

Gelfand–Phillips type properties in noncommutative analysis

Yerlan Nessipbayev
(joint with J. Huang, M. Pliev, F. Sukochev)

The University of New South Wales

February 27, 2024

Abstract

- ① We characterize noncommutative symmetric spaces $E(\mathcal{M}, \tau)$ having the Gelfand–Phillips property;
- ② We characterize noncommutative symmetric spaces $E(\mathcal{M}, \tau)$ having the WCG-property.

τ -measurable operators

A closed and densely defined operator $x : D(x) \rightarrow H$ is said to be

- ① **affiliated** with the von Neumann algebra \mathcal{M} if it commutes with every unitary operator from the commutant \mathcal{M}' of \mathcal{M} ;
- ② **τ -measurable** if it is affiliated with \mathcal{M} and if there exists $\lambda > 0$ such that

$$\tau(e^{|x|}(\lambda, \infty)) < \infty.$$

τ -measurable operators

A closed and densely defined operator $x : D(x) \rightarrow H$ is said to be

- ① **affiliated** with the von Neumann algebra \mathcal{M} if it commutes with every unitary operator from the commutant \mathcal{M}' of \mathcal{M} ;
- ② **τ -measurable** if it is affiliated with \mathcal{M} and if there exists $\lambda > 0$ such that

$$\tau(e^{|x|}(\lambda, \infty)) < \infty.$$

The collection of all τ -measurable operators with respect to \mathcal{M} is denoted by $S(\mathcal{M}, \tau)$.

NC-version of decreasing rearrangement

Definition

Let $x \in S(\mathcal{M}, \tau)$. The **generalised singular value function** (decreasing, right-continuous) $\mu(x) : t \rightarrow \mu(t; x)$, $t \geq 0$, of the operator x is defined by setting

$$\mu(t; x) = \inf \{ \|xp\|_\infty : p \in \mathcal{P}(\mathcal{M}), \tau(\mathbf{1} - p) \leq t \}.$$

Noncommutative Symmetric Spaces

Definition (V.I. Ovčinnikov, Symmetric spaces of measurable operators, Dokl. Akad. Nauk SSSR, 1970)

^a We say that $(E(\mathcal{M}, \tau), \|\cdot\|_E)$ is a **noncommutative symmetric space affiliated with \mathcal{M}** if the following hold:

- ① $E(\mathcal{M}, \tau)$ is a subset of $S(\mathcal{M}, \tau)$;
- ② $(E(\mathcal{M}, \tau), \|\cdot\|_E)$ is a Banach space;
- ③ If $x \in E(\mathcal{M}, \tau)$ and if $y \in S(\mathcal{M}, \tau)$ are such that $\mu(y) \leq \mu(x)$, then $y \in E(\mathcal{M}, \tau)$ and $\|y\|_E \leq \|x\|_E$.

^aP. G. Dodds , B. de Pagter , F. A. Sukochev, Noncommutative Integration and Operator Theory, Springer Nature, PM volume 349, 2023.

Order continuity

Let $E(\mathcal{M}, \tau)$ be a noncommutative symmetric space.

The norm $\|\cdot\|_E$ is called **order continuous** if $\|x_\alpha\|_E \downarrow 0$ whenever $0 \leq x_\alpha \downarrow 0 \subset E(\mathcal{M}, \tau)$.

Order continuity

Let $E(\mathcal{M}, \tau)$ be a noncommutative symmetric space.

The norm $\|\cdot\|_E$ is called **order continuous** if $\|x_\alpha\|_E \downarrow 0$ whenever $0 \leq x_\alpha \downarrow 0 \subset E(\mathcal{M}, \tau)$.

Proposition

$E(0, \infty)$ is separable if and only if it has order continuous norm. ^a

^aAliprantis–Burkinshaw, Positive Operators, 1985.

Gelfand-Phillips property

Gelfand-Phillips property

Recall that a (norm) bounded subset A of a Banach space E is called *limited* if given a weak*-null sequence $(f_n)_n$ in E^* we have

$$\lim_{n \rightarrow \infty} \sup_{x \in A} |f_n(x)| = 0.$$

Gelfand-Phillips property

Recall that a (norm) bounded subset A of a Banach space E is called *limited* if given a weak*-null sequence $(f_n)_n$ in E^* we have

$$\lim_{n \rightarrow \infty} \sup_{x \in A} |f_n(x)| = 0.$$

Each relatively (norm) compact subset of E is limited. If, conversely, every limited subset of E is relatively (norm) compact, then E is said to have the *Gelfand-Phillips property*.

