

Schatten properties of commutators on noncommutative Euclidean space

ZENG Kai

International Conference on Noncommutative Geometry, Analysis on Groups, and Mathematical Physics

February 26, 2024

Preliminaries: noncommutative Euclidean space (quantum Euclidean space)

- θ will be a fixed antisymmetric $d \times d$ matrix with $d \geq 2$; together with θ , we define

$$\sigma(s, t) = \exp\left(\frac{i}{2}\langle s, \theta t \rangle\right), \quad s, t \in \mathbb{R}^d. \quad (1)$$

Then $\sigma : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{T}$ is a 2-cocycle.

- The *noncommutative euclidean space (quantum Euclidean space)* associated to θ , denoted by \mathbb{R}_θ^d , is the von Neumann subalgebra $\mathcal{L}_\sigma(G)$ of $B(L_2(\mathbb{R}^d))$ generated by $\{\lambda_\theta(s)\}_{s \in \mathbb{R}^d}$ in the following form:

$$\lambda_\theta(s)\xi(t) = \sigma(-t, s)\xi(t - s), \quad \xi \in L_2(\mathbb{R}^d), \quad s, t \in \mathbb{R}^d.$$

Preliminaries: Trace on noncommutative Euclidean space

- Let $f \in L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$. Define

$$\tau_\theta(\lambda_\theta(f)) = f(0).$$

The functional $\tau_\theta : L_1(\mathbb{R}^d) \cap C(\mathbb{R}^d) \rightarrow \mathbb{C}$ admits an extension to a semifinite normal faithful trace on \mathbb{R}_θ^d .

- By the Plancherel formula, the map $f \mapsto \lambda_\theta(f)$ establishes an isometry from $L_2(\mathbb{R}^d)$ onto $L_2(\mathbb{R}_\theta^d)$. Later, we will identify $L_2(\mathbb{R}^d)$ and $L_2(\mathbb{R}_\theta^d)$.

Preliminaries: Distribution space

- The class of Schwartz functions on \mathbb{R}_θ^d is defined as the image of the usual Schwartz class $\mathcal{S}(\mathbb{R}^d)$ under λ_θ . That is,

$$\mathcal{S}(\mathbb{R}_\theta^d) = \{\lambda_\theta(f) : f \in \mathcal{S}(\mathbb{R}^d)\}. \quad (2)$$

- The space of *tempered distributions* on \mathbb{R}_θ^d is the topological dual space $\mathcal{S}'(\mathbb{R}_\theta^d)$ of $\mathcal{S}(\mathbb{R}_\theta^d)$, i.e., the space of continuous linear functionals on $\mathcal{S}(\mathbb{R}_\theta^d)$.

Preliminaries: Derivatives on noncommutative Euclidean space

- For $x = \lambda_\theta(f) \in \mathcal{S}(\mathbb{R}_\theta^d)$, $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$, we set

$$\partial^\alpha x = \int_{\mathbb{R}^d} s^\alpha f(s) \lambda_\theta(s) ds,$$

where $s^\alpha = s_1^{\alpha_1} \cdots s_d^{\alpha_d}$.

- $\partial^\alpha x$ belongs to $\mathcal{S}(\mathbb{R}_\theta^d)$ too. By duality, these partial derivations extend to distributions.

Preliminaries: Derivatives on noncommutative Euclidean space

- Let $\Delta = \partial_1^2 + \cdots + \partial_d^2$ be the Laplacian. We will frequently use the Bessel and Riesz operators $(1 + \Delta)^{\frac{1}{2}}$ and $\Delta^{\frac{1}{2}}$ which will be abbreviated as J and I respectively. More generally, for $a \in \mathbb{R}$, define $J^a = (1 + \Delta)^{\frac{a}{2}}$ and $I^a = \Delta^{\frac{a}{2}}$.
- The Bessel potential J^a operates on $\mathcal{S}'(\mathbb{R}_\theta^d)$. While for the Riesz potential I^a . Let

$$\mathcal{S}_0(\mathbb{R}^d) = \{x : \widehat{\partial^\alpha x}(0) = 0 \quad \forall \alpha \in \mathbb{N}_0^d\}.$$

Then I^a operates on $\mathcal{S}_0(\mathbb{R}_\theta^d) = \lambda_\theta(\mathcal{S}_0(\mathbb{R}^d))$, and by duality, on the dual space $\mathcal{S}'_0(\mathbb{R}_\theta^d)$.

