

QUANTUM GEODESICS ON GRAPHS

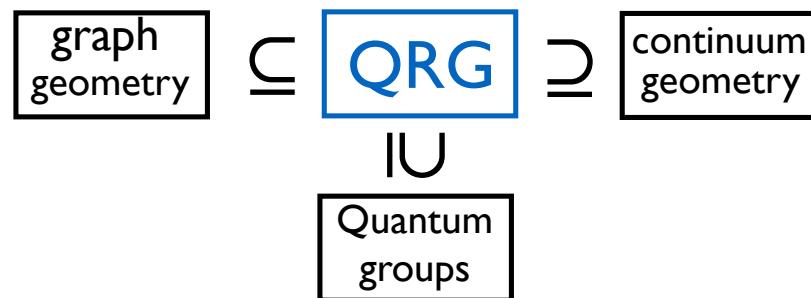
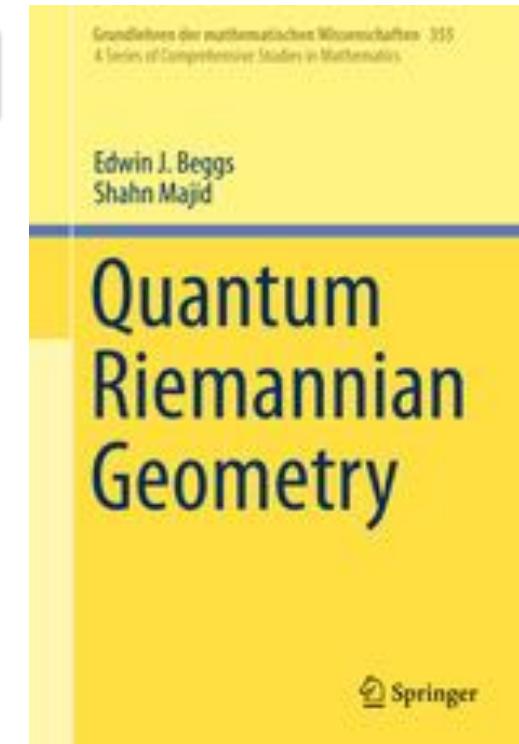
SHAHN MAJID (QMUL)

GHENT (ONLINE) 2024

I Formalism of QRG

$$g \in \Omega^1 \otimes_A \Omega^1, \quad \nabla : \Omega^1 \rightarrow \Omega^1 \otimes_A \Omega^1$$

Leibniz rule $\rightarrow \sigma : \Omega^1 \otimes_A \Omega^1 \rightarrow \Omega^1 \otimes_A \Omega^1$



II Quantum geodesics

Beggs *JGP* 2020 (key original work)

Beggs and SM *JMP* 2024 (Schrödinger eqn as a quantum geodesic flow on Heisenberg algebra)

Beggs & SM *LMP* 2023 (curved QRG examples eg fuzzy spheres)

Beggs and SM *arXiv:2312* (application to graphs)

Liu and SM, *JPhysA* 2022 (quantum spacetime example)

Differential calculus

Classically, $C^\infty(M) = \Omega^0(M) \subset \Omega(M) = \bigoplus_i \Omega^i(M)$

$$\Omega^1 \quad \text{space of 1-forms, e.g. 'differentials'} \quad df = \sum_i \frac{\partial f}{\partial x^i} dx^i$$

$$f dg = (dg)f \in \Omega^1$$

$$\wedge : \Omega \otimes_A \Omega \rightarrow \Omega, \quad d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^{|\omega|} \omega \wedge d\eta$$

$$\omega \wedge \eta = (-1)^{|\omega||\eta|} \eta \wedge \omega, \quad d^2 = 0 \quad \text{graded Leibniz rule}$$

- Algebra A over k ; drop the (graded) commutativity but keep:

Ω^1	$a((db)c) = (a(db))c$	bimodule
$d : A \rightarrow \Omega^1$	$d(ab) = (da)b + a(db)$	Leibniz rule
$\{\sum a db\} = \Omega^1$		surjectivity

- Extend to DGA of differential forms $\Omega = T_A \Omega^1 / \mathcal{I} = \bigoplus_n \Omega^n, \quad d^2 = 0$
(generated by A, dA)

Propn. Every Ω^1 has a maximal prolongation Ω_{max}

metrics and connections

- Metric $g \in \Omega^1 \otimes_A \Omega^1$ $ds^2 = \sum_{\mu, \nu} g_{\mu\nu} dx^\mu dx^\nu$
- (i) bimodule map inverse $(\ , \) : \Omega^1 \otimes_A \Omega^1 \rightarrow A$
- (ii) some form of quantum symmetry e.g. $\wedge(g) = 0$

