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Preliminaries: noncommutative Euclidean space (quantum Euclidean

space)

e O will be a fixed antisymmetric d x d matrix with d > 2; together with 6, we define
o(s,t) = exp (%(s, o)), s,teR% (1)

Then o : R4 x R — T is a 2-cocycle.

e The noncommutative euclidean space (quantum Euclidean space) associated to 6, denoted
by R, is the von Neumann subalgebra £,(G) of B(La(R?)) generated by {\g(s)},cpa in the
following form:

N($)E() = (1, $)E(t — 5), € € Lo(RY), s,t € RY
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Preliminaries: Trace on noncommutative Euclidean space

elet f € L1(R?) N C(RY). Define

(Ao (f)) = £(0).

The functional 7y : L1 (R%) N C(R?) — C admits an extension to a semifinite normal faithful
trace on Rg.

e By the Plancherel formula, the map f + \y(f) establishes an isometry from Lo(R?) onto
Ly(RY). Later, we will identify Lo(R?) and Lo(RY).
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Preliminaries: Distribution space

e The class of Schwartz functions on ]Rg is defined as the image of the usual Schwartz class
S(R?) under \g. That is,

S(RG) = {e(f) : f € SRY)}. (2)

e The space of tempered distributions on Rg is the topological dual space S’(Rg) of S(]Rg),
i.e., the space of continuous linear functionals on S(RY).
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Preliminaries: Derivatives on noncommutative Euclidean space

o For z = \o(f) € S(RY), o = (a1, ,q) € N, we set

8O‘:U:/ sYf(s)Ng(s)ds,
Rd

where 5% = 57" - 557

e 0“z belongs to S(RY) too. By duality, these partial derivations extend to distributions.
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Preliminaries: Derivatives on noncommutative Euclidean space

elet A=07+ - + 63 be the Laplacian. We will frequently use the Bessel and Riesz

operators (1 + A)% and A2 which will be abbreviated as .J and I respectively. More generally,
for a € R, define J* = (1 + A)2 and [* = A%,

e The Bessel potential J¢ operates on S'(R?). While for the Riesz potential 1%. Let
So(RY) = {z : 22(0) =0 V a € N¢}.

Then I operates on Sy(RY) = Ag(So(R?)), and by duality, on the dual space S}(R).

6/27



Preliminaries: Fourier multipliers and convolution

e We denote ¢ as the inverse Fourier transform of ¢. Now assume that ¢ € Li(R?). Define

dra= [ dH)a_(v)dt. 3)
Rd

o For z = M\g(f) with f € S(R?), we have for the Fourier multiplier Ty defined by mapping
Ao (f) to Ag(of),

Ty(x) = ¢ * .
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Preliminaries: Commutators

e Given = € Rg, denote by M, : y — xy the left multiplication on Lg(Rg). Then M, is a
bounded linear operator on Ly(R$). We now define the commutator

Cyr = [Ty, My].

This is the so-called Calderén-Zygmund transform on RY, it is bounded on L (R%).
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Function spaces on noncommutative Euclidean space

eThe homogeneous Sobolev space W;T’(]Rg) consists of those = € S'(RY) such that every
partial derivative of order m is in Lp(Rg), equipped with the seminorm:

el = (X lo°al,)?

|lal=m
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Function spaces on noncommutative Euclidean space

e Besov spaces are defined by using a fixed test function ¢ € S(R?) such that
suppp C {£: 271 < [¢] <2},
@>0o0n{¢:271 < ¢ <2},
D p27F) =1, ¢ £0.

kEZ

The sequence {(27%-)} 1z is a Littlewood-Paley decomposition of R?, modulo constant
functions. Denote by ¢ the inverse Fourier transform of ©(27%-).
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Function spaces on noncommutative Euclidean space

Definition 1

Let 1 < p,q < oo and a € R. The homogeneous Besov space on Rg is defined by
§) = {z € SH(RY) : |lllBg, < oo},

where

Jellng, = (30 2% o  alg)

keZ

Let By ., (RY) be the subspace of B;OO(Rg) consisting of all x such that 2*"| ¢y, * x|, — 0 as
|k| — oo.
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Function spaces on noncommutative Euclidean space

o Sy(RY) is dense in ng(Rg) for1 <p<ooand 1l <gq< oc.

e S(RY) is norm-dense in W];”(]Rg) when m > 0 and 1 < p < oo; the density of S(RY) in
W;”L(]Rg) holds only when m >0 and 1 < p < o0

e The dual space of B;iq(Rg) coincides isomorphically with B, (RY) for 1 < p < oo and
1<g< o0

e J% and I” are isomorphisms between B;’q(Rg) and B;;b(]Rg).

12/27



Backgrouds and motivations

e The first results [Mcdonald, Sukochev and Xiong, Commun. Math. Phys. 2019] concerning
quantum differentiability in the noncommutative euclidean space are the characterizations of
the Schatten S, properties of

d

dx == Z*yj ® dx; (5)
j=1

on noncommutative euclidean space RY.

e 7;'s denote the d-dimensional euclidean gamma matrices, and dz; := i[R;, M,], where for
1<j<d, Rj =Ty for ¢(s) = %7' denote the quantum counterpart of Riesz transforms on Rg.
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Backgrounds and motivations

e Our research is motivated by the following:

Theorem 2 (Mcdonald, Sukochev and Xiong, 2019)

dx; has bounded extension in Sq, for every 1 <i < d iff v belongs to the homogeneous
Sobolev space W1 (RY).

e One related result is the formula on Dixmier Trace. For any continuous normalised trace tr
on S we have

d d
Trw(|dx|d) = Cq H Z’yj X (ij — Sj Zskﬁk:ﬁ) HZ (6)
j=1 k=1
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Main results

e We aim to extend the aforementioned results to a more general setting. Here are our results.

