

Averaging multipliers on locally compact quantum groups

Christian Voigt

University of Glasgow
christian.voigt@glasgow.ac.uk
<http://www.maths.gla.ac.uk/~cvoigt/index.xhtml>

joint with M. Daws and J. Krajczok

International Conference on Noncommutative Geometry, Analysis on
Groups, and Mathematical Physics

Ghent
February 27th, 2024

Locally compact quantum groups

Definition (Kustermans-Vaes)

A locally compact quantum group is a von Neumann algebra M together with a normal unital $*$ -homomorphism $\Delta : M \rightarrow M \overline{\otimes} M$ satisfying the coassociativity relation

$$(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$$

and normal faithful semifinite weights φ, ψ on M such that

$$\varphi((\omega \otimes \text{id})\Delta(f)) = \omega(1)\varphi(f), \quad \psi((\text{id} \otimes \omega)\Delta(f)) = \omega(1)\psi(f)$$

for all $f \in M_+$ and all positive linear functionals $\omega \in M_*$.

Example

a) Let G be a locally compact group. The algebra $M = L^\infty(G)$ of essentially bounded measurable functions on G becomes a locally compact quantum group with comultiplication

$$\Delta : L^\infty(G) \rightarrow L^\infty(G) \overline{\otimes} L^\infty(G) = L^\infty(G \times G), \quad \Delta(f)(s, t) = f(st).$$

The Haar weights φ, ψ are given by integration with respect to left/right Haar measure on G .

Example

a) Let G be a locally compact group. The algebra $M = L^\infty(G)$ of essentially bounded measurable functions on G becomes a locally compact quantum group with comultiplication

$$\Delta : L^\infty(G) \rightarrow L^\infty(G) \overline{\otimes} L^\infty(G) = L^\infty(G \times G), \quad \Delta(f)(s, t) = f(st).$$

The Haar weights φ, ψ are given by integration with respect to left/right Haar measure on G .

b) Let G be a locally compact group and let

$$M = vN(G) = \lambda(G)'' \subset B(L^2(G))$$

be the *group von Neumann algebra* of G . Then M is a locally compact quantum group with comultiplication

$$\widehat{\Delta} : vN(G) \rightarrow vN(G) \overline{\otimes} vN(G), \quad \widehat{\Delta}(u_s) = u_s \otimes u_s.$$

The *Plancherel weight* on $vN(G)$ is a left and right Haar weight for M .

Motivated by the first example on the previous slide, we will use the notation $M = L^\infty(\mathbb{G})$ for a *general* locally compact quantum group.

Also, by slight abuse of terminology, we will refer to \mathbb{G} as a locally compact quantum group, instead of M .

Motivated by the first example on the previous slide, we will use the notation $M = L^\infty(\mathbb{G})$ for a *general* locally compact quantum group.

Also, by slight abuse of terminology, we will refer to \mathbb{G} as a locally compact quantum group, instead of M .

Let $L^2(\mathbb{G})$ be the GNS Hilbert space associated to the left Haar weight φ .

We consider

$$\mathcal{N}_\varphi = \{f \in L^\infty(\mathbb{G}) \mid \varphi(f^*f) < \infty\}$$

and let $\Lambda : \mathcal{N}_\varphi \rightarrow L^2(\mathbb{G})$ be the GNS-map.

It is a nontrivial fact that one obtains a unitary operator W on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$ by defining

$$W^*(\Lambda(f) \otimes \Lambda(g)) = (\Lambda \otimes \Lambda)(\Delta(g)(f \otimes 1))$$

for $f, g \in \mathcal{N}_\varphi$.

The operator W , called the multiplicative unitary of \mathbb{G} , satisfies the *pentagon equation* $W_{12}W_{13}W_{23} = W_{23}W_{12}$ on $L^2(\mathbb{G}) \otimes L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$.

The multiplicative unitary W encodes important structure of \mathbb{G} .

The multiplicative unitary W encodes important structure of \mathbb{G} .

In particular,

$$C_0(\mathbb{G}) = [(\text{id} \otimes \omega)(W) \mid \omega \in B(L^2(\mathbb{G}))]$$

is a C^* -algebra with weak closure $L^\infty(\mathbb{G})$, and

$$\Delta(f) = W^*(1 \otimes f)W$$

for all $f \in L^\infty(\mathbb{G})$.