Lemma. a quantum metric is necessarily central

Proof: $(\omega, ag^1)g^2 = (\omega a, g^1)g^2 = \omega a = (\omega, g^1)g^2 a$

● Connection/covariant derivative

$$\begin{aligned} \nabla : \Omega^1 &\rightarrow \Omega^1 \otimes_A \Omega^1 & \sigma : \Omega^1 \otimes_A \Omega^1 &\rightarrow \Omega^1 \otimes_A \Omega^1 \\ \nabla(f\omega) &= df \otimes \omega + f\nabla\omega & \nabla(\omega f) &= \sigma(\omega \otimes df) + (\nabla\omega)f \end{aligned}$$

Lemma: bimodule connections extend to tensor products

$$\nabla(\omega \otimes \eta) = \nabla\omega \otimes \eta + (\sigma \otimes \text{id})(\omega \otimes \nabla\eta)$$

→ metric compatibility

$$\nabla g = \begin{array}{c} g \\ \nabla \\ \Omega^1 \quad \Omega^1 \quad \Omega^1 \end{array} + \begin{array}{c} g \\ \nabla \\ \sigma \\ \Omega^1 \quad \Omega^1 \quad \Omega^1 \end{array} = 0$$

QLCs, curvature, $*$ -structure and Dirac op

- Quantum Levi-Civita connection (QLC) $T_\nabla = \nabla g = 0$
 $T_\nabla : \Omega^1 \rightarrow \Omega^2 \quad T_\nabla = \wedge \nabla - d \quad \text{torsion tensor}$
- Curvature tensor $R_\nabla : \Omega^1 \rightarrow \Omega^2 \otimes_A \Omega^1, \quad R_\nabla = (d \otimes \text{id} - \text{id} \wedge \nabla) \nabla$

For A a $*$ -algebra, require

- $*$ extends to (Ω, d) as an antilinear graded anti-involution commuting with d
- $\dagger(g) = g, \quad \dagger = \text{flip}(* \otimes *) : \Omega^1 \otimes_A \Omega^1 \rightarrow \Omega^1 \otimes_A \Omega^1 \quad \text{'real'}$
- $\dagger \nabla = \sigma^{-1} \nabla *$ $\rightarrow \dagger \sigma = \sigma^{-1} \dagger \quad * \text{-preserving} \rightarrow * \text{-compatible}$
- $\int : A \rightarrow \mathbb{C}$ positive linear functional and e.g. trace, $\int \delta = 0, \quad \delta = (,) \nabla : \Omega^1 \rightarrow A$
- Geometric spectral triples $D = \triangleright \circ \nabla_S$ for Cliff action and spinor bundle/conn

Defer functional analysis to the point where actually solve equations

Quantum differentials on finite sets

Propn: X a finite set $A = \mathbb{C}(X)$, $\Omega^1 \leftrightarrow$ Directed graph with vertices X

$$\Omega^1 = \text{span}_{\mathbb{C}}\{e_{x \rightarrow y}\} \quad f \cdot e_{x \rightarrow y} = f(x)e_{x \rightarrow y}, \quad e_{x \rightarrow y} \cdot f = e_{x \rightarrow y}f(y) \quad e_{x \rightarrow y}^* = -e_{y \rightarrow x}$$

$$df = \sum_{x \rightarrow y} (f(y) - f(x))e_{x \rightarrow y} \quad \text{bilocal object} \rightarrow \text{bimodule} \quad \text{if bidirected}$$

$$T_A \Omega^1 = \text{Path algebra, in degree } i \quad \Omega^{1 \otimes i} = \{e_{x_1 \rightarrow x_2 \rightarrow \dots \rightarrow x_i}\}$$

- $\Omega_{max} = T_A \Omega^1 / \text{relations}$ $\sum_{\substack{y: p \rightarrow y \rightarrow q \\ p \neq q, \text{ not } p \rightarrow q}} e_{p \rightarrow y} \wedge e_{y \rightarrow q} = 0$ For Ω_{min} take all p, q

- metric $g = \sum_{x \rightarrow y} g_{x \rightarrow y} e_{x \rightarrow y} \otimes e_{y \rightarrow x}, \quad g_{x \rightarrow y} \in \mathbb{R} \setminus \{0\}$ if bidirected

edge symmetric if $g_{x \rightarrow y} = g_{y \rightarrow x}$ \rightarrow real 'square-length' on each edge