Preliminaries: Fourier multipliers and convolution

- We denote $\check{\phi}$ as the inverse Fourier transform of ϕ . Now assume that $\check{\phi} \in L_1(\mathbb{R}^d)$. Define

$$\check{\phi} * x = \int_{\mathbb{R}^d} \check{\phi}(t) \widehat{\alpha}_{-t}(x) dt. \quad (3)$$

- For $x = \lambda_\theta(f)$ with $f \in \mathcal{S}(\mathbb{R}^d)$, we have for the Fourier multiplier T_ϕ defined by mapping $\lambda_\theta(f)$ to $\lambda_\theta(\phi f)$,

$$T_\phi(x) = \check{\phi} * x.$$

Preliminaries: Commutators

- Given $x \in \mathbb{R}_\theta^d$, denote by $M_x : y \mapsto xy$ the left multiplication on $L_2(\mathbb{R}_\theta^d)$. Then M_x is a bounded linear operator on $L_2(\mathbb{R}_\theta^d)$. We now define the commutator

$$\mathbf{C}_{\phi,x} = [T_\phi, M_x].$$

This is the so-called Calderón-Zygmund transform on \mathbb{R}_θ^d , it is bounded on $L_2(\mathbb{R}_\theta^d)$.

Function spaces on noncommutative Euclidean space

- The *homogeneous Sobolev space* $\dot{W}_p^m(\mathbb{R}_\theta^d)$ consists of those $x \in \mathcal{S}'(\mathbb{R}_\theta^d)$ such that every partial derivative of order m is in $L_p(\mathbb{R}_\theta^d)$, equipped with the seminorm:

$$\|x\|_{\dot{W}_p^m} = \left(\sum_{|\alpha|=m} \|\partial^\alpha x\|_p \right)^{\frac{1}{p}}.$$

Function spaces on noncommutative Euclidean space

- Besov spaces are defined by using a fixed test function $\varphi \in \mathcal{S}(\mathbb{R}^d)$ such that

$$\begin{cases} \text{supp } \varphi \subset \{\xi : 2^{-1} \leq |\xi| \leq 2\}, \\ \varphi > 0 \text{ on } \{\xi : 2^{-1} < |\xi| < 2\}, \\ \sum_{k \in \mathbb{Z}} \varphi(2^{-k} \xi) = 1, \quad \xi \neq 0. \end{cases} \quad (4)$$

The sequence $\{\varphi(2^{-k} \cdot)\}_{k \in \mathbb{Z}}$ is a Littlewood-Paley decomposition of \mathbb{R}^d , modulo constant functions. Denote by φ_k the inverse Fourier transform of $\varphi(2^{-k} \cdot)$.

Function spaces on noncommutative Euclidean space

Definition 1

Let $1 \leq p, q \leq \infty$ and $a \in \mathbb{R}$. The *homogeneous Besov space* on \mathbb{R}_θ^d is defined by

$$B_{p,q}^a(\mathbb{R}_\theta^d) = \{x \in \mathcal{S}'_0(\mathbb{R}_\theta^d) : \|x\|_{B_{p,q}^a} < \infty\},$$

where

$$\|x\|_{B_{p,q}^a} = \left(\sum_{k \in \mathbb{Z}} 2^{qka} \|\varphi_k * x\|_p^q \right)^{\frac{1}{q}}.$$

Let $B_{p,c_0}^a(\mathbb{R}_\theta^d)$ be the subspace of $B_{p,\infty}^a(\mathbb{R}_\theta^d)$ consisting of all x such that $2^{kr} \|\varphi_k * x\|_p \rightarrow 0$ as $|k| \rightarrow \infty$.