Buhvalov's theorem¹

Theorem

For a σ -Dedekind complete Banach lattice E the following statements are equivalent:

- (i) The norm on E is order continuous;
- (ii) E has the Gelfand–Phillips property.

¹A.V. Buhvalov, *Locally convex spaces that are generated by weakly compact sets*, Vestnik Leningrad. Univ. No. 7 Mat. Meh. Astronom. Vyp. 2 (1973), 11–17 (in Russian).

Noncommutative version of Buhvalov's theorem

Theorem (Huang–N–Pliev–Sukochev, TAMS, 2024)

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . A strongly symmetric space $E(\mathcal{M}, \tau)$ has the Gelfand–Phillips property if and only if its norm is order continuous.

Noncommutative version of Buhvalov's theorem

Theorem (Huang–N–Pliev–Sukochev, TAMS, 2024)

Let \mathcal{M} be a semifinite von Neumann algebra equipped with a faithful normal semifinite trace τ . A strongly symmetric space $E(\mathcal{M}, \tau)$ has the Gelfand–Phillips property if and only if its norm is order continuous.

Proof.

(\Rightarrow) Since every closed subspace of a space having the Gelfand–Phillips property inherits the Gelfand–Phillips property ^a, it follows from Buhvalov's Theorem and the fact that $\|\cdot\|_{\ell_\infty}$ is not order continuous that $E(\mathcal{M}, \tau)$ does not have a subspace isomorphic to ℓ_∞ . Hence, $E(\mathcal{M}, \tau)$ has order continuous norm. ^b

^aG. Emmanuele, *Gelfand–Phillips property in a Banach space of vector valued measures*, Math. Nachr. 127 (1986), 21–23.

^bP. Dodds, B. de Pagter, *Properties (u) and (V^*) of Pelczynski in symmetric spaces of τ -measurable operators*, Positivity 15 (2011), 571–594. Theorem 3.7

WCG property

WCG property

Let us recall that a Banach space E is said to be a *WCG-space* (or E has WCG property) if E contains a linearly dense weakly compact subset K , i.e., $E = \overline{\text{span}K}$ ².

²W. Wnuk, *Banach Lattices with Order Continuous Norms*, Advanced Topics in Math, Adam Mickiewicz Univ., Poznan, Polish Scientific Publishers PWN 1999.

A symmetric function space $E(0, \infty)$ is separable if and only if it has order continuous norm. However, a noncommutative symmetric space $E(\mathcal{M}, \tau)$ is not necessarily separable when $\|\cdot\|_{E(\mathcal{M}, \tau)}$ is order continuous³.

³F. Sukochev, *Linear-topological classification of separable L_p -spaces associated with von Neumann algebras of type I*, Israel. J. Math. 115 (2000), 137–156.

A symmetric function space $E(0, \infty)$ is separable if and only if it has order continuous norm. However, a noncommutative symmetric space $E(\mathcal{M}, \tau)$ is not necessarily separable when $\|\cdot\|_{E(\mathcal{M}, \tau)}$ is order continuous³.

Proposition

Let $E(\mathcal{M}, \tau)$ be a strongly symmetric space which is a WCG-space, then $E(\mathcal{M}, \tau)$ has order continuous norm.

³F. Sukochev, *Linear-topological classification of separable L_p -spaces associated with von Neumann algebras of type I*, Israel. J. Math. 115 (2000), 137–156.

A symmetric function space $E(0, \infty)$ is separable if and only if it has order continuous norm. However, a noncommutative symmetric space $E(\mathcal{M}, \tau)$ is not necessarily separable when $\|\cdot\|_{E(\mathcal{M}, \tau)}$ is order continuous³.

Proposition

Let $E(\mathcal{M}, \tau)$ be a strongly symmetric space which is a WCG-space, then $E(\mathcal{M}, \tau)$ has order continuous norm.

Proof.

Any strongly symmetric WCG-space is automatically Gelfand–Phillips^a. Hence, $E(\mathcal{M}, \tau)$ has order continuous norm. □

^aW. Wnuk, *Banach Lattices with Order Continuous Norms*, Advanced Topics in Math, Adam Mickiewicz Univ., Poznan, Polish Scientific Publishers PWN 1999.

³F. Sukochev, *Linear-topological classification of separable L_p -spaces associated with von Neumann algebras of type I*, Israel. J. Math. 115 (2000), 137–156. ◀ ▶ ⏪ ⏩ ⏴ ⏵ ⏵ ⏵

Theorem

For a strongly symmetric space $E(\mathcal{M}, \tau)$ affiliated with a von Neumann algebra \mathcal{M} equipped with a semifinite faithful normal trace τ such that $E(\mathcal{M}, \tau)^\times \subset S_0(\mathcal{M}, \tau)$, we have

$E(\mathcal{M}, \tau)$ has order continuous norm if and only if it is a WCG-space.

