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Preliminaries: noncommutative Euclidean space (quantum Euclidean
space)

• θ will be a fixed antisymmetric d× d matrix with d ≥ 2; together with θ, we define

σ(s, t) = exp
( i
2
⟨s, θt⟩

)
, s, t ∈ Rd. (1)

Then σ : Rd × Rd → T is a 2-cocycle.

• The noncommutative euclidean space (quantum Euclidean space) associated to θ, denoted
by Rd

θ, is the von Neumann subalgebra Lσ(G) of B(L2(Rd)) generated by {λθ(s)}s∈Rd in the
following form:

λθ(s)ξ(t) = σ(−t, s)ξ(t− s), ξ ∈ L2(Rd), s, t ∈ Rd.
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Preliminaries: Trace on noncommutative Euclidean space

•Let f ∈ L1(Rd) ∩ C(Rd). Define

τθ(λθ(f)) = f(0).

The functional τθ : L1(Rd) ∩ C(Rd) → C admits an extension to a semifinite normal faithful
trace on Rd

θ.

• By the Plancherel formula, the map f 7→ λθ(f) establishes an isometry from L2(Rd) onto
L2(Rd

θ). Later, we will identify L2(Rd) and L2(Rd
θ).
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Preliminaries: Distribution space

• The class of Schwartz functions on Rd
θ is defined as the image of the usual Schwartz class

S(Rd) under λθ. That is,
S(Rd

θ) = {λθ(f) : f ∈ S(Rd)}. (2)

• The space of tempered distributions on Rd
θ is the topological dual space S ′(Rd

θ) of S(Rd
θ),

i.e., the space of continuous linear functionals on S(Rd
θ).
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Preliminaries: Derivatives on noncommutative Euclidean space

• For x = λθ(f) ∈ S(Rd
θ), α = (α1, · · · , αd) ∈ Nd

0, we set

∂αx =

∫
Rd

sαf(s)λθ(s)ds,

where sα = sα1
1 · · · sαd

d .

• ∂αx belongs to S(Rd
θ) too. By duality, these partial derivations extend to distributions.
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Preliminaries: Derivatives on noncommutative Euclidean space

• Let ∆ = ∂2
1 + · · ·+ ∂2

d be the Laplacian. We will frequently use the Bessel and Riesz
operators (1 +∆)

1
2 and ∆

1
2 which will be abbreviated as J and I respectively. More generally,

for a ∈ R, define Ja = (1 +∆)
a
2 and Ia = ∆

a
2 .

• The Bessel potential Ja operates on S ′(Rd
θ). While for the Riesz potential Ia. Let

S0(Rd) = {x : ∂̂αx(0) = 0 ∀ α ∈ Nd
0}.

Then Ia operates on S0(Rd
θ) = λθ

(
S0(Rd)

)
, and by duality, on the dual space S ′

0(Rd
θ).
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Preliminaries: Fourier multipliers and convolution

• We denote ϕ̌ as the inverse Fourier transform of ϕ. Now assume that ϕ̌ ∈ L1(Rd). Define

ϕ̌ ∗ x =

∫
Rd

ϕ̌(t)α̂−t(x)dt. (3)

• For x = λθ(f) with f ∈ S(Rd), we have for the Fourier multiplier Tϕ defined by mapping
λθ(f) to λθ(ϕf),

Tϕ(x) = ϕ̌ ∗ x.
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Preliminaries: Commutators

• Given x ∈ Rd
θ, denote by Mx : y 7→ xy the left multiplication on L2(Rd

θ). Then Mx is a
bounded linear operator on L2(Rd

θ). We now define the commutator

Cϕ,x = [Tϕ,Mx].

This is the so-called Calderón-Zygmund transform on Rd
θ, it is bounded on L2(Rd

θ).
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Function spaces on noncommutative Euclidean space

•The homogeneous Sobolev space Ẇm
p (Rd

θ) consists of those x ∈ S ′(Rd
θ) such that every

partial derivative of order m is in Lp(Rd
θ), equipped with the seminorm:

∥x∥Ẇm
p

=
( ∑

|α|=m

∥∂αx∥p
) 1

p
.
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Function spaces on noncommutative Euclidean space

• Besov spaces are defined by using a fixed test function φ ∈ S(Rd) such that
suppφ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2},
φ > 0 on {ξ : 2−1 < |ξ| < 2},∑
k∈Z

φ(2−kξ) = 1, ξ ̸= 0.
(4)

The sequence {φ(2−k·)}k∈Z is a Littlewood-Paley decomposition of Rd, modulo constant
functions. Denote by φk the inverse Fourier transform of φ(2−k·).
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Function spaces on noncommutative Euclidean space

Definition 1

Let 1 ≤ p, q ≤ ∞ and a ∈ R. The homogeneous Besov space on Rd
θ is defined by

Ba
p,q(Rd

θ) =
{
x ∈ S ′

0(Rd
θ) : ∥x∥Ba

p,q
< ∞

}
,

where

∥x∥Ba
p,q

=
(∑

k∈Z
2qka∥φk ∗ x∥qp

) 1
q
.