Theorem 3

d
Let d < p < oo. Ifz € BE,(RY), then C,, has a bounded extension in S, and

|Cs,

@ ‘sp Sdyp [ Sudpl‘d’(sﬂ"‘ sup Wd) ]HxH

seSa— s€S=d—

'F\sm

P

Conversely, assume additionally that ¢ is not constant. If x € Rg and C, ., € S, then
d
z € BEp(RY) and

]| ah S ap [ sp 16+ sup | Vo(s)[][Coulls,

s€Sd—
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Main results

e For the critical case, i.e., the Sy, properties of Cy , for p < d.

Theorem 4

If o € W}(RY), then C,, has bounded extension in Sy ..
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Main results

e The following trace formula is new even for classical setting.

Theorem 5

Let x € W(% (Rg). Then for every continuous normalised trace Tr,, on S o, we have

Tty (ICyal?) = Cd/gd_1 o] Y 05,6 Ohal|)ds.

1<k<d

Here the integral over S%~! is taken with respect to the rotation-invariant measure ds on S* 1.
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Proof of Theorem 3: Upper bounds estimate

We use the complex interpolation to obtain the desired estimate. Indeed, we have the
following three endpoint cases.

eleta>0,b>0anda+b<1. If z e BLLY (RY), then I°Cy I € Soo(La(R§)) and

11°Cpu |50 Ssap

7] e,

o Leta> —%, b > —% anda+b+d<1. Ifzxe ij”d(Rg), then 1°C, 1" € Sy and

11°Coal’|ls, Saas [l2]

a . 7
gyt (7)
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Proof of Theorem 3: Upper bounds estimate

a d
eletab>-4anda+b+% <1 IfecByy 2 (RY), then I°Cy, 1" € S5 and

11°Coal’|ls, Saas ||

d .
a+b+7
By,

d d _d atbtd od a b
Let1<p<oo,a+b+ <landab>max(—7,—3). Ifx € Byp F(Rf), then I*Cy,l

b+d
belongs to B;;: i (RY) and

17°Coal’|ls, Sapas 2] oreg

D,p
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Proof of Theorem 3: Upper bounds estimate

e We end this part with a generalization to higher commutators. Namely, let
$1,- -, dn € C®(S?T1) be N non-constant functions. Define

C¢17'" PN, [T¢>N7 ) [T¢>1aMfB]"'] (8)

e Theorem 6 extends to higher commutators.
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Proof of Theorem 3: Lower bounds estimate

e This part is devoted to the converse results of those in the previous part.

e We need the following nondegeneracy condition:

N
Vse R\ {0} 3t € RY\ {0} such that [](¢i(s) — ¢i(t)) #0. (9)

=1

For N = 1, this condition means that ¢ is not a constant function.
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Proof of Theorem 3: Lower bounds estimate

e Denote v = —(a+a; + b+ by + d) and set

N
w(s) = [s” /Rd LT 10iCs + 1) = da()P* |s + ¢ ¢+ at. (10)
i=1

e Suppose that ¢1, ..., ¢ satisfy condition 9, we can show that w is a homogeneous function
of order 0 and never vanishes for s # 0.

e w is a Fourier multiplier on Bf | (R{)) for some r. By a Tauberian result, we see that w™" is
a Fourier multiplier on Bg7p(Rg) for any a € R.
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Proof of Theorem 3: Lower bounds estimate

o For k > 1 set
CN7k7y = C¢17...,¢N’¢317"'Q§N7y’
—_—— ——

k tuple k—1 tuple

e By the duality, we have

(I°Cyy, . on e’ TP Cv gy I™) = (I T(2), ).
Thus,

b
[To@) arprg < CICyy onal’lls,-

p,p
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The trace formula: Pseudodifferential operator

o Given f € S(R?) and p € S™(R?% S(RY)), we set

Foal)) = [ FEp(EMlE)de

The operator P, is called the pseudo-differential operator of symbol p.
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The trace formula

e We replace T}, by another Fourier multiplier T$ whose symbol is smooth on the whole R¢.

e We put
1
A= — Z T‘glagk(;MaM. (11)
1<k<d

We are going to reduce the computation of Tr,,(|Cy |?) to that of Tr,,(|A|4(1 + A)fg).
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The trace formula

e Compute the symbol of C%x — AJ " is of order —2. We see that

M,Cy, — MyAJ ™" € S

2,00°

Then we have
|M,Cy.|" — |M,AIY T € Sy.

e We have we have . o
Tr,(|MyCy|*) = Tro,(|M,A|1*T 7).

So we can apply the trace formula in [McDonald, Sukochev and Zanin, Math. Ann. 2018] to
deduce our trace formula.
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Remark 7

We can replace the quantum Euclidean space Rg by general twisted crossed products of
Euclidean space, namely, given a von Neumann algebra quipped with a normal semifinite

faithful weight 7, we set
R =M Xqos R,

Then we can extend the previous results of Schatten p class memberships to the commutators

on R.
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