Function spaces on noncommutative Euclidean space

- $\mathcal{S}_0(\mathbb{R}_\theta^d)$ is dense in $B_{p,q}^a(\mathbb{R}_\theta^d)$ for $1 \leq p < \infty$ and $1 \leq q < \infty$.
- $\mathcal{S}(\mathbb{R}_\theta^d)$ is norm-dense in $W_p^m(\mathbb{R}_\theta^d)$ when $m \geq 0$ and $1 \leq p < \infty$; the density of $\mathcal{S}(\mathbb{R}_\theta^d)$ in $\dot{W}_p^m(\mathbb{R}_\theta^d)$ holds only when $m \geq 0$ and $1 < p < \infty$
- The dual space of $B_{p,q}^a(\mathbb{R}_\theta^d)$ coincides isomorphically with $B_{p',q'}^{-a}(\mathbb{R}_\theta^d)$ for $1 \leq p < \infty$ and $1 \leq q < \infty$
- J^b and I^b are isomorphisms between $B_{p,q}^a(\mathbb{R}_\theta^d)$ and $B_{p,q}^{a-b}(\mathbb{R}_\theta^d)$.

Backgrounds and motivations

- The first results [McDonald, Sukochev and Xiong, Commun. Math. Phys. 2019] concerning quantum differentiability in the noncommutative Euclidean space are the characterizations of the Schatten $S_{d,\infty}$ properties of

$$dx := \sum_{j=1}^d \gamma_j \otimes dx_j \quad (5)$$

on noncommutative Euclidean space \mathbb{R}_θ^d .

- γ_j 's denote the d -dimensional Euclidean gamma matrices, and $dx_j := i[R_j, M_x]$, where for $1 \leq j \leq d$, $R_j = T_\phi$ for $\phi(s) = \frac{s_j}{|s|}$ denote the quantum counterpart of Riesz transforms on \mathbb{R}_θ^d .

Backgrounds and motivations

- Our research is motivated by the following:

Theorem 2 (McDonald, Sukochev and Xiong, 2019)

∂x_i has bounded extension in $S_{d,\infty}$ for every $1 \leq i \leq d$ iff x belongs to the homogeneous Sobolev space $\dot{W}_d^1(\mathbb{R}_\theta^d)$.

- One related result is the formula on Dixmier Trace. For any continuous normalised trace tr on $S_{1,\infty}$ we have

$$\text{Tr}_\omega(|\partial x|^d) = c_d \left\| \sum_{j=1}^d \gamma_j \otimes (\partial_j x - s_j \sum_{k=1}^d s_k \partial_k x) \right\|_d^d. \quad (6)$$

Main results

- We aim to extend the aforementioned results to a more general setting. Here are our results.

Theorem 3

Let $d < p < \infty$. If $x \in B_{p,p}^{\frac{d}{p}}(\mathbb{R}_\theta^d)$, then $\mathbf{C}_{\phi,x}$ has a bounded extension in S_p and

$$\|\mathbf{C}_{\phi,x}\|_{S_p} \lesssim_{d,p} \left[\sup_{s \in \mathbb{S}^{d-1}} |\phi(s)| + \sup_{s \in \mathbb{S}^{d-1}} |\nabla \phi(s)| \right] \|x\|_{B_{p,p}^{\frac{d}{p}}}.$$

Conversely, assume additionally that ϕ is not constant. If $x \in \mathbb{R}_\theta^d$ and $\mathbf{C}_{\phi,x} \in S_p$, then $x \in B_{p,p}^{\frac{d}{p}}(\mathbb{R}_\theta^d)$ and

$$\|x\|_{B_{p,p}^{\frac{d}{p}}} \lesssim_{d,p} \left[\sup_{s \in \mathbb{S}^{d-1}} |\phi(s)| + \sup_{s \in \mathbb{S}^{d-1}} |\nabla \phi(s)| \right] \|\mathbf{C}_{\phi,x}\|_{S_p}.$$

Main results

- For the critical case, i.e., the $S_{d,\infty}$ properties of $\mathbf{C}_{\phi,x}$ for $p \leq d$.

Theorem 4

If $x \in \dot{W}_d^1(\mathbb{R}_\theta^d)$, then $\mathbf{C}_{\phi,x}$ has bounded extension in $S_{d,\infty}$.