Let Ba
p,c0(R

d
θ) be the subspace of Ba

p,∞(Rd
θ) consisting of all x such that 2kr∥φk ∗ x∥p → 0 as

|k| → ∞.
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Function spaces on noncommutative Euclidean space

• S0(Rd
θ) is dense in Ba

p,q(Rd
θ) for 1 ≤ p < ∞ and 1 ≤ q < ∞.

• S(Rd
θ) is norm-dense in Wm

p (Rd
θ) when m ≥ 0 and 1 ≤ p < ∞; the density of S(Rd

θ) in
Ẇm

p (Rd
θ) holds only when m ≥ 0 and 1 < p < ∞

• The dual space of Ba
p,q(Rd

θ) coincides isomorphically with B−a
p′,q′(R

d
θ) for 1 ≤ p < ∞ and

1 ≤ q < ∞

• Jb and Ib are isomorphisms between Ba
p,q(Rd

θ) and Ba−b
p,q (Rd

θ).
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Backgrouds and motivations

• The first results [Mcdonald, Sukochev and Xiong, Commun. Math. Phys. 2019] concerning
quantum differentiability in the noncommutative euclidean space are the characterizations of
the Schatten Sd,∞ properties of

d̄x :=

d∑
j=1

γj ⊗ d̄xj (5)

on noncommutative euclidean space Rd
θ.

• γj ’s denote the d-dimensional euclidean gamma matrices, and d̄xj := i[Rj ,Mx], where for
1 ≤ j ≤ d, Rj = Tϕ for ϕ(s) = sj

|s| denote the quantum counterpart of Riesz transforms on Rd
θ.
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Backgrounds and motivations

• Our research is motivated by the following:

Theorem 2 (Mcdonald, Sukochev and Xiong, 2019)
d̄xi has bounded extension in Sd,∞ for every 1 ≤ i ≤ d iff x belongs to the homogeneous
Sobolev space Ẇ 1

d (Rd
θ).

• One related result is the formula on Dixmier Trace. For any continuous normalised trace tr
on S1,∞ we have

Trω(|d̄x|d) = cd

∥∥∥ d∑
j=1

γj ⊗
(
∂jx− sj

d∑
k=1

sk∂kx
)∥∥∥d

d
. (6)
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Main results

• We aim to extend the aforementioned results to a more general setting. Here are our results.

Theorem 3

Let d < p < ∞. If x ∈ B
d
p
p,p(Rd

θ), then Cϕ,x has a bounded extension in Sp and∥∥Cϕ,x

∥∥
Sp

≲d,p

[
sup

s∈Sd−1

|ϕ(s)|+ sup
s∈S=d−1

|∇ϕ(s)|
]∥∥x∥∥

B
d
p
p,p

.

Conversely, assume additionally that ϕ is not constant. If x ∈ Rd
θ and Cϕ,x ∈ Sp, then

x ∈ B
d
p
p,p(Rd

θ) and ∥∥x∥∥
B

d
p
p,p

≲d,p

[
sup

s∈Sd−1

|ϕ(s)|+ sup
s∈Sd−1

| ∇ϕ(s)|
]∥∥Cϕ,x

∥∥
Sp
.
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Main results

• For the critical case, i.e., the Sd,∞ properties of Cϕ,x for p ≤ d.

Theorem 4

If x ∈ Ẇ 1
d (Rd

θ), then Cϕ,x has bounded extension in Sd,∞.
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Main results

• The following trace formula is new even for classical setting.

Theorem 5

Let x ∈ Ẇ 1
d (Rd

θ). Then for every continuous normalised trace Trω on S1,∞, we have

Trω(|Cϕ,x|d) = Cd

∫
Sd−1

τθ(
∣∣ ∑
1≤k≤d

∂skϕ ∂kx
∣∣d)ds.

Here the integral over Sd−1 is taken with respect to the rotation-invariant measure ds on Sd−1.
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Proof of Theorem 3: Upper bounds estimate

We use the complex interpolation to obtain the desired estimate. Indeed, we have the
following three endpoint cases.

• Let a > 0, b > 0 and a+ b < 1. If x ∈ Ba+b
∞,∞(Rd

θ), then IaCϕ,xI
b ∈ S∞(L2(Rd

θ)) and

∥IaCϕ,xI
b∥S∞ ≲d,a,b ∥x∥Ba+b

∞,∞
.

