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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

Essentially everything that will be said can be done on abelian phase
spaces Ξ with a symplectic self-duality. Further, the Hilbert space setting
can be extended to so-called coorbit spaces (or, in the standard case
Ξ = G × Ĝ , modulation spaces Mq(G )).

Due to time restraints, I will only consider the most simple case:
We will consider Ξ = R× R. σ will be the standard symplectic form on Ξ:

σ((x , ξ), (y , η)) = yξ − xη.

By W(x ,ξ) we will denote the Weyl operators on H := L2(R):

W(x ,ξ)f (y) = e−ixξ/2+iyξf (y − x).

They depend continuously in SOT on (x , ξ) and satisfy:

W(x ,ξ)W(y ,η) = e iσ((x ,ξ),(y ,η))/2W(x+y ,ξ+η) = e iσ((x ,ξ),(y ,η))W(y ,η)W(x ,ξ).

We will usually write Wz = W(x ,ξ) for z = (x , ξ) ∈ Ξ.
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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

For f : Ξ→ C we set

αz(f )(w) = f (w − z), z ,w ∈ Ξ, β−(f )(w) = f (−w).

For A ∈ L(H) we write

αz(A) = WzAW−z , β−(A) = PAP.

Here, Pϕ(x) = ϕ(−x).
The shifts are strongly continuous on Lp(Ξ) (1 ≤ p <∞) and C0(Ξ)
resp. T p(H) and K(H), but only weak∗ continuous on L∞(Ξ) resp. L(H).
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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

Recall that the convolution of f , g ∈ L1(Ξ) is given by:

f ∗ g(z) =

∫
Ξ
f (w)g(z − w) dw =

∫
Ξ
f (w)αw (g)(z) dw

=

∫
Ξ
f (w)αz(β−(g))(w) dw .

In analogy, we define for f ∈ L1(Ξ) and A,B ∈ T 1(H):

f ∗ A := A ∗ f :=

∫
Ξ
f (w)αw (A) dw ∈ T 1(H),

A ∗ B(z) := tr(Aαz(β−(B))) ∈ L1(Ξ).

These convolutions turn L1(Ξ)⊕ T 1(H) into a commutative Z2-graded
Banach algebra.
Note that one can put one of the factors in these convolutions to be either
in L∞(Ξ) or L(H).
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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

Recall that the symplectic Fourier transform of f ∈ L1(Ξ) is given by:

Fσ(f )(z) =
1

2π

∫
Ξ
e iσ(w ,z)f (w) dw .

Fσ is self-inverse (on L2(Ξ)) and satisfies the convolution identity:

Fσ(f ∗ g) = Fσ(f ) · Fσ(g).

We let, for A ∈ T 1(H):

FW (A)(z) = tr(AWz).

Then, FW shares many properties of the symplectic Fourier transform
(Riemann-Lebesgue, Plancherel,...). In particular, we have the convolution
identities:

Fσ(A ∗ B) = FW (A)FW (B), FW (f ∗ A) = Fσ(f )FW (A).
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Convolutions and Fourier transforms in Quantum
Harmonic Analysis

Summarizing what happened so far:

The CCR relations

WzWw = e iσ(z,w)/2Wz+w

give us a way to turn L1(Ξ)⊕ T 1(H) into a commutative, Z2-graded
Banach algebra.

The Gelfand theory of L1(Ξ)⊕ T 1(H) is essentially given by Fσ and
FW .

The convolutions turn L∞(Ξ)⊕ L(H) into a Z2-graded
L1(Ξ)⊕ T 1(H)-Banach module.

The idea is now to investigate elements of L∞(Ξ)⊕ L(H), and more
specifically elements from L(H), from the perspective of this harmonic
analysis structure.
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Wiener’s approximation theorem

The following result is well-known from classical harmonic analysis:

Theorem (Wiener’s approximation theorem for functions)

Let f ∈ L1(Ξ). Then, the following are equivalent:

1 span{αz(f ) : z ∈ Ξ} is dense in L1(Ξ).

2 Fσ(f ) vanishes nowhere.

3 L1(Ξ) 3 g 7→ f ∗ g ∈ L1(Ξ) has dense range.

4 L∞(Ξ) 3 g 7→ f ∗ g ∈ L∞(Ξ) is injective.

A function f ∈ L1(Ξ) satisfying the above equivalent properties is called
regular. The analogous result for operators is a key point in quantum
harmonic analysis.
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Wiener’s approximation theorem

Theorem (Wiener’s approximation theorem for operators)

Let A ∈ T 1(H). Then, the following are equivalent:

1 span{αz(A) : z ∈ Ξ} is dense in T 1(H).

2 FW (A) vanishes nowhere.

3 A ∗ A is regular.

4 L1(Ξ) 3 g 7→ A ∗ g ∈ T 1(H) has dense range.

5 T 1(H) 3 B 7→ A ∗ B ∈ L1(Ξ) has dense range.

6 L∞(Ξ) 3 g 7→ A ∗ g ∈ L(H) is injective.

7 L(H) 3 B 7→ A ∗ B ∈ L∞(Ξ) is injective.

An operator A ∈ T 1(H) satisfying the above properties will be called
regular.
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Regular operators

Example

The possibly single most important regular operator is

A0 =
1

π
ϕ0 ⊗ ϕ0,

where ϕ0 is the ground state of the quantum harmonic oscillator:
ϕ0(x) = e−x

2
. FW (A0) is a Gaussian, so A0 is a regular operator.

Example

When f ∈ L∞(Ξ), then A0 ∗ f is (modulo the Bargmann-transform) the
Toeplitz operator with symbol f . For B ∈ L(H), B̃ := A0 ∗ B is the
Berezin transform of B.

