

What is Quantum Harmonic Analysis?

Robert Fulsche
Leibniz Universität Hannover, Germany

February 26 2024
Noncommutative Geometry, Analysis on Groups, and Mathematical
Physics
Ghent University

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Due to time restraints, I will only consider the most simple case:

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Due to time restraints, I will only consider the most simple case:
We will consider $\Xi = \mathbb{R} \times \mathbb{R}$. σ will be the standard symplectic form on Ξ :

$$\sigma((x, \xi), (y, \eta)) = y\xi - x\eta.$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Due to time restraints, I will only consider the most simple case:
We will consider $\Xi = \mathbb{R} \times \mathbb{R}$. σ will be the standard symplectic form on Ξ :

$$\sigma((x, \xi), (y, \eta)) = y\xi - x\eta.$$

By $W_{(x, \xi)}$ we will denote the *Weyl operators* on $\mathcal{H} := L^2(\mathbb{R})$:

$$W_{(x, \xi)} f(y) = e^{-ix\xi/2 + iy\xi} f(y - x).$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Due to time restraints, I will only consider the most simple case:
We will consider $\Xi = \mathbb{R} \times \mathbb{R}$. σ will be the standard symplectic form on Ξ :

$$\sigma((x, \xi), (y, \eta)) = y\xi - x\eta.$$

By $W_{(x, \xi)}$ we will denote the *Weyl operators* on $\mathcal{H} := L^2(\mathbb{R})$:

$$W_{(x, \xi)} f(y) = e^{-ix\xi/2 + iy\xi} f(y - x).$$

They depend continuously in SOT on (x, ξ) and satisfy:

$$W_{(x, \xi)} W_{(y, \eta)} = e^{i\sigma((x, \xi), (y, \eta))/2} W_{(x+y, \xi+\eta)} = e^{i\sigma((x, \xi), (y, \eta))} W_{(y, \eta)} W_{(x, \xi)}.$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Essentially everything that will be said can be done on abelian phase spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting can be extended to so-called coorbit spaces (or, in the standard case $\Xi = G \times \widehat{G}$, modulation spaces $M^q(G)$).

Due to time restraints, I will only consider the most simple case:
We will consider $\Xi = \mathbb{R} \times \mathbb{R}$. σ will be the standard symplectic form on Ξ :

$$\sigma((x, \xi), (y, \eta)) = y\xi - x\eta.$$

By $W_{(x, \xi)}$ we will denote the *Weyl operators* on $\mathcal{H} := L^2(\mathbb{R})$:

$$W_{(x, \xi)} f(y) = e^{-ix\xi/2 + iy\xi} f(y - x).$$

They depend continuously in SOT on (x, ξ) and satisfy:

$$W_{(x, \xi)} W_{(y, \eta)} = e^{i\sigma((x, \xi), (y, \eta))/2} W_{(x+y, \xi+\eta)} = e^{i\sigma((x, \xi), (y, \eta))} W_{(y, \eta)} W_{(x, \xi)}.$$

We will usually write $W_z = W_{(x, \xi)}$ for $z = (x, \xi) \in \Xi$.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

For $f : \Xi \rightarrow \mathbb{C}$ we set

$$\alpha_z(f)(w) = f(w - z), \quad z, w \in \Xi, \quad \beta_-(f)(w) = f(-w).$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

For $f : \Xi \rightarrow \mathbb{C}$ we set

$$\alpha_z(f)(w) = f(w - z), \quad z, w \in \Xi, \quad \beta_-(f)(w) = f(-w).$$

For $A \in \mathcal{L}(\mathcal{H})$ we write

$$\alpha_z(A) = W_z A W_{-z}, \quad \beta_-(A) = P A P.$$

Here, $P\varphi(x) = \varphi(-x)$.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

For $f : \Xi \rightarrow \mathbb{C}$ we set

$$\alpha_z(f)(w) = f(w - z), \quad z, w \in \Xi, \quad \beta_-(f)(w) = f(-w).$$

For $A \in \mathcal{L}(\mathcal{H})$ we write

$$\alpha_z(A) = W_z A W_{-z}, \quad \beta_-(A) = P A P.$$

Here, $P\varphi(x) = \varphi(-x)$.