• Let a > −d
2 , b > −d

2 and a+ b+ d < 1. If x ∈ Ba+b+d
1,1 (Rd

θ), then IaCϕ,xI
b ∈ S1 and∥∥IaCϕ,xI

b
∥∥
S1

≲d,a,b

∥∥x∥∥
Ba+b+d

1,1
. (7)
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Proof of Theorem 3: Upper bounds estimate

• Let a, b > −d
2 and a+ b+ d

2 < 1. If x ∈ B
a+b+ d

2
2,2 (Rd

θ), then IaCϕ,xI
b ∈ S2 and∥∥IaCϕ,xI

b
∥∥
S2

≲d,a,b

∥∥x∥∥
B

a+b+ d
2

2,2

.

Theorem 6

Let 1 ≤ p ≤ ∞, a+ b+ d
p < 1 and a, b > max(−d

p ,−
d
2). If x ∈ B

a+b+ d
p

p,p (Rd
θ), then IaCϕ,xI

b

belongs to B
a+b+ d

p
p,p (Rd

θ) and ∥∥IaCϕ,xI
b
∥∥
Sp

≲d,p,a,b ∥x∥
B

a+b+ d
p

p,p

.
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Proof of Theorem 3: Upper bounds estimate

• We end this part with a generalization to higher commutators. Namely, let
ϕ1, · · · , ϕN ∈ C∞(Sd−1) be N non-constant functions. Define

Cϕ1,··· ,ϕN ,x = [TϕN
, ..., [Tϕ1 ,Mx]...] (8)

• Theorem 6 extends to higher commutators.
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Proof of Theorem 3: Lower bounds estimate

• This part is devoted to the converse results of those in the previous part.

• We need the following nondegeneracy condition:

∀ s ∈ Rd \ {0} ∃ t ∈ Rd \ {0} such that
N∏
i=1

(ϕi(s)− ϕi(t)) ̸= 0. (9)

For N = 1, this condition means that ϕ1 is not a constant function.
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Proof of Theorem 3: Lower bounds estimate

• Denote γ = −(a+ a1 + b+ b1 + d) and set

ω(s) = |s|γ
∫
Rd

N∏
i=1

|ϕi(s+ t)− ϕi(t)|2k |s+ t|a+a1 |t|b+b1dt. (10)

• Suppose that ϕ1, ..., ϕN satisfy condition 9, we can show that ω is a homogeneous function
of order 0 and never vanishes for s ̸= 0.

• ω is a Fourier multiplier on Br
1,1(Rd

θ)) for some r. By a Tauberian result, we see that ω−1 is
a Fourier multiplier on Ba

p,p(Rd
θ) for any a ∈ R.
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Proof of Theorem 3: Lower bounds estimate

• For k ≥ 1 set
CN,k,y = Cϕ1, ..., ϕN︸ ︷︷ ︸

k tuple

, ϕ̄1, ...ϕ̄N︸ ︷︷ ︸
k−1 tuple

, y
,

• By the duality, we have

⟨IaCϕ1,...,ϕN ,xI
b, Ia1CN,k,yI

b1⟩ = ⟨I−γTω(x), y⟩.

Thus,

∥Tω(x)∥
B

a+b+ d
p

p,p

≤ C∥IaCϕ1,...,ϕN ,xI
b∥Sp .

23 / 27



The trace formula: Pseudodifferential operator

• Given f ∈ S(Rd) and ρ ∈ Sm(Rd;S(Rd
θ)), we set

Pρ(λθ(f)) =

∫
Rd

f(ξ)ρ(ξ)λθ(ξ)dξ.

The operator Pρ is called the pseudo-differential operator of symbol ρ.
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The trace formula

• We replace Tϕ by another Fourier multiplier T
ϕ̃

whose symbol is smooth on the whole Rd.

• We put

A =
1

2πi

∑
1≤k≤d

T|ξ|∂ξk ϕ̃
M∂kx. (11)

We are going to reduce the computation of Trω(|Cϕ,x|d) to that of Trω(|A|d(1 + ∆)−
d
2 ).
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The trace formula

• Compute the symbol of C
ϕ̃,x

−AJ−1 is of order −2. We see that

MyCϕ̃,x
−MyAJ

−1 ∈ S d
2
,∞.

Then we have
|MyCϕ,x|d − |MyA|dJ−d ∈ S1.

• We have we have
Trω(|MyCϕ,x|d) = Trω(|MyA|dJ−d).

So we can apply the trace formula in [McDonald, Sukochev and Zanin, Math. Ann. 2018] to
deduce our trace formula.
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Remark

Remark 7
We can replace the quantum Euclidean space Rd

θ by general twisted crossed products of
Euclidean space, namely, given a von Neumann algebra quipped with a normal semifinite
faithful weight τ , we set

R = M⋊α,σ Rd.

Then we can extend the previous results of Schatten p class memberships to the commutators
on R.
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