i�p)2 �2i�p✏rki[xi,X

k]Xr + 1
2 [xi, [[xj ,X

j],Xi]]�
and the rest of the terms are

− �i
jk[ 1

2i�p

xi,X
kXj] + �i

kj[ 1
2i�p

xi,X
k]Xj + �i

jkX
k[ 1

2i�p

xi,X
j] + �i

jkX
k�j

irX
r

= (�i
kj − �i

jk)[ 1
2i�p

xi,X
k]Xj − �i

jk�[ 1
2i�p

xi,X
kXj] − [ 1

2i�p

xi,X
k]Xj −Xk[ 1

2i�p

xi,X
j]� + �i

jk�
j
irX

kXr

= (�i
kj − �i

jk)[ 1
2i�p

xi,X
k]Xj + �i

jk�
j
irX

kXr

so we get

D

Dt
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Particular case of constant Xi. The geodesic velocity equation (20) becomes in the case of
constant coe�cients

Ẋi = −�i
jkX

jXk = gilgmj✏lmkX
jXk

In the diagonal case g = diag(�1,�2,�3) this is
Ẋ1 = µ1X

2X3, Ẋ2 = µ2X
1X2, Ẋ3 = µ3X
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where ∑µi +µ1µ2µ3 = 0 and the µi depend on the �i up to an overall scale, i.e. (�i) ∈ RP 2. The
velocity equation has solutions in terms of Jacobi elliptic sn and cn functions. For example, if
µ1, µ2 are not both negative, then

X1(t) = ic1√µ1sn (c2 t�µ) , X2(t) = c1√µ2cn (c2 t�µ) , X3(t) = c1
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1 − µ sn2 (c2 t�µ)

where we assume the ellipticity

µ = −µ1µ2µ3
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is nonzero (which is if and only if the �i are all distinct). Here c1, c2 > 0 are parameters and t is in
a certain interval containing 0. In general, negative µ1 and positive µ2 here give a real solution,
and it looks like with t unconstrained if 1+µ1µ2 < 0 and possibly constrained if 1+µ1µ2 > 0. ***
The region of validity of t was determined by trial an error after editing the MMA soln to make
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is nonzero (which is if and only if the �i are all distinct). Here c1, c2 > 0 are parameters and t is in
a certain interval containing 0. In general, negative µ1 and positive µ2 here give a real solution,
and it looks like with t unconstrained if 1+µ1µ2 < 0 and possibly constrained if 1+µ1µ2 > 0. ***
The region of validity of t was determined by trial an error after editing the MMA soln to make

QUANTUM GEODESIC DEVIATION AND FLOWS ON 2 × 2 MATRICES AND FUZZY SPHERES 21

⃗X (t)

t = 0

t � [0,5.66]

⃗� (t)

t = 0

⃗� (t)

t � [0, 54.5]t � [0,3.63]

Figure 3. Quantum geodesic on the fuzzy sphere with fixed metric g =
diag(4,3,1). On the left is an example of a time dependent geodesic veloc-
ity field X = viXi(t) for this metric starting at �X(0) = (0,1,√2). On the right
is the flow this generates in the algebra A for a function of the form e =  i(t)xi

starting at � (0) = (1,0,0).
it more palatable *** . Also note that if we chose the µi then the corresponding metric up to an
overall normalisation is

g = diag(1 + µ2,1 − µ1,1 + µ1µ2)
so this is positive only when µ1 < 1, µ2 > −1, µ1µ2 > −1. We do not insist on this, however.

It remains to solve for geodesic flows e ∈ A⊗C∞(R) with respect to a chosen geodesic velocity
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We do this concretely for a specific example. Thus we take µ1 = −1
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c1 = c2 = 1 so that µ = −1

2 and
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which is real and valid for all t, being periodic with period approximately 5.66 and initial value�X(0) = (0,1,√2).

Now we are ready to integrate (22) for this X. This is particularly tractable if we take
e =  ixi ∈ su3⊗C∞(R), which then stays in this space, i.e., we are integrating a time-varying
infinitesimal rotation given by

 ̇k = −✏kijXi j ,

which is easily solved numerically as shown in Figure 3 starting, say, with � = (1,0,0). This
first meets itself at approximately t = 3.63 as shown in the middle but the velocities are not yet
aligned and it precesses, filling out a ‘hairband’ on the sphere in su2 as shown. Note that the
sphere here pertains to the unitarity of the evolution so that a normalised � stays normalised
with  ̄t = 1. Indeed, the metric having constant coe�cients in our basis exists extends over the
fuzzy sphere algebra as if at one point. In particular, a Lorentzian g generates a broadly similar
picture. In our picture the Hilbert space is 3-dimensional and the vector � � = � evolving in time

t is the ‘quantum geodesic’. *** What can we compute? E.g. �xi� = � �xi� �� � � = 0 for the average

location under this flow on the fuzzy sphere?? (if we put xi in the spin 1 representation though
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div∇(X)+ẽv(id⊗ ev⊗ id)(∇X ⊗∇X)