Classical geodesic flows

- dust particles moving on geodesics → tangents define vector field X_s obeying **geodesic velocity equation**

$$\dot{X}_s + \nabla_{X_s} X_s = 0$$

density ρ obeys **continuity equation**

we reverse usual concept
and first solve for this X_s
for flow to time s

$$\dot{\rho} = -X_s(d\rho) - \rho \text{div}(X_s)$$

- Let $\rho = |\psi|^2$ for a wave function ψ obeying the **amplitude flow equation**

$$\dot{\psi} = -X_s(d\psi) - \frac{1}{2}\psi \text{div}(X_s)$$

→ Convective derivative $\frac{D}{Ds} := \frac{\partial}{\partial s} + X_s$ of the divergence is the Ricci tensor

$$\frac{D \text{div}(X_s)}{Ds} = -X_{;i}^j X_{;j}^i - X^i X^j \text{Ricci}_{ij}$$

- Wave function $\psi(x, t)$ on spacetime, s is external geodesic proper time

Quantum geodesic equations

$A, \Omega^1, d, g, \nabla : \Omega^1 \rightarrow \Omega^1 \otimes_A \Omega^1$ left conn, eg. QLC

→ right conn $\nabla_\chi : \chi \rightarrow \chi \otimes_A \Omega^1$ on $\Omega^{-1} := {}_A \text{Hom}(\Omega^1, A)$

- \int non-deg → div_f defined by $\int (a \text{div}_f(X) + X(da)) = 0 \quad \forall a \in A,$

$$\kappa_s = \frac{1}{2} \text{div}_f(X_s) \quad \text{flow divergence}$$

$$\dot{X}_s + [X_s, \kappa_s] + (\text{id} \otimes X_s) \nabla_\chi(X_s) = 0 \quad \text{velocity flow}$$

$$\dot{\psi}_s = -\psi_s \kappa_s - X_s(d\psi_s) \quad \text{amplitude flow}$$

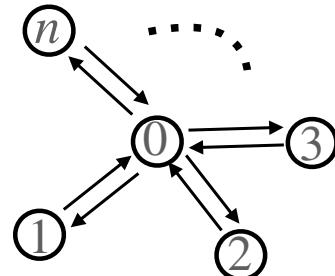
- Need $\int X_s(\omega^*) - X_s(\omega)^* = 0 \quad \forall \omega \in \Omega^1$ say X_s real with respect to \int

Lemma Then $\int \psi_s^* \psi_s$ constant in s → probabilistic picture

- Can add driving force F to velocity equation to ensure X_0 real → X_s real
- Can extend to $E = C^\infty(\mathbb{R}, \mathcal{H}) \ni \psi$, A acts on \mathcal{H} e.g. Schrödinger repn

QRG of the n -star graph

w/ Beggs arXiv 2023



$$\sum_{i=1}^n e_{0 \rightarrow i \rightarrow 0} = 0, \quad \Omega_{min}^2 \text{ is } n-1 \text{ dimensional} \quad \Omega_{min}^{i>3} = 0$$

Thm. There exists QLC iff $n \leq 4$ and $\frac{g_{i \rightarrow 0}}{g_{0 \rightarrow i}} = \sqrt{n}$

$$\sigma(e_{0 \rightarrow i} \otimes e_{i \rightarrow 0}) = \frac{q^{-1}}{\sqrt{n}} e_{0 \rightarrow i} \otimes e_{i \rightarrow 0} + \left(1 + \frac{q^{-1}}{\sqrt{n}}\right) \sum_{j \neq i} e_{0 \rightarrow j} \otimes e_{j \rightarrow 0},$$

$$\sigma(e_{i \rightarrow 0} \otimes e_{0 \rightarrow i}) = q e_{i \rightarrow 0} \otimes e_{0 \rightarrow i},$$

$$\sigma(e_{i \rightarrow 0} \otimes e_{0 \rightarrow j}) = -\frac{g_{j \rightarrow 0}}{g_{i \rightarrow 0}} q^{-1} e_{i \rightarrow 0} \otimes e_{0 \rightarrow j}$$

$$\nabla e_{0 \rightarrow i} = \sum_j e_{j \rightarrow 0} \otimes e_{0 \rightarrow i} - \sigma(e_{0 \rightarrow i} \otimes e_{i \rightarrow 0})$$

$$\nabla e_{i \rightarrow 0} = e_{0 \rightarrow i} \otimes e_{i \rightarrow 0} - \sum_j \sigma(e_{i \rightarrow 0} \otimes e_{0 \rightarrow j})$$

$$q = \begin{cases} e^{\frac{3i\pi}{4}} & n = 2 \\ e^{\frac{5i\pi}{6}} & n = 3 \\ -1 & n = 4 \end{cases}$$