There exists a *dual locally compact quantum group* $\widehat{\mathbb{G}}$ with C^* -algebra

$$C_0(\widehat{\mathbb{G}}) = [(\omega \otimes \text{id})(W) \mid \omega \in B(L^2(\mathbb{G}))]$$

and weak closure $L^\infty(\widehat{\mathbb{G}})$, and the comultiplication

$$\widehat{\Delta}(x) = \widehat{W}^*(1 \otimes x)\widehat{W},$$

where $\widehat{W} = \Sigma W^* \Sigma$, and Σ is the tensor flip.

Discrete quantum groups

Definition

A locally compact quantum group \mathbb{T} is called discrete if $C_0(\widehat{\mathbb{T}})$ is unital.

In this case we write $C(\widehat{\mathbb{T}})$ and $c_0(\mathbb{T})$ for the C^* -algebras associated to $\widehat{\mathbb{T}}$ and \mathbb{T} . The C^* -algebra $c_0(\mathbb{T})$ is a (typically infinite c_0 -) direct sum of matrix algebras.

We also write $\ell^\infty(\mathbb{T})$ instead of $L^\infty(\mathbb{T})$. This is a (typically infinite) direct product of matrix algebras.

Definition

A locally compact quantum group \mathbb{T} is called discrete if $C_0(\widehat{\mathbb{T}})$ is unital.

In this case we write $C(\widehat{\mathbb{T}})$ and $c_0(\mathbb{T})$ for the C^* -algebras associated to $\widehat{\mathbb{T}}$ and \mathbb{T} . The C^* -algebra $c_0(\mathbb{T})$ is a (typically infinite c_0 -) direct sum of matrix algebras.

We also write $\ell^\infty(\mathbb{T})$ instead of $L^\infty(\mathbb{T})$. This is a (typically infinite) direct product of matrix algebras.

Usually, discrete quantum groups are most easily described by defining their dual (compact) quantum groups...

The quantum group $SU_q(2)$

The quantum group $SU_q(2)$

Let $q \in (0, 1]$. The C^* -algebra of functions on $SU_q(2)$ is the universal $*$ -algebra $C(SU_q(2))$ generated by elements α and γ satisfying

$$\begin{aligned}\alpha\gamma &= q\gamma\alpha, & \alpha\gamma^* &= q\gamma^*\alpha, & \gamma\gamma^* &= \gamma^*\gamma, \\ \alpha^*\alpha + \gamma^*\gamma &= 1, & \alpha\alpha^* + q^2\gamma\gamma^* &= 1.\end{aligned}$$

These relations are equivalent to saying that

$$u = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

is a unitary matrix.

The comultiplication $\Delta : C(SU_q(2)) \rightarrow C(SU_q(2)) \otimes C(SU_q(2))$ is defined by

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

For $q = 1$ this reproduces the algebra of continuous functions on $SU(2)$ with the comultiplication coming from the group structure of $SU(2)$.

The Fourier algebra

The Fourier algebra

Let \mathbb{G} be a locally compact quantum group, with dual $\widehat{\mathbb{G}}$.

Let \mathbb{G} be a locally compact quantum group, with dual $\widehat{\mathbb{G}}$.

Write $L^1(\widehat{\mathbb{G}})$ for the predual of $L^\infty(\widehat{\mathbb{G}})$. This becomes a Banach algebra with the multiplication

$$(\omega \star \eta, x) = (\omega \otimes \eta, \widehat{\Delta}(x)),$$

induced by the comultiplication for $L^\infty(\widehat{\mathbb{G}})$.

We get an algebra homomorphism $\widehat{\lambda} : L^1(\widehat{\mathbb{G}}) \rightarrow B(L^2(\mathbb{G}))$ by

$$\widehat{\lambda}(\omega) = (\omega \otimes \text{id})(\widehat{W}).$$

Definition

The Fourier algebra $\mathcal{A}(\mathbb{G})$ of \mathbb{G} is the image $\widehat{\lambda}(L^1(\widehat{\mathbb{G}})) \subset C_0(\mathbb{G})$, which becomes a Banach algebra via the identification with $L^1(\widehat{\mathbb{G}})$ given by $\widehat{\lambda}$.