The shifts are strongly continuous on $L^p(\Xi)$ ($1 \leq p < \infty$) and $C_0(\Xi)$ resp. $\mathcal{T}^p(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$, but only weak* continuous on $L^\infty(\Xi)$ resp. $\mathcal{L}(\mathcal{H})$.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the convolution of $f, g \in L^1(\Xi)$ is given by:

$$\begin{aligned} f * g(z) &= \int_{\Xi} f(w)g(z - w) \, dw = \int_{\Xi} f(w)\alpha_w(g)(z) \, dw \\ &= \int_{\Xi} f(w)\alpha_z(\beta_-(g))(w) \, dw. \end{aligned}$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the convolution of $f, g \in L^1(\Xi)$ is given by:

$$\begin{aligned} f * g(z) &= \int_{\Xi} f(w)g(z-w) \, dw = \int_{\Xi} f(w)\alpha_w(g)(z) \, dw \\ &= \int_{\Xi} f(w)\alpha_z(\beta_-(g))(w) \, dw. \end{aligned}$$

In analogy, we define for $f \in L^1(\Xi)$ and $A, B \in \mathcal{T}^1(\mathcal{H})$:

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the convolution of $f, g \in L^1(\Xi)$ is given by:

$$\begin{aligned} f * g(z) &= \int_{\Xi} f(w)g(z-w) dw = \int_{\Xi} f(w)\alpha_w(g)(z) dw \\ &= \int_{\Xi} f(w)\alpha_z(\beta_-(g))(w) dw. \end{aligned}$$

In analogy, we define for $f \in L^1(\Xi)$ and $A, B \in \mathcal{T}^1(\mathcal{H})$:

$$\begin{aligned} f * A &:= A * f := \int_{\Xi} f(w)\alpha_w(A) dw \in \mathcal{T}^1(\mathcal{H}), \\ A * B(z) &:= \text{tr}(A\alpha_z(\beta_-(B))) \in L^1(\Xi). \end{aligned}$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the convolution of $f, g \in L^1(\Xi)$ is given by:

$$\begin{aligned} f * g(z) &= \int_{\Xi} f(w)g(z-w) \, dw = \int_{\Xi} f(w)\alpha_w(g)(z) \, dw \\ &= \int_{\Xi} f(w)\alpha_z(\beta_-(g))(w) \, dw. \end{aligned}$$

In analogy, we define for $f \in L^1(\Xi)$ and $A, B \in \mathcal{T}^1(\mathcal{H})$:

$$\begin{aligned} f * A &:= A * f := \int_{\Xi} f(w)\alpha_w(A) \, dw \in \mathcal{T}^1(\mathcal{H}), \\ A * B(z) &:= \text{tr}(A\alpha_z(\beta_-(B))) \in L^1(\Xi). \end{aligned}$$

These convolutions turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative \mathbb{Z}_2 -graded Banach algebra.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the convolution of $f, g \in L^1(\Xi)$ is given by:

$$\begin{aligned} f * g(z) &= \int_{\Xi} f(w)g(z-w) dw = \int_{\Xi} f(w)\alpha_w(g)(z) dw \\ &= \int_{\Xi} f(w)\alpha_z(\beta_-(g))(w) dw. \end{aligned}$$

In analogy, we define for $f \in L^1(\Xi)$ and $A, B \in \mathcal{T}^1(\mathcal{H})$:

$$\begin{aligned} f * A &:= A * f := \int_{\Xi} f(w)\alpha_w(A) dw \in \mathcal{T}^1(\mathcal{H}), \\ A * B(z) &:= \text{tr}(A\alpha_z(\beta_-(B))) \in L^1(\Xi). \end{aligned}$$

These convolutions turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative \mathbb{Z}_2 -graded Banach algebra.