(extends to $U(1)$ moduli of QLCs for $n = 2$)

Similarly for A_n graph, QRG needs greater metric pointing into the bulk

Quantum geodesic flow on n-star graph

$$\int f = \sum_X \mu(x) f(x) \quad \rightarrow \quad (X^{y \leftarrow x})^* = -\frac{\mu_y}{\mu_x} X^{x \leftarrow y} \quad \text{real w.r.t. } \int$$

$$\text{div}_f(X)(x) = \sum_{y:x \rightarrow y} X^{y \leftarrow x} - \sum_{y:y \rightarrow x} \frac{\mu_y}{\mu_x} X^{x \leftarrow y} \quad \rightarrow \quad \kappa_s = \frac{1}{2} \text{div}_f(X_s)$$

Propn. For n-star graph the geodesic velocity eqn with driving force is

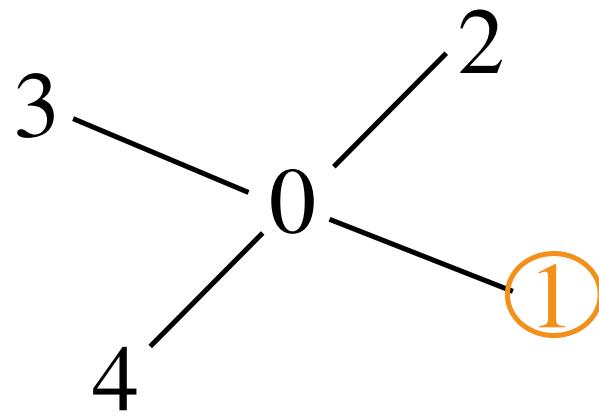
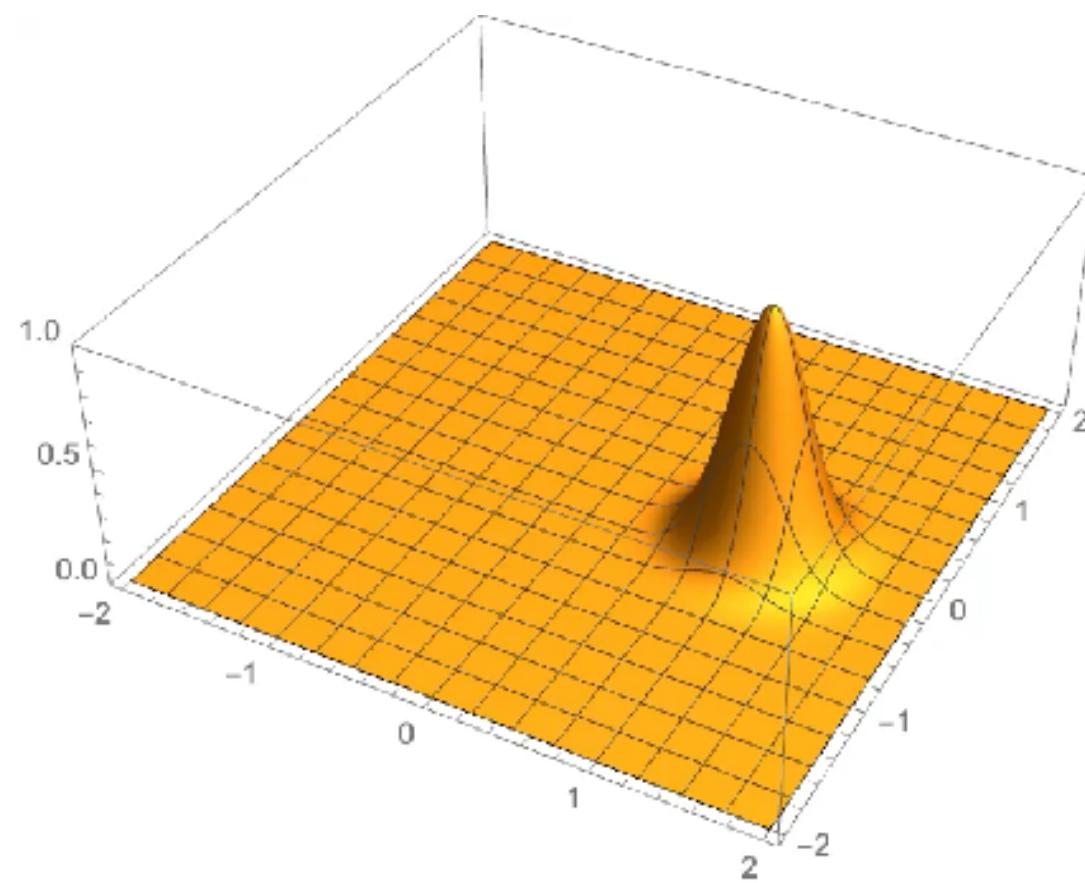
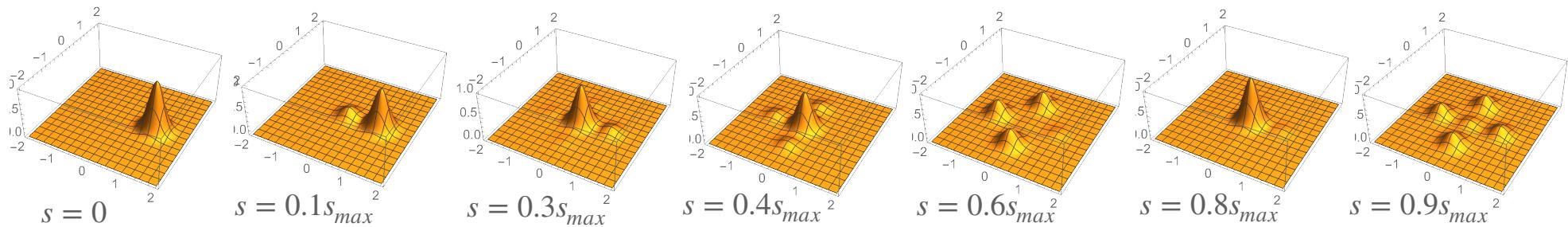
$$\begin{aligned} -\dot{X}^{0 \leftarrow y} &= \frac{1}{2} X^{0 \leftarrow y} \left(-X^{0 \leftarrow y} + \sum_i \frac{\mu_i}{\mu_0} X^{0 \leftarrow i} - \sum_i (X^{0 \leftarrow i})^* \frac{\mu_i g_{i \rightarrow 0}}{\mu_0 g_{y \rightarrow 0}} + \left(2\frac{\mu_y}{\mu_0} - 1 \right) (X^{0 \leftarrow y})^* \right) \\ &+ \frac{1}{4} \sum_i \frac{\mu_i}{\mu_y} |X^{0 \leftarrow i}|^2 \end{aligned}$$