Example

More generally, (ϕ⊗ ψ) ∗ f is a localization operator from time-frequency
analysis.

8



Regular operators

Example

The possibly single most important regular operator is

A0 =
1

π
ϕ0 ⊗ ϕ0,

where ϕ0 is the ground state of the quantum harmonic oscillator:
ϕ0(x) = e−x

2
. FW (A0) is a Gaussian, so A0 is a regular operator.

Example

When f ∈ L∞(Ξ), then A0 ∗ f is (modulo the Bargmann-transform) the
Toeplitz operator with symbol f . For B ∈ L(H), B̃ := A0 ∗ B is the
Berezin transform of B.

Example

More generally, (ϕ⊗ ψ) ∗ f is a localization operator from time-frequency
analysis.

8



Regular operators

Example

The possibly single most important regular operator is

A0 =
1

π
ϕ0 ⊗ ϕ0,

where ϕ0 is the ground state of the quantum harmonic oscillator:
ϕ0(x) = e−x

2
. FW (A0) is a Gaussian, so A0 is a regular operator.

Example

When f ∈ L∞(Ξ), then A0 ∗ f is (modulo the Bargmann-transform) the
Toeplitz operator with symbol f . For B ∈ L(H), B̃ := A0 ∗ B is the
Berezin transform of B.

Example

More generally, (ϕ⊗ ψ) ∗ f is a localization operator from time-frequency
analysis.

8



Regular operators

Example

The possibly single most important regular operator is

A0 =
1

π
ϕ0 ⊗ ϕ0,

where ϕ0 is the ground state of the quantum harmonic oscillator:
ϕ0(x) = e−x

2
. FW (A0) is a Gaussian, so A0 is a regular operator.

Example

When f ∈ L∞(Ξ), then A0 ∗ f is (modulo the Bargmann-transform) the
Toeplitz operator with symbol f . For B ∈ L(H), B̃ := A0 ∗ B is the
Berezin transform of B.

Example

More generally, (ϕ⊗ ψ) ∗ f is a localization operator from time-frequency
analysis.

8



The algebra C1

For f ∈ L∞(Ξ) and A ∈ L(H), z 7→ αz(f ) and z 7→ αz(A) are in general
only continuous in weak∗ topology. For obtaining good results, this
continuity is not strong enough.

We therefore consider:

C0 :={f ∈ L∞(Ξ) : z 7→ αz(f ) is ‖ · ‖∞-cont.}
= BUC(Ξ)

C1 :={A ∈ L(H) : z 7→ αz(A) is ‖ · ‖op-cont.}

While BUC(Ξ) is certainly a well-understood class, C1 seems unfamiliar at
first glance. We already know that K(H) ⊂ C1. It is easily established that
f ∗ A ∈ C1 when f ∈ L1(Ξ),A ∈ L(H) or f ∈ L∞(Ξ),A ∈ T 1(H). In
particular, Toeplitz and localization operators are contained in C1.
By Calderón-Vaillancourt: OpW (f ) ∈ C1 whenever f ∈ C∞b (Ξ).
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The Correspondence Theorem

In the language of Banach modules, BUC(Ξ)⊕ C1 is an essential
L1(Ξ)⊕ T 1(H)-module, while L∞(Ξ)⊕ L(H) is not.

Definition

Let D0 ⊂ L∞(Ξ), D1 ⊂ L(H) be α-invariant subspaces. (D0, D1) is a
corresponding pair (we also say: D0 and D1 correspond to each other) if
D0 ⊕D1 is an L1(Ξ)⊕ T 1(H)-module.

Theorem (The Correspondence Theorem)

Let D0 ⊂ BUC(Ξ) be an α-invariant, closed subspace.

1 There is a unique closed, α-invariant subspace D1 of C1 corresponding
to D0. D1 is given by D1 = T 1(H) ∗ D0.

2 Let A ∈ T 1(H) be regular. For f ∈ BUC(Ξ) and B ∈ C1 it is:

f ∈ D0 ⇔ A ∗ f ∈ D1,

B ∈ D1 ⇔ A ∗ B ∈ D0.
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Examples of corresponding spaces

Examples

1 For D0 = BUC(Ξ) we get D1 = C1. In particular, for A ∈ T 1(H)
regular:

C1 = {A ∗ f : f ∈ BUC(Ξ)}

2 For D0 = C0(Ξ) we get D1 = K(H). This yields the following result:
For B ∈ L(H) it is B ∈ K(H) if and only if B ∈ C1 and B̃ ∈ C0(Ξ).

3 Let D0 = VO∂(Ξ), the functions of vanishing oscillation at infinity.
Then, D1 = essCen(C1). For this algebra, there exists an index
theorem.

4 Let D0 = C ∗(e iσ(z,·), e iσ(w ,·)). Then, D1 is the corresponding
non-commutative torus Aθ with θ = e−iσ(z,w)/2. An operator A ∈ C1

is contained in Aθ if and only if Ã ∈ C ∗(e iσ(z,·), e iσ(w ,·)).
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Some research in that area so far:

1 Fredholm theory of C1,

2 Characterizations of the algebra C1,

3 Applications in operator theory, for example Toeplitz operators,

4 Applications in time-frequency analysis,

5 Investigation of commutative operator algebras,

6 Wiener’s Tauberian theorem for operators,

7 Harmonic analysis of L1(Ξ)⊕ T 1(H),

8 Extensions to other phase spaces Ξ, as well as extension to Banach
spaces instead of H,

9 Explaining old theorems through the lens of QHA.
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Thank you for your attention!
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