Note that one can put one of the factors in these convolutions to be either in $L^\infty(\Xi)$ or $\mathcal{L}(\mathcal{H})$.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the symplectic Fourier transform of $f \in L^1(\Xi)$ is given by:

$$\mathcal{F}_\sigma(f)(z) = \frac{1}{2\pi} \int_{\Xi} e^{i\sigma(w,z)} f(w) \, dw.$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the symplectic Fourier transform of $f \in L^1(\Xi)$ is given by:

$$\mathcal{F}_\sigma(f)(z) = \frac{1}{2\pi} \int_{\Xi} e^{i\sigma(w,z)} f(w) \, dw.$$

\mathcal{F}_σ is self-inverse (on $L^2(\Xi)$) and satisfies the convolution identity:

$$\mathcal{F}_\sigma(f * g) = \mathcal{F}_\sigma(f) \cdot \mathcal{F}_\sigma(g).$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the symplectic Fourier transform of $f \in L^1(\Xi)$ is given by:

$$\mathcal{F}_\sigma(f)(z) = \frac{1}{2\pi} \int_{\Xi} e^{i\sigma(w,z)} f(w) \, dw.$$

\mathcal{F}_σ is self-inverse (on $L^2(\Xi)$) and satisfies the convolution identity:

$$\mathcal{F}_\sigma(f * g) = \mathcal{F}_\sigma(f) \cdot \mathcal{F}_\sigma(g).$$

We let, for $A \in \mathcal{T}^1(\mathcal{H})$:

$$\mathcal{F}_W(A)(z) = \text{tr}(AW_z).$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the symplectic Fourier transform of $f \in L^1(\Xi)$ is given by:

$$\mathcal{F}_\sigma(f)(z) = \frac{1}{2\pi} \int_{\Xi} e^{i\sigma(w,z)} f(w) \, dw.$$

\mathcal{F}_σ is self-inverse (on $L^2(\Xi)$) and satisfies the convolution identity:

$$\mathcal{F}_\sigma(f * g) = \mathcal{F}_\sigma(f) \cdot \mathcal{F}_\sigma(g).$$

We let, for $A \in \mathcal{T}^1(\mathcal{H})$:

$$\mathcal{F}_W(A)(z) = \text{tr}(AW_z).$$

Then, \mathcal{F}_W shares many properties of the symplectic Fourier transform (Riemann-Lebesgue, Plancherel,...). In particular, we have the convolution identities:

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Recall that the symplectic Fourier transform of $f \in L^1(\Xi)$ is given by:

$$\mathcal{F}_\sigma(f)(z) = \frac{1}{2\pi} \int_{\Xi} e^{i\sigma(w,z)} f(w) \, dw.$$

\mathcal{F}_σ is self-inverse (on $L^2(\Xi)$) and satisfies the convolution identity:

$$\mathcal{F}_\sigma(f * g) = \mathcal{F}_\sigma(f) \cdot \mathcal{F}_\sigma(g).$$

We let, for $A \in \mathcal{T}^1(\mathcal{H})$:

$$\mathcal{F}_W(A)(z) = \text{tr}(AW_z).$$

Then, \mathcal{F}_W shares many properties of the symplectic Fourier transform (Riemann-Lebesgue, Plancherel,...). In particular, we have the convolution identities:

$$\mathcal{F}_\sigma(A * B) = \mathcal{F}_W(A)\mathcal{F}_W(B), \quad \mathcal{F}_W(f * A) = \mathcal{F}_\sigma(f)\mathcal{F}_W(A).$$

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Summarizing what happened so far:

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Summarizing what happened so far:

- The CCR relations

$$W_z W_w = e^{i\sigma(z,w)/2} W_{z+w}$$

give us a way to turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative, \mathbb{Z}_2 -graded Banach algebra.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Summarizing what happened so far:

- The CCR relations

$$W_z W_w = e^{i\sigma(z,w)/2} W_{z+w}$$

give us a way to turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative, \mathbb{Z}_2 -graded Banach algebra.