Then solve amplitude flow

$$\dot{\psi}_x = -\frac{1}{2} \psi_x \text{div}_f(X)_x - \sum_{p \leftarrow x} (\psi_p - \psi_x) X^{p \leftarrow x}$$

Gaussian-interpolated movie of flow for $n=4$

$\mu_i, g_{i \rightarrow 0}$ constant initial $X^{0 \leftarrow i} = \psi_i = \delta_{i,1}$



Strict quantum geodesic flows (no driving force)

$$\hat{\nabla} = \sigma_\chi^{-1} \nabla_\chi \quad \text{left connection} \rightarrow \text{div}_{\hat{\nabla}} = \text{ev } \hat{\nabla}$$

Lemma. $\int ab = \int ba$ and $\int \text{div}_{\hat{\nabla}} = 0$ then Ω^{-1} gets a * structure such that X real w.r.t \int $\Leftrightarrow X^* = X$

Fuzzy sphere

$$[x_i, x_j] = 2i\lambda_p \epsilon_{ijk} x_k \quad \sum_i x_i^2 = 1 - \lambda_p^2$$

Ω^1 central basis s^i , $i = 1, 2, 3$. $\int = \text{spin 0 component}$

$\rightarrow \{f_i\}$ dual basis to $\{s^i\}$ has $f_i^* = f_i \rightarrow X = f_i X^i$ real iff $X^{i*} = X^i$

$$\dot{X}^i = \frac{1}{2} [\partial_j X^j, X^i] - \Gamma^i{}_{jk} X^k X^j - (\partial_j X^i) X^j. \quad \text{velocity flow eqn}$$

$$\partial_j [X^i, X^j] = 2\epsilon_{ijk} X^j X^k \quad \text{aux eqn (from conjugate velocity flow eqn)}$$

$$\dot{\psi} = -X^i \partial_i \psi - \frac{\psi}{2} \partial_i X^i \quad \text{amplitude flow eqn}$$