A *left centraliser* of \mathbb{G} is a right module map $L: L^1(\widehat{\mathbb{G}}) \rightarrow L^1(\widehat{\mathbb{G}})$,

$$L(\omega \star \eta) = L(\omega) \star \eta \quad (\omega, \eta \in L^1(\widehat{\mathbb{G}})).$$

A *left multiplier* of \mathbb{G} is an element $a \in L^\infty(\mathbb{G})$ with

$$a\widehat{\lambda}(\omega) \in \widehat{\lambda}(L^1(\widehat{\mathbb{G}})) = \mathcal{A}(\mathbb{G}), \quad (\omega \in L^1(\widehat{\mathbb{G}})).$$

Every left multiplier a induces a (unique) left centraliser L via
 $a\widehat{\lambda}(\omega) = \widehat{\lambda}(L(\omega))$.

We say that a left multiplier a is *completely bounded (CB)/completely positive (CP)* if the associated map $L^*: L^\infty(\widehat{\mathbb{G}}) \rightarrow L^\infty(\widehat{\mathbb{G}})$ is completely bounded/completely positive.

We denote the space of CB left multipliers by $\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$. Note that $\mathcal{A}(\mathbb{G}) \subset \mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$ naturally.

Approximation properties

Definition

Let \mathbb{G} be a locally compact quantum group. Then \mathbb{G}

- ▶ is *strongly amenable* if there exists a bounded approximate identity of $\mathcal{A}(\mathbb{G})$ consisting of CP multipliers of \mathbb{G} .
- ▶ has the *Haagerup property* if there exists a bounded approximate identity of $C_0(\mathbb{G})$ which consists of CP multipliers of \mathbb{G} .
- ▶ is *weakly amenable* if there exists a left approximate identity $(e_i)_{i \in I}$ of $\mathcal{A}(\mathbb{G})$ satisfying $\limsup_{i \in I} \|e_i\|_{cb} < \infty$. In this case, the smallest M such that we can choose $\|e_i\|_{cb} \leq M$ for all $i \in I$ is the *Cowling–Haagerup constant* of \mathbb{G} , denoted $\Lambda_{cb}(\mathbb{G})$.
- ▶ has the *approximation property* if there exists a net $(e_i)_{i \in I}$ in $\mathcal{A}(\mathbb{G})$ which converges to $\mathbb{1}$ in the weak* topology of $\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$.

Central approximation properties

Definition

Let \mathbb{T} be a discrete quantum group. Then \mathbb{T}

- ▶ is *centrally strongly amenable* if there is a net $(e_i)_{i \in I}$ consisting of finitely supported central CP multipliers of \mathbb{T} converging to $\mathbb{1}$ pointwise.
- ▶ has the *central Haagerup property* if there exists a bounded approximate identity of $c_0(\mathbb{T})$ which consists of central CP multipliers of \mathbb{T} .
- ▶ is *centrally weakly amenable* if there exists a net $(e_i)_{i \in I}$ of finitely supported central multipliers converging to $\mathbb{1}$ pointwise and satisfying $\limsup_{i \in I} \|e_i\|_{cb} < \infty$. In this case, the smallest M such that we can choose $\|e_i\|_{cb} \leq M$ for all $i \in I$ is the *central Cowling–Haagerup constant* of \mathbb{T} , denoted $\mathcal{Z}\Lambda_{cb}(\mathbb{T})$.
- ▶ has the *central approximation property* if there exists a net $(e_i)_{i \in I}$ of finitely supported central multipliers which converges to $\mathbb{1}$ in the weak* topology of $\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$.

The Drinfeld double

Let \mathbb{F} be a discrete quantum group.

Definition

The *Drinfeld double* $D(\mathbb{F})$ of \mathbb{F} is given by

$$L^\infty(D(\mathbb{F})) = \ell^\infty(\mathbb{F}) \overline{\otimes} L^\infty(\widehat{\mathbb{F}})$$

with the coproduct

$$\Delta_{D(\mathbb{F})} = (\text{id} \otimes \sigma \otimes \text{id})(\text{id} \otimes \text{ad}(W) \otimes \text{id})(\Delta \otimes \widehat{\Delta}),$$

where σ is the tensor flip map.

A left and right Haar weight on $D(\mathbb{F})$ is given by $\varphi \otimes \widehat{\varphi}$.

$D(\mathbb{F})$ contains $\widehat{\mathbb{F}}$ naturally as a compact (open) quantum subgroup.

The Drinfeld double

Let \mathbb{F} be a discrete quantum group.