- The Gelfand theory of $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ is essentially given by \mathcal{F}_σ and \mathcal{F}_W .

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Summarizing what happened so far:

- The CCR relations

$$W_z W_w = e^{i\sigma(z,w)/2} W_{z+w}$$

give us a way to turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative, \mathbb{Z}_2 -graded Banach algebra.

- The Gelfand theory of $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ is essentially given by \mathcal{F}_σ and \mathcal{F}_W .
- The convolutions turn $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ into a \mathbb{Z}_2 -graded $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -Banach module.

Convolutions and Fourier transforms in Quantum Harmonic Analysis

Summarizing what happened so far:

- The CCR relations

$$W_z W_w = e^{i\sigma(z,w)/2} W_{z+w}$$

give us a way to turn $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ into a commutative, \mathbb{Z}_2 -graded Banach algebra.

- The Gelfand theory of $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ is essentially given by \mathcal{F}_σ and \mathcal{F}_W .
- The convolutions turn $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ into a \mathbb{Z}_2 -graded $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -Banach module.

The idea is now to investigate elements of $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$, and more specifically elements from $\mathcal{L}(\mathcal{H})$, from the perspective of this harmonic analysis structure.

Wiener's approximation theorem

The following result is well-known from classical harmonic analysis:

Wiener's approximation theorem

The following result is well-known from classical harmonic analysis:

Theorem (Wiener's approximation theorem for functions)

Let $f \in L^1(\Xi)$. Then, the following are equivalent:

- ① $\text{span}\{\alpha_z(f) : z \in \Xi\}$ is dense in $L^1(\Xi)$.
- ② $\mathcal{F}_\sigma(f)$ vanishes nowhere.
- ③ $L^1(\Xi) \ni g \mapsto f * g \in L^1(\Xi)$ has dense range.
- ④ $L^\infty(\Xi) \ni g \mapsto f * g \in L^\infty(\Xi)$ is injective.

Wiener's approximation theorem

The following result is well-known from classical harmonic analysis:

Theorem (Wiener's approximation theorem for functions)

Let $f \in L^1(\Xi)$. Then, the following are equivalent:

- ① $\text{span}\{\alpha_z(f) : z \in \Xi\}$ is dense in $L^1(\Xi)$.
- ② $\mathcal{F}_\sigma(f)$ vanishes nowhere.
- ③ $L^1(\Xi) \ni g \mapsto f * g \in L^1(\Xi)$ has dense range.
- ④ $L^\infty(\Xi) \ni g \mapsto f * g \in L^\infty(\Xi)$ is injective.

A function $f \in L^1(\Xi)$ satisfying the above equivalent properties is called *regular*. The analogous result for operators is a key point in quantum harmonic analysis.

Wiener's approximation theorem

Theorem (Wiener's approximation theorem for operators)

Let $A \in \mathcal{T}^1(\mathcal{H})$. Then, the following are equivalent:

- ① $\text{span}\{\alpha_z(A) : z \in \Xi\}$ is dense in $\mathcal{T}^1(\mathcal{H})$.
- ② $\mathcal{F}_W(A)$ vanishes nowhere.
- ③ $A * A$ is regular.
- ④ $L^1(\Xi) \ni g \mapsto A * g \in \mathcal{T}^1(\mathcal{H})$ has dense range.
- ⑤ $\mathcal{T}^1(\mathcal{H}) \ni B \mapsto A * B \in L^1(\Xi)$ has dense range.
- ⑥ $L^\infty(\Xi) \ni g \mapsto A * g \in \mathcal{L}(\mathcal{H})$ is injective.
- ⑦ $\mathcal{L}(\mathcal{H}) \ni B \mapsto A * B \in L^\infty(\Xi)$ is injective.