Main results

- The following trace formula is new even for classical setting.

Theorem 5

Let $x \in \dot{W}_d^1(\mathbb{R}_\theta^d)$. Then for every continuous normalised trace Tr_ω on $S_{1,\infty}$, we have

$$\text{Tr}_\omega(|\mathbf{C}_{\phi,x}|^d) = C_d \int_{\mathbb{S}^{d-1}} \tau_\theta \left(\left| \sum_{1 \leq k \leq d} \partial_{s_k} \phi \partial_k x \right|^d \right) ds.$$

Here the integral over \mathbb{S}^{d-1} is taken with respect to the rotation-invariant measure ds on \mathbb{S}^{d-1} .

Proof of Theorem 3: Upper bounds estimate

We use the complex interpolation to obtain the desired estimate. Indeed, we have the following three endpoint cases.

- Let $a > 0, b > 0$ and $a + b < 1$. If $x \in B_{\infty, \infty}^{a+b}(\mathbb{R}_{\theta}^d)$, then $I^a \mathbf{C}_{\phi, x} I^b \in S_{\infty}(L_2(\mathbb{R}_{\theta}^d))$ and

$$\|I^a \mathbf{C}_{\phi, x} I^b\|_{S_{\infty}} \lesssim_{d, a, b} \|x\|_{B_{\infty, \infty}^{a+b}}.$$

- Let $a > -\frac{d}{2}, b > -\frac{d}{2}$ and $a + b + d < 1$. If $x \in B_{1,1}^{a+b+d}(\mathbb{R}_{\theta}^d)$, then $I^a \mathbf{C}_{\phi, x} I^b \in S_1$ and

$$\|I^a \mathbf{C}_{\phi, x} I^b\|_{S_1} \lesssim_{d, a, b} \|x\|_{B_{1,1}^{a+b+d}}. \tag{7}$$

Proof of Theorem 3: Upper bounds estimate

- Let $a, b > -\frac{d}{2}$ and $a + b + \frac{d}{2} < 1$. If $x \in B_{2,2}^{a+b+\frac{d}{2}}(\mathbb{R}_\theta^d)$, then $I^a \mathbf{C}_{\phi,x} I^b \in S_2$ and

$$\|I^a \mathbf{C}_{\phi,x} I^b\|_{S_2} \lesssim_{d,a,b} \|x\|_{B_{2,2}^{a+b+\frac{d}{2}}}.$$

Theorem 6

Let $1 \leq p \leq \infty$, $a + b + \frac{d}{p} < 1$ and $a, b > \max(-\frac{d}{p}, -\frac{d}{2})$. If $x \in B_{p,p}^{a+b+\frac{d}{p}}(\mathbb{R}_\theta^d)$, then $I^a \mathbf{C}_{\phi,x} I^b$ belongs to $B_{p,p}^{a+b+\frac{d}{p}}(\mathbb{R}_\theta^d)$ and

$$\|I^a \mathbf{C}_{\phi,x} I^b\|_{S_p} \lesssim_{d,p,a,b} \|x\|_{B_{p,p}^{a+b+\frac{d}{p}}}.$$

Proof of Theorem 3: Upper bounds estimate

- We end this part with a generalization to higher commutators. Namely, let $\phi_1, \dots, \phi_N \in C^\infty(\mathbb{S}^{d-1})$ be N non-constant functions. Define

$$\mathbf{C}_{\phi_1, \dots, \phi_N, x} = [T_{\phi_N}, \dots, [T_{\phi_1}, M_x] \dots] \quad (8)$$

- Theorem 6 extends to higher commutators.

Proof of Theorem 3: Lower bounds estimate

- This part is devoted to the converse results of those in the previous part.
- We need the following nondegeneracy condition:

$$\forall s \in \mathbb{R}^d \setminus \{0\} \exists t \in \mathbb{R}^d \setminus \{0\} \text{ such that } \prod_{i=1}^N (\phi_i(s) - \phi_i(t)) \neq 0. \quad (9)$$

For $N = 1$, this condition means that ϕ_1 is not a constant function.