Definition

The *Drinfeld double* $D(\mathbb{F})$ of \mathbb{F} is given by

$$L^\infty(D(\mathbb{F})) = \ell^\infty(\mathbb{F}) \overline{\otimes} L^\infty(\widehat{\mathbb{F}})$$

with the coproduct

$$\Delta_{D(\mathbb{F})} = (\text{id} \otimes \sigma \otimes \text{id})(\text{id} \otimes \text{ad}(W) \otimes \text{id})(\Delta \otimes \widehat{\Delta}),$$

where σ is the tensor flip map.

A left and right Haar weight on $D(\mathbb{F})$ is given by $\varphi \otimes \widehat{\varphi}$.

$D(\mathbb{F})$ contains $\widehat{\mathbb{F}}$ naturally as a compact (open) quantum subgroup.

Example

For $\mathbb{F} = \widehat{SU_q(2)}$ for $q \in (0, 1)$ the Drinfeld double $D(\mathbb{F})$ can be interpreted as a quantum deformation of $SL(2, \mathbb{C})$.

The Main Theorem

Theorem (Daws-Krajczok-V. 2023)

Let \mathbb{T} be a discrete quantum group and let $D(\mathbb{T})$ be its Drinfeld double. Then the following conditions are equivalent.

- 1) \mathbb{T} is centrally strongly amenable (respectively, is centrally weakly amenable, has the central Haagerup property, has central AP).
- 2) $D(\mathbb{T})$ is strongly amenable (respectively, is weakly amenable, has the Haagerup property, has AP).

Furthermore, we have $\Lambda_{cb}(D(\mathbb{T})) = \mathcal{Z}\Lambda_{cb}(\mathbb{T})$ in the weakly amenable case.

The key technique in the proof is an *averaging argument* for multipliers on $D(\mathbb{T})$ with respect to the compact quantum subgroup $\widehat{\mathbb{T}} \subset D(\mathbb{T})$.

Averaging

Let \mathbb{G} be a locally compact quantum group with a compact quantum subgroup $\mathbb{K} \subseteq \mathbb{G}$.

There is a normal conditional expectation $\Xi: L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G})$ given by averaging with respect to left and right translations of \mathbb{K} .

Theorem (Daws-Krajczok-V. 2023)

The averaging map $\Xi: L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G})$ restricts to a contractive weak-weak*-continuous map $\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G})) \rightarrow \mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$, mapping CP multipliers to CP multipliers.*

Let \mathbb{G} be a locally compact quantum group with a compact quantum subgroup $\mathbb{K} \subseteq \mathbb{G}$.

There is a normal conditional expectation $\Xi: L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G})$ given by averaging with respect to left and right translations of \mathbb{K} .

Theorem (Daws-Krajczok-V. 2023)

The averaging map $\Xi: L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G})$ restricts to a contractive weak-weak*-continuous map $\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G})) \rightarrow \mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{G}))$, mapping CP multipliers to CP multipliers.*

In the case of $\mathbb{G} = D(\mathbb{T})$ for a discrete quantum group \mathbb{T} , this yields an isometric identification

$$\Xi(\mathcal{M}_{cb}^l(\mathcal{A}(D(\mathbb{T})))) \cong \mathcal{Z}\mathcal{M}_{cb}^l(\mathcal{A}(\mathbb{T})) \otimes \mathbb{1}$$

of the $\widehat{\mathbb{T}}$ -biinvariant CB-multipliers of $D(\mathbb{T})$ and the central CB-multipliers of \mathbb{T} .

Counter-examples

The averaging map also maps $\mathcal{A}(D(\Gamma))$ to $\mathcal{A}(D(\Gamma))$ and there is a natural inclusion $\Xi(\mathcal{A}(D(\Gamma))) \subset \mathcal{Z}\mathcal{A}(\Gamma) \otimes \mathbb{1}$.

Theorem (Daws-Krajczok-V. 2024)

Let Γ be a discrete quantum group which is strongly amenable and non-unimodular. If Γ is centrally weakly amenable, then the inclusion

$$\Xi(\mathcal{A}(D(\Gamma))) \subsetneq \mathcal{Z}\mathcal{A}(\Gamma) \otimes \mathbb{1}$$

is strict.

This applies in particular to the dual of $SU_q(2)$ for $q \in (0, 1)$.