Wiener's approximation theorem

Theorem (Wiener's approximation theorem for operators)

Let $A \in \mathcal{T}^1(\mathcal{H})$. Then, the following are equivalent:

- ① $\text{span}\{\alpha_z(A) : z \in \Xi\}$ is dense in $\mathcal{T}^1(\mathcal{H})$.
- ② $\mathcal{F}_W(A)$ vanishes nowhere.
- ③ $A * A$ is regular.
- ④ $L^1(\Xi) \ni g \mapsto A * g \in \mathcal{T}^1(\mathcal{H})$ has dense range.
- ⑤ $\mathcal{T}^1(\mathcal{H}) \ni B \mapsto A * B \in L^1(\Xi)$ has dense range.
- ⑥ $L^\infty(\Xi) \ni g \mapsto A * g \in \mathcal{L}(\mathcal{H})$ is injective.
- ⑦ $\mathcal{L}(\mathcal{H}) \ni B \mapsto A * B \in L^\infty(\Xi)$ is injective.

An operator $A \in \mathcal{T}^1(\mathcal{H})$ satisfying the above properties will be called *regular*.

Regular operators

Regular operators

Example

The possibly single most important regular operator is

$$A_0 = \frac{1}{\pi} \varphi_0 \otimes \varphi_0,$$

*where φ_0 is the ground state of the quantum harmonic oscillator:
 $\varphi_0(x) = e^{-x^2}$. $\mathcal{F}_W(A_0)$ is a Gaussian, so A_0 is a regular operator.*

Regular operators

Example

The possibly single most important regular operator is

$$A_0 = \frac{1}{\pi} \varphi_0 \otimes \varphi_0,$$

*where φ_0 is the ground state of the quantum harmonic oscillator:
 $\varphi_0(x) = e^{-x^2}$. $\mathcal{F}_W(A_0)$ is a Gaussian, so A_0 is a regular operator.*

Example

*When $f \in L^\infty(\Xi)$, then $A_0 * f$ is (modulo the Bargmann-transform) the Toeplitz operator with symbol f . For $B \in \mathcal{L}(\mathcal{H})$, $\tilde{B} := A_0 * B$ is the Berezin transform of B .*

Regular operators

Example

The possibly single most important regular operator is

$$A_0 = \frac{1}{\pi} \varphi_0 \otimes \varphi_0,$$

*where φ_0 is the ground state of the quantum harmonic oscillator:
 $\varphi_0(x) = e^{-x^2}$. $\mathcal{F}_W(A_0)$ is a Gaussian, so A_0 is a regular operator.*

Example

*When $f \in L^\infty(\Xi)$, then $A_0 * f$ is (modulo the Bargmann-transform) the Toeplitz operator with symbol f . For $B \in \mathcal{L}(\mathcal{H})$, $\tilde{B} := A_0 * B$ is the Berezin transform of B .*

Example

*More generally, $(\varphi \otimes \psi) * f$ is a localization operator from time-frequency analysis.*

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough.

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi)\end{aligned}$$

$$\mathcal{C}_1 := \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}$$

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi)\end{aligned}$$

$$\mathcal{C}_1 := \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}$$

While $\text{BUC}(\Xi)$ is certainly a well-understood class, \mathcal{C}_1 seems unfamiliar at first glance.

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi)\end{aligned}$$

$$\mathcal{C}_1 := \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}$$

While $\text{BUC}(\Xi)$ is certainly a well-understood class, \mathcal{C}_1 seems unfamiliar at first glance. We already know that $\mathcal{K}(\mathcal{H}) \subset \mathcal{C}_1$.