We focus on $X^i \propto 1$

$$g = \text{diag}(\lambda_1, \lambda_2, \lambda_3) \quad \rightarrow$$

$$\dot{X}^i = -\Gamma^i_{jk} X^j X^k = g^{il} g_{mj} \epsilon_{lmk} X^j X^k$$

$$\dot{X}^1 = \mu_1 X^2 X^3, \quad \dot{X}^2 = \mu_2 X^1 X^2, \quad \dot{X}^3 = \mu_3 X^1 X^2$$

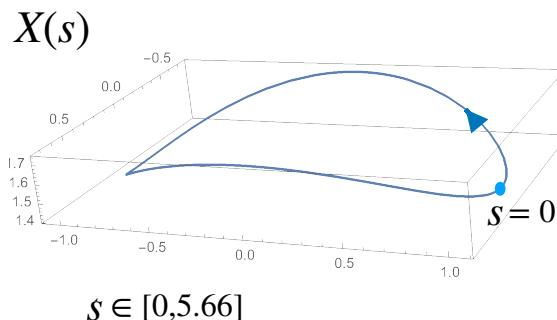
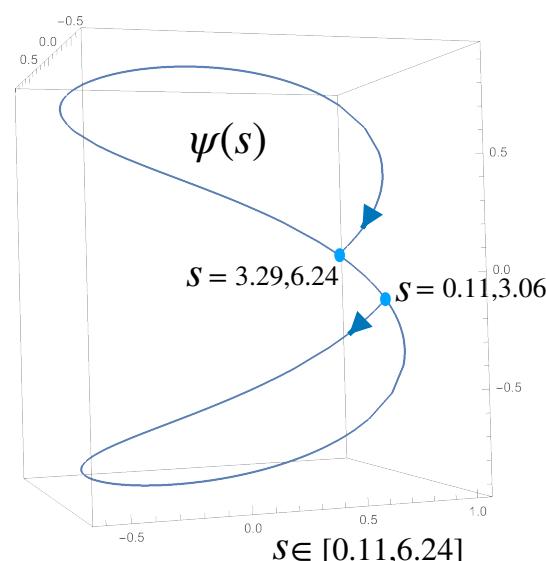
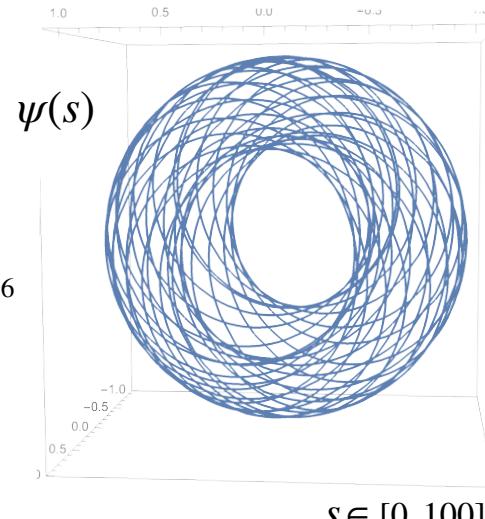
$$\mu_1 = \frac{\lambda_2 - \lambda_3}{\lambda_1}, \quad \mu_2 = \frac{\lambda_3 - \lambda_1}{\lambda_2}, \quad \mu_3 = \frac{\lambda_1 - \lambda_2}{\lambda_3}$$

\rightarrow solve with elliptic jacobi

$$X^1(s) = i c_1 \sqrt{\mu_1} \text{sn}(c_2 s | \mu), \quad X^2(s) = c_1 \sqrt{\mu_2} \text{cn}(c_2 s | \mu), \quad X^3(s) = c_1 \sqrt{\frac{\mu_3}{\mu}} \sqrt{1 - \mu \text{sn}^2(c_2 s | \mu)}$$

E.g. linear fields $\psi = \psi^i x_i$ $\dot{\psi}^k = -\epsilon_{kij} X^i \psi^j$ $\mu = -\mu_1 \mu_2 \mu_3 \frac{c_1^2}{c_2^2}$

$$g = \text{diag}(4, 3, 1) \quad \text{initial} \quad X = (0, 1, \sqrt{2}), \psi = (1, 0, 0)$$



Thank you