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Ditterentialicalculus

Classically, C>(M) =Q%(M) Cc QM) = ®;Q(M)

Ol  space of 1-forms, e.g. "differentials’ df = gj; Ao
fdg = (dg)f € 2 Z’
AQeAQ—=Q, dwAn) = (dw)An+ (=D)lwAdy
WA= (_1)IWII77|77 Aw, d?>=0 graded Leibniz rule
@ Algebra A over k; drop the (graded) commutativity but keep:
0l a((db)c)=(a(db))c bimodule
d: A— Q' d(ab)=(da)b+a(db) Leibniz rule
{Z adb) = 0l surjectivity

@® Extend to DGA of differential forms 0 — TAﬂl/I =3, 0", d2=0

(generated by A, dA)

Propn. Every Q! has a maximal prolongation Q. .




MECLICSTANAiCONNECEIC

@® Metric gECE Q! % 0! ds* = Z g, dx"dx”

’ )
(i) bimodule map inverse (5 ): Q! gg‘) Ol - A \/\

() |
(ii) some form of quantum symmetry e.g. A (g) =0 0ol o ot )

Lemma. a quantum metric is necessarily central

Proof:  (@,ag")g? = (wa, g"g? = wa = (w, g")g%a

@ Connection/covariant derivative

V0l - 0le! RN -0 e
4 A A

V(fw)=df @w + fVw Vwf) =0w®df)+ (Vw) f

Lemma: bimodule connections extend to tensor products

g
Viw®dn) =Vw®n+ (c®id)(w® Vn)

= metric compatibility



QLEs; curvature,==structure and  Dirac op

@ Quantum Levi-Civita connection (QLC) Tv=Vg=0

Ty = ANV —d torsion tensor

To : QY — 02
® Curvaturetensor R, : Q' 5 Q’®,Q!, Ry=(d®id—idAV)V

For A a *-algebra, require

@® * extends to (L2, d) as an antilinear graded anti-involution commuting with d
® T(9=g T=1ip(*®*):2'®,Q'->0'®,Q" real

® V=0!V* =p To= o ! T  *-preserving =¥ *-compatible

O " : A = C positive linear functional and e.g. trace, J'(S =0, 6=(,)V:Ql A

@® Geometric spectral triples D = > o V¢ for Cliff action and spinor bundle/conn

Defer functional analysis to the point where actually solve equations



Quantum differentials on finite sets

Propn: X a finite set A = C(X), Q! -e=p  Directed graph
with vertices X

Ql = spancie, .} f.e,=fe,, e, .f=e_,f(V) erLy = — €,

if bidirected
df = 2 (S = f)e,_, bilocal object =¥ bimodule

X—>Yy

T, Q! = Path algebra, in degreei Q'® = {e

1—>x2—>---—>xi}

® Q =T,Q! relations Z e,y Ne, ., =0

y:P—=y—q

p#q. notp— g For Q2 . take all p,q

@® metric g= Z Zroylimy ® €y &y € R\{0]} if bidirected

X—Yy

edge symmetric if 8y—y = 8y—x =P real ‘square-length’ on each edge



Classical geodesic flows

@ dust particles moving on geodesics =¥ tangents define vector field X,
obeying geodesic velocity equation

we reverse usual concept
and first solve for this X

density p obeys continuity equation for flow to time s

XS + VXSXS — O

p = — X,(dp) — pdiv(X))
@ Letp = |y|*for a wave function y obeying the amplitude flow equation

|
W = — X,(dy) — El/deV(Xs)

: .. D 0 : : —
=P Convective derivative e =3 + X, of the divergence is the Ricci tensor
\) A)

Ddiv(X))
Ds

® [Wave function y(x, t) on spacetime, s is external geodesic proper time




Quantum L_gaoxdla.* 1C cquations

A,QLd g V:Q - Ql®, Q! leftconn, eg. QLC
=p right conn V)( x =y Q4 Ql on Q7= AHom(Ql,A)