Proof of Theorem 3: Lower bounds estimate

- Denote $\gamma = -(a + a_1 + b + b_1 + d)$ and set

$$\omega(s) = |s|^\gamma \int_{\mathbb{R}^d} \prod_{i=1}^N |\phi_i(s+t) - \phi_i(t)|^{2k} |s+t|^{a+a_1} |t|^{b+b_1} dt. \quad (10)$$

- Suppose that ϕ_1, \dots, ϕ_N satisfy condition 9, we can show that ω is a homogeneous function of order 0 and never vanishes for $s \neq 0$.
- ω is a Fourier multiplier on $B_{1,1}^r(\mathbb{R}_\theta^d)$ for some r . By a Tauberian result, we see that ω^{-1} is a Fourier multiplier on $B_{p,p}^a(\mathbb{R}_\theta^d)$ for any $a \in \mathbb{R}$.

Proof of Theorem 3: Lower bounds estimate

- For $k \geq 1$ set

$$\mathbf{C}_{N,k,y} = \mathbf{C}_{\underbrace{\phi_1, \dots, \phi_N}_{k \text{ tuple}}, \underbrace{\bar{\phi}_1, \dots, \bar{\phi}_N}_{k-1 \text{ tuple}}, y},$$

- By the duality, we have

$$\langle I^a \mathbf{C}_{\phi_1, \dots, \phi_N, x} I^b, I^{a_1} \mathbf{C}_{N,k,y} I^{b_1} \rangle = \langle I^{-\gamma} T_\omega(x), y \rangle.$$

Thus,

$$\|T_\omega(x)\|_{B_{p,p}^{a+b+\frac{d}{p}}} \leq C \|I^a \mathbf{C}_{\phi_1, \dots, \phi_N, x} I^b\|_{S_p}.$$

The trace formula: Pseudodifferential operator

- Given $f \in \mathcal{S}(\mathbb{R}^d)$ and $\rho \in S^m(\mathbb{R}^d; \mathcal{S}(\mathbb{R}_\theta^d))$, we set

$$P_\rho(\lambda_\theta(f)) = \int_{\mathbb{R}^d} f(\xi) \rho(\xi) \lambda_\theta(\xi) d\xi.$$

The operator P_ρ is called the pseudo-differential operator of symbol ρ .

The trace formula

- We replace T_ϕ by another Fourier multiplier $T_{\tilde{\phi}}$ whose symbol is smooth on the whole \mathbb{R}^d .
- We put

$$A = \frac{1}{2\pi i} \sum_{1 \leq k \leq d} T_{|\xi| \partial_{\xi_k} \tilde{\phi}} M_{\partial_k x}. \quad (11)$$

We are going to reduce the computation of $\text{Tr}_\omega(|\mathbf{C}_{\phi,x}|^d)$ to that of $\text{Tr}_\omega(|A|^d(1 + \Delta)^{-\frac{d}{2}})$.

The trace formula

- Compute the symbol of $\mathbf{C}_{\tilde{\phi},x} - AJ^{-1}$ is of order -2 . We see that

$$M_y \mathbf{C}_{\tilde{\phi},x} - M_y AJ^{-1} \in S_{\frac{d}{2}, \infty}.$$

Then we have

$$|M_y \mathbf{C}_{\phi,x}|^d - |M_y A|^d J^{-d} \in S_1.$$

- We have we have

$$\mathrm{Tr}_\omega(|M_y \mathbf{C}_{\phi,x}|^d) = \mathrm{Tr}_\omega(|M_y A|^d J^{-d}).$$

So we can apply the trace formula in [McDonald, Sukochev and Zanin, Math. Ann. 2018] to deduce our trace formula.

Remark

Remark 7

We can replace the quantum Euclidean space \mathbb{R}_θ^d by general twisted crossed products of Euclidean space, namely, given a von Neumann algebra quipped with a normal semifinite faithful weight τ , we set

$$\mathcal{R} = \mathcal{M} \rtimes_{\alpha, \sigma} \mathbb{R}^d.$$

Then we can extend the previous results of Schatten p class memberships to the commutators on \mathcal{R} .