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi) \\ \mathcal{C}_1 &:= \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}\end{aligned}$$

While $\text{BUC}(\Xi)$ is certainly a well-understood class, \mathcal{C}_1 seems unfamiliar at first glance. We already know that $\mathcal{K}(\mathcal{H}) \subset \mathcal{C}_1$. It is easily established that $f * A \in \mathcal{C}_1$ when $f \in L^1(\Xi)$, $A \in \mathcal{L}(\mathcal{H})$ or $f \in L^\infty(\Xi)$, $A \in \mathcal{T}^1(\mathcal{H})$.

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi) \\ \mathcal{C}_1 &:= \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}\end{aligned}$$

While $\text{BUC}(\Xi)$ is certainly a well-understood class, \mathcal{C}_1 seems unfamiliar at first glance. We already know that $\mathcal{K}(\mathcal{H}) \subset \mathcal{C}_1$. It is easily established that $f * A \in \mathcal{C}_1$ when $f \in L^1(\Xi)$, $A \in \mathcal{L}(\mathcal{H})$ or $f \in L^\infty(\Xi)$, $A \in \mathcal{T}^1(\mathcal{H})$. In particular, Toeplitz and localization operators are contained in \mathcal{C}_1 .

The algebra \mathcal{C}_1

For $f \in L^\infty(\Xi)$ and $A \in \mathcal{L}(\mathcal{H})$, $z \mapsto \alpha_z(f)$ and $z \mapsto \alpha_z(A)$ are in general only continuous in weak* topology. For obtaining good results, this continuity is not strong enough. We therefore consider:

$$\begin{aligned}\mathcal{C}_0 &:= \{f \in L^\infty(\Xi) : z \mapsto \alpha_z(f) \text{ is } \|\cdot\|_\infty\text{-cont.}\} \\ &= \text{BUC}(\Xi)\end{aligned}$$

$$\mathcal{C}_1 := \{A \in \mathcal{L}(\mathcal{H}) : z \mapsto \alpha_z(A) \text{ is } \|\cdot\|_{op}\text{-cont.}\}$$

While $\text{BUC}(\Xi)$ is certainly a well-understood class, \mathcal{C}_1 seems unfamiliar at first glance. We already know that $\mathcal{K}(\mathcal{H}) \subset \mathcal{C}_1$. It is easily established that $f * A \in \mathcal{C}_1$ when $f \in L^1(\Xi)$, $A \in \mathcal{L}(\mathcal{H})$ or $f \in L^\infty(\Xi)$, $A \in \mathcal{T}^1(\mathcal{H})$. In particular, Toeplitz and localization operators are contained in \mathcal{C}_1 . By Calderón-Vaillancourt: $\text{Op}^W(f) \in \mathcal{C}_1$ whenever $f \in C_b^\infty(\Xi)$.

The Correspondence Theorem

In the language of Banach modules, $\text{BUC}(\Xi) \oplus \mathcal{C}_1$ is an *essential* $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module, while $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ is not.

The Correspondence Theorem

In the language of Banach modules, $\text{BUC}(\Xi) \oplus \mathcal{C}_1$ is an *essential* $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module, while $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ is not.

Definition

Let $\mathcal{D}_0 \subset L^\infty(\Xi)$, $\mathcal{D}_1 \subset \mathcal{L}(\mathcal{H})$ be α -invariant subspaces. $(\mathcal{D}_0, \mathcal{D}_1)$ is a *corresponding pair* (we also say: \mathcal{D}_0 and \mathcal{D}_1 correspond to each other) if $\mathcal{D}_0 \oplus \mathcal{D}_1$ is an $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module.

The Correspondence Theorem

In the language of Banach modules, $\text{BUC}(\Xi) \oplus \mathcal{C}_1$ is an *essential* $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module, while $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ is not.