® Jnon-deg =» div; defined by J(ddiVj(X) +X(da)) =0 VaeA,

K, = Ediv (X flow divergence
XS + [X,, k] + (1d ® X)) V., (X)) =0 velocity flow
W, = — yk, — X (dy,) amplitude flow

® Need JXS(G)*) ~X(w)*=0 Vo eQ! say X, real with respect to J

Lemma Then [l//;kllls constant in s =p probabilistic picture

@® Can add driving force F to velocity equation to ensure X, real =# X real

@® Canextendto E=C®R,#) 2y, Aacts on # e.g. Schroedinger repn



QRG of the n-star graph

w/ Beggs arXiv 2023
@

. é@ Z €oing=0, Q2. isn— 1 dimensional Q>’=0
@A//'@\‘ i=1
O Thm. There exists QLC iff n < 4 and 8i=0 = \/ﬁ
80— i
g g
G(e()—n' ® ei—)O) — _e()—>i ® ei—)() + (1 + _) Z e()_>j ® ej_>(), .
Vn Vn & (I =9
6(61-_>0 ® 60_”-) = dq¢;_,o ® €0— i q = 65%7r n=3
g'—)O .
0'(€l_>0®eo_)]) = —J—q_leHO(X)eO_)] \—1 n=4

(extends to U(1) moduli
Veio=ei® o= ), 0leig ® €y of QLCs for n = 2)

Similarly for A, graph, QRG needs greater metric pointing into the bulk




Quantum geodesic flow on n-star graph

ff Zu(ﬂf)f(i'?) - (XY = XY realw.r.t.J

e

divy(X) (@)= 3 xvmeo 3 My Ks=%divf(Xs>

y:z—y yiy—x N

Propn. For n-star graph the geodesic velocity egn with driving force is

> ()<« 1 <« <« () <« <« ,u/'[,gl_>() ILL “«—
_XO y:_XO y( X*O y_l_z:lu XOZ E:XOz* y XOy*)
2 ( :uOgy—>O (:uO )( )
:u’L 0«22
+—E X
i My| |

Then solve amplitude flow

@b:c - _%wxdlvf (X)ZE - Z (% - wx)Xpex

p<—x




Gaussian-interpolated movie of flow for n=4

Ui» 8o constant initial X" = W, = 0;

9




StEICTquantum: geodes1c i owsS (10 dEVINE TOrce)
V = 0%_1 V)( left connection =¥ divy, = evV

Lemma. [ab = [ba and Jdiv¢ =0 then Q! gets a * structure such

that X real w.r.t [ <P Xt =X

2 _ 12
Fuzzy sphere [z, 25| = 20\ p€5 51T, ;x =1-A,

Ql central basis s*, i =1,2,3. J = spin 0 component

- {fz} dual basis to {s'} has f* = f, =» X = £.X' real iff X'* = X'
X'=1[00;X7, X" -T", X" X7 - (8;X")X?.  velocity flow eqn

0. [X’ X'] = 2€leXij aux eqn (from conjugate velocity flow eqn)

W= — Xidl-l// — EaiXi amplitude flow eqn



] sl T ivk _ il _ j vk
We tocus onXl X 1 X' =17 XO X7 = g7 gmj€mp X7 X

g =diag(A1, A2, A3) = | X' = X2X?, X7 =poX'X? XP = s XX

pYESY - A

_ Mg
’ )\2 ) U3 )\3

H1 H2
. T A1
= solve with elliptic jacobi

X1(8) =ici/pasn (cas|p),  X3(S) = ci/paen (coS|p),  X3(s) = cl\/%\/l — psn? (ca8|p)

2

. . ) . C
E.g.linear fields yw = y'x; VF = —epij X o7 p= —#1M2M3C—;
2

g = diag(4,3,1) initial X =(0.1.,/2). y = (1.0.0)
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