= (�i
kj − �i

jk + ✏jki)(@iXk)Xj + �i
jk�

j
irX

kXr + 1
2 @i[(@jXj),Xi](21)

Particular case of constant Xi. The geodesic velocity equation (20) becomes in the case of
constant coe�cients
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2X3, Ẋ2 = µ2X
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where ∑µi +µ1µ2µ3 = 0 and the µi depend on the �i up to an overall scale, i.e. (�i) ∈ RP 2. The
velocity equation has solutions in terms of Jacobi elliptic sn and cn functions. For example, if
µ1, µ2 are not both negative, then

X1(t) = ic1√µ1sn (c2 t�µ) , X2(t) = c1√µ2cn (c2 t�µ) , X3(t) = c1
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where we assume the ellipticity

µ = −µ1µ2µ3
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is nonzero (which is if and only if the �i are all distinct). Here c1, c2 > 0 are parameters and t is in
a certain interval containing 0. In general, negative µ1 and positive µ2 here give a real solution,
and it looks like with t unconstrained if 1+µ1µ2 < 0 and possibly constrained if 1+µ1µ2 > 0. ***
The region of validity of t was determined by trial an error after editing the MMA soln to make
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i]

(id⊗ ev⊗ id)(∇X ⊗∇X) = (�i
jkX

k + [ 1
2i�p

xj ,X
i])(�j

prX
r + [ 1

2i�p

xp,X
j])vi⊗ sp
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ẽv(id⊗ ev⊗ id)(∇X ⊗∇X), which is

[ 1
2i�p

xr, [ 1
2i�p

xk,X
k]]Xr + [ 1

2i�p

xi,
1
2 [[ 1

2i�p

xj ,X
j],Xi]] − [ 1

2i�p

xi, [ 1
2i�p

xj ,X
i]Xj]

+ [ 1
2i�p

xj ,X
i] [ 1

2i�p

xi,X
j]

= 1(2i�p)2 �[xr, [xk,X
k]]Xr + [xi,

1
2 [[xj ,X

j],Xi]] − [xi, [xj ,X
i]Xj] + [xj ,X

i] [xi,X
j]�

= 1(2i�p)2 �[xr, xk]XkXr −Xk[xr, xk]Xr + 1
2 [xi, [[xj ,X

j],Xi]]�
= 1(2i�p)2 �2i�p✏rki[xi,X

k]Xr + 1
2 [xi, [[xj ,X

j],Xi]]�
and the rest of the terms are

− �i
jk[ 1

2i�p

xi,X
kXj] + �i

kj[ 1
2i�p

xi,X
k]Xj + �i

jkX
k[ 1

2i�p

xi,X
j] + �i

jkX
k�j

irX
r

= (�i
kj − �i

jk)[ 1
2i�p

xi,X
k]Xj − �i

jk�[ 1
2i�p

xi,X
kXj] − [ 1

2i�p

xi,X
k]Xj −Xk[ 1

2i�p

xi,X
j]� + �i

jk�
j
irX

kXr

= (�i
kj − �i

jk)[ 1
2i�p

xi,X
k]Xj + �i

jk�
j
irX

kXr

so we get

D

Dt
div∇(X)+ẽv(id⊗ ev⊗ id)(∇X ⊗∇X)

= (�i
kj − �i

jk + ✏jki)(@iXk)Xj + �i
jk�

j
irX

kXr + 1
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Particular case of constant Xi. The geodesic velocity equation (20) becomes in the case of
constant coe�cients

Ẋi = −�i
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jXk = gilgmj✏lmkX
jXk

In the diagonal case g = diag(�1,�2,�3) this is
Ẋ1 = µ1X

2X3, Ẋ2 = µ2X
1X2, Ẋ3 = µ3X

1X2; µ1 = �2 − �3
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, µ2 = �3 − �1
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, µ3 = �1 − �2
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is nonzero (which is if and only if the �i are all distinct). Here c1, c2 > 0 are parameters and t is in
a certain interval containing 0. In general, negative µ1 and positive µ2 here give a real solution,
and it looks like with t unconstrained if 1+µ1µ2 < 0 and possibly constrained if 1+µ1µ2 > 0. ***
The region of validity of t was determined by trial an error after editing the MMA soln to make

X = (0,1, 2), ψ = (1,0,0)initial
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s s s s s s

We focus on Xi ∝ 1

solve with elliptic jacobi

Thank you

⃗X (t)

t = 0

t ∈ [0,5.66]

⃗ψ (t)

t = 0.11,3.06

⃗ψ (t)

t ∈ [0, 100]
t ∈ [0.11,6.24]

t = 3.29,6.24

s

s s s

s
s

X(s)
ψ(s) ψ(s)