Definition

Let $\mathcal{D}_0 \subset L^\infty(\Xi)$, $\mathcal{D}_1 \subset \mathcal{L}(\mathcal{H})$ be α -invariant subspaces. $(\mathcal{D}_0, \mathcal{D}_1)$ is a *corresponding pair* (we also say: \mathcal{D}_0 and \mathcal{D}_1 correspond to each other) if $\mathcal{D}_0 \oplus \mathcal{D}_1$ is an $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module.

Theorem (The Correspondence Theorem)

Let $\mathcal{D}_0 \subset \text{BUC}(\Xi)$ be an α -invariant, closed subspace.

The Correspondence Theorem

In the language of Banach modules, $\text{BUC}(\Xi) \oplus \mathcal{C}_1$ is an *essential* $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module, while $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ is not.

Definition

Let $\mathcal{D}_0 \subset L^\infty(\Xi)$, $\mathcal{D}_1 \subset \mathcal{L}(\mathcal{H})$ be α -invariant subspaces. $(\mathcal{D}_0, \mathcal{D}_1)$ is a *corresponding pair* (we also say: \mathcal{D}_0 and \mathcal{D}_1 correspond to each other) if $\mathcal{D}_0 \oplus \mathcal{D}_1$ is an $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module.

Theorem (The Correspondence Theorem)

Let $\mathcal{D}_0 \subset \text{BUC}(\Xi)$ be an α -invariant, closed subspace.

- 1 There is a unique closed, α -invariant subspace \mathcal{D}_1 of \mathcal{C}_1 corresponding to \mathcal{D}_0 . \mathcal{D}_1 is given by $\mathcal{D}_1 = \overline{\mathcal{T}^1(\mathcal{H}) * \mathcal{D}_0}$.

The Correspondence Theorem

In the language of Banach modules, $\text{BUC}(\Xi) \oplus \mathcal{C}_1$ is an *essential* $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module, while $L^\infty(\Xi) \oplus \mathcal{L}(\mathcal{H})$ is not.

Definition

Let $\mathcal{D}_0 \subset L^\infty(\Xi)$, $\mathcal{D}_1 \subset \mathcal{L}(\mathcal{H})$ be α -invariant subspaces. $(\mathcal{D}_0, \mathcal{D}_1)$ is a *corresponding pair* (we also say: \mathcal{D}_0 and \mathcal{D}_1 correspond to each other) if $\mathcal{D}_0 \oplus \mathcal{D}_1$ is an $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$ -module.

Theorem (The Correspondence Theorem)

Let $\mathcal{D}_0 \subset \text{BUC}(\Xi)$ be an α -invariant, closed subspace.

- ① There is a unique closed, α -invariant subspace \mathcal{D}_1 of \mathcal{C}_1 corresponding to \mathcal{D}_0 . \mathcal{D}_1 is given by $\mathcal{D}_1 = \overline{\mathcal{T}^1(\mathcal{H}) * \mathcal{D}_0}$.
- ② Let $A \in \mathcal{T}^1(\mathcal{H})$ be regular. For $f \in \text{BUC}(\Xi)$ and $B \in \mathcal{C}_1$ it is:

$$f \in \mathcal{D}_0 \Leftrightarrow A * f \in \mathcal{D}_1,$$

$$B \in \mathcal{D}_1 \Leftrightarrow A * B \in \mathcal{D}_0.$$

Examples of corresponding spaces

Examples of corresponding spaces

Examples

- ① For $\mathcal{D}_0 = \text{BUC}(\Xi)$ we get $\mathcal{D}_1 = \mathcal{C}_1$. In particular, for $A \in \mathcal{T}^1(\mathcal{H})$ regular:

$$\mathcal{C}_1 = \overline{\{A * f : f \in \text{BUC}(\Xi)\}}$$

Examples of corresponding spaces

Examples

- ① For $\mathcal{D}_0 = \text{BUC}(\Xi)$ we get $\mathcal{D}_1 = \mathcal{C}_1$. In particular, for $A \in \mathcal{T}^1(\mathcal{H})$ regular:

$$\mathcal{C}_1 = \overline{\{A * f : f \in \text{BUC}(\Xi)\}}$$

- ② For $\mathcal{D}_0 = C_0(\Xi)$ we get $\mathcal{D}_1 = \mathcal{K}(\mathcal{H})$. This yields the following result:
For $B \in \mathcal{L}(\mathcal{H})$ it is $B \in \mathcal{K}(\mathcal{H})$ if and only if $B \in \mathcal{C}_1$ and $\tilde{B} \in C_0(\Xi)$.

