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Essentially everything that will be said can be done on abelian phase
spaces = with a symplectic self-duality. Further, the Hilbert space setting
can be extended to so-called coorbit spaces (or, in the standard case

= = G x G, modulation spaces MI(G)).

Due to time restraints, | will only consider the most simple case:

We will consider = = R x R. ¢ will be the standard symplectic form on =:

U((X’é)a (ya 77)) = yf — X7.
By W\« ¢) we will denote the Wey/ operators on H := L?(R):
Wi f(y) = e "2 08 (y — ).
They depend continuously in SOT on (x, &) and satisfy:
Wik gy Wiy = €7 COCMRW ey = OO0 Wi,
We will usually write W, = W, ¢ for z = (x,§) € =.
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For f : = = C we set
()W) = flw—2), zweZ, B_(F)(w)=F(-w).
For A € L(H) we write
az(A) = W,AW_,, B_(A) = PAP.

Here, Po(x) = ¢(—x).
The shifts are strongly continuous on LP(Z) (1 < p < o0) and Gy(Z)
resp. TP(H) and K(H), but only weak* continuous on L>®(=) resp. L(H).
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Recall that the convolution of f, g € L1(Z) is given by:

frg(z) = /_ F(w)e(z — w) dw = / F(W)aw(g)(z) dw

= [ fw)ar(o-(e))(w) o

In analogy, we define for f € L1(Z) and A, B € T(H):
fxA=Axf = / f(w)aw(A) dw € THH),

Ax B(z) := tr(Aa(B_(B))) € L}(2).
These convolutions turn L}(Z) @ T(H) into a commutative Z»-graded
Banach algebra.

Note that one can put one of the factors in these convolutions to be either
in L(Z) or L(H).
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Recall that the symplectic Fourier transform of f € L1(Z) is given by:

1 .
— ioc(w,z)
27T/Ee f(w) dw.

F, is self-inverse (on L?(Z)) and satisfies the convolution identity:

]:a(f*g) = ]:O'(f) : ]:U(g)'
We let, for A € TH(H):

Fo(F)(2)

Fw(A)(z2) = tr(AW,).

Then, Fyy shares many properties of the symplectic Fourier transform
(Riemann-Lebesgue, Plancherel,...). In particular, we have the convolution
identities:

Fo(Ax B) = Fw(A)Fw(B), Fw(f xA) = Fo(f)Fw(A).
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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

Summarizing what happened so far:
@ The CCR relations

WZ WW — eio’(z,W)/2 WZ+W

give us a way to turn L1(Z) @ T*(H) into a commutative, Z,-graded
Banach algebra.

o The Gelfand theory of L}(Z) & T(H) is essentially given by F, and
Fw.
@ The convolutions turn L*°(Z) @ L(H) into a Zp-graded
L1(Z) @ T*(H)-Banach module.
The idea is now to investigate elements of L>°(Z) & L(H), and more
specifically elements from L£(H), from the perspective of this harmonic
analysis structure.
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The following result is well-known from classical harmonic analysis:

Theorem (Wiener's approximation theorem for functions)
Let f € LY(Z). Then, the following are equivalent:

@ span{a,(f): z € =} is dense in L1(Z).

@ F,(f) vanishes nowhere.

Q@ LYZ)> g+~ fxg e LY(Z) has dense range.

Q LX(2)> g fxge L) is injective.

A function f € L}(Z) satisfying the above equivalent properties is called
regular. The analogous result for operators is a key point in quantum
harmonic analysis.
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An operator A € T(H) satisfying the above properties will be called
regular.
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Regular operators

Example

The possibly single most important regular operator is

1
AO = —%o &® ®o,
s

where g is the ground state of the quantum harmonic oscillator:
2 . . .
wo(x) = e™". Fw(Ao) is a Gaussian, so Ay is a regular operator.

Example

When f € L°°(=), then Ag x f is (modulo the Bargmann-transform) the
Toeplitz operator with symbol f. For B € L(H), B := Ag * B is the
Berezin transform of B.

Example

More generally, (¢ ® 1)  f is a localization operator from time-frequency
analysis.
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The algebra C;

For f € L*°(Z) and A € L(H), z — a,(f) and z — «(A) are in general
only continuous in weak* topology. For obtaining good results, this
continuity is not strong enough. We therefore consider:

Co:={f € L(Z): z+> ay(f)is | - ||co-cont.}
=BUC(Z)
Ci={Ac L(H): z+— az(A)is || - ||op-cont.}

While BUC(Z) is certainly a well-understood class, C; seems unfamiliar at
first glance. We already know that K(#H) C C;. It is easily established that
fxA€Cpwhen fell(Z),Ac L(H)or fel®Z),AcTYH). In
particular, Toeplitz and localization operators are contained in Cy.

By Calderén-Vaillancourt: Op™(f) € C1 whenever f € C2°(Z).
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In the language of Banach modules, BUC(Z) @ C; is an essential

LY(Z) @ TY(H)-module, while L>(Z) @ L(H) is not.

Definition

Let Do C L>*(=), D1 C L(H) be a-invariant subspaces. (Dg, D1) is a
corresponding pair (we also say: Dy and D correspond to each other) if
Do @ Dy is an LY(Z) @ T(H)-module.

Theorem (The Correspondence Theorem)

Let Dy C BUC(Z) be an a-invariant, closed subspace.

© There is a unique closed, a-invariant subspace D1 of C1 corresponding
to Do. D1 is given by Dy = T1(H) x Dy.

@ Let Ac TY(H) be regular. For f € BUC(Z) and B € C; it is:

feDy & Axf e Dy,
Be Dy AxB e Dy.
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Examples of corresponding spaces

Examples

@ For Dy = BUC(Z) we get Dy = C1. In particular, for A € T(H)
regular:

C,={Axf: feBUC(T)}

@ For Dy = Co(Z) we get D1 = K(#H). This yields the following result:
For Be€ L(H) itis B € K(H) if and only if B € (1 and B € Gy(=).

@ Let Dy = VOy(=), the functions of vanishing oscillation at infinity.
Then, D1 = essCen(Cy). For this algebra, there exists an index
theorem.

Q Let Dy = C*(e7(z7), ei?(w)). Then, D; is the corresponding
non-commutative torus Ag with 0~: e—io(zw)/2 Ap operator A € C;
is contained in Ay if and only if A e C*(e/(#), efo(w,)),




Some research in that area so far:

©00000O0CO0

©

Fredholm theory of Cq,

Characterizations of the algebra Cy,

Applications in operator theory, for example Toeplitz operators,
Applications in time-frequency analysis,

Investigation of commutative operator algebras,

Wiener's Tauberian theorem for operators,

Harmonic analysis of L}(Z) @ TY(H),

Extensions to other phase spaces =, as well as extension to Banach
spaces instead of H,

Explaining old theorems through the lens of QHA.
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Thank you for your attention!