Examples of corresponding spaces

Examples

- ① For $\mathcal{D}_0 = \text{BUC}(\Xi)$ we get $\mathcal{D}_1 = \mathcal{C}_1$. In particular, for $A \in \mathcal{T}^1(\mathcal{H})$ regular:

$$\mathcal{C}_1 = \overline{\{A * f : f \in \text{BUC}(\Xi)\}}$$

- ② For $\mathcal{D}_0 = C_0(\Xi)$ we get $\mathcal{D}_1 = \mathcal{K}(\mathcal{H})$. This yields the following result:
For $B \in \mathcal{L}(\mathcal{H})$ it is $B \in \mathcal{K}(\mathcal{H})$ if and only if $B \in \mathcal{C}_1$ and $\tilde{B} \in C_0(\Xi)$.
- ③ Let $\mathcal{D}_0 = \text{VO}_\partial(\Xi)$, the functions of *vanishing oscillation at infinity*.
Then, $\mathcal{D}_1 = \text{essCen}(\mathcal{C}_1)$. For this algebra, there exists an index theorem.

Examples of corresponding spaces

Examples

① For $\mathcal{D}_0 = \text{BUC}(\Xi)$ we get $\mathcal{D}_1 = \mathcal{C}_1$. In particular, for $A \in \mathcal{T}^1(\mathcal{H})$ regular:

$$\mathcal{C}_1 = \overline{\{A * f : f \in \text{BUC}(\Xi)\}}$$

② For $\mathcal{D}_0 = \mathcal{C}_0(\Xi)$ we get $\mathcal{D}_1 = \mathcal{K}(\mathcal{H})$. This yields the following result:
For $B \in \mathcal{L}(\mathcal{H})$ it is $B \in \mathcal{K}(\mathcal{H})$ if and only if $B \in \mathcal{C}_1$ and $\tilde{B} \in \mathcal{C}_0(\Xi)$.

③ Let $\mathcal{D}_0 = \text{VO}_\partial(\Xi)$, the functions of *vanishing oscillation at infinity*.
Then, $\mathcal{D}_1 = \text{essCen}(\mathcal{C}_1)$. For this algebra, there exists an index theorem.

④ Let $\mathcal{D}_0 = C^*(e^{i\sigma(z,\cdot)}, e^{i\sigma(w,\cdot)})$. Then, \mathcal{D}_1 is the corresponding non-commutative torus A_θ with $\theta = e^{-i\sigma(z,w)/2}$. An operator $A \in \mathcal{C}_1$ is contained in A_θ if and only if $\tilde{A} \in C^*(e^{i\sigma(z,\cdot)}, e^{i\sigma(w,\cdot)})$.

Some research in that area so far:

- ① Fredholm theory of \mathcal{C}_1 ,
- ② Characterizations of the algebra \mathcal{C}_1 ,
- ③ Applications in operator theory, for example Toeplitz operators,
- ④ Applications in time-frequency analysis,
- ⑤ Investigation of commutative operator algebras,
- ⑥ Wiener's Tauberian theorem for operators,
- ⑦ Harmonic analysis of $L^1(\Xi) \oplus \mathcal{T}^1(\mathcal{H})$,
- ⑧ Extensions to other phase spaces Ξ , as well as extension to Banach spaces instead of \mathcal{H} ,
- ⑨ Explaining old theorems through the lens of QHA.

Thank you for your attention!