Theorem

For a strongly symmetric space $E(\mathcal{M}, \tau)$ affiliated with a von Neumann algebra \mathcal{M} equipped with a semifinite faithful normal trace τ such that $E(\mathcal{M}, \tau)^\times \subset S_0(\mathcal{M}, \tau)$, we have

$E(\mathcal{M}, \tau)$ has order continuous norm if and only if it is a WCG-space.

Proof.

(\Rightarrow) $E(\mathcal{M}, \tau)$ is fully symmetric. Note for $0 \neq p \in \mathcal{P}(\mathcal{M})$ we have $\Omega_{\mathcal{M}}(p) = \{y \in S(\mathcal{M}, \tau) : y \prec\prec p\}$ is $\sigma(E(\mathcal{M}, \tau), E(\mathcal{M}, \tau)^\times)$ -compact in $E(\mathcal{M}, \tau)$. For any $y \in S(\mathcal{M}, \tau)$ with $\tau(I(y)) < \infty$ ($y \in \mathcal{F}(\tau)$), we have

$$\mu(y) \leq \|y\|_{\mathcal{M}} \chi_{(0, \tau(I(y)))} \prec\prec \|y\|_{\mathcal{M}} \frac{\tau(I(y))}{\min\{\tau(I(y)), \tau(p)\}} \mu(p).$$

That is, $\Omega_{\mathcal{M}}(p)$ generates $\mathcal{F}(\tau)$. Hence $\overline{\text{span}(\Omega_{\mathcal{M}}(p))} = E(\mathcal{M}, \tau)$.

Theorem

Let \mathcal{M} be a σ -finite von Neumann algebra equipped with a semifinite faithful normal trace τ , then a strongly symmetric space $E(\mathcal{M}, \tau)$ has order continuous norm if and only if it is a WCG-space.

Theorem

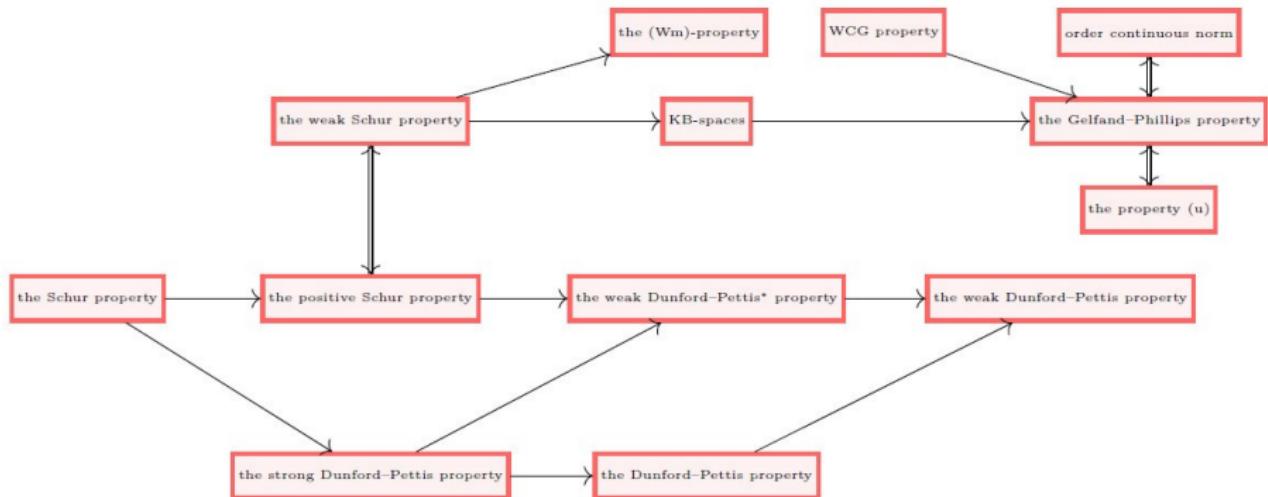
Let \mathcal{M} be a σ -finite von Neumann algebra equipped with a semifinite faithful normal trace τ , then a strongly symmetric space $E(\mathcal{M}, \tau)$ has order continuous norm if and only if it is a WCG-space.

Proof.

(\Rightarrow) There exists an increasing sequence of τ -finite projections p_n 's such that $p_n \uparrow_n \mathbf{1}$. It follows from Theorem above that $E(\mathcal{M}_{p_n}, \tau)$ is a WCG-space. Hence, there is a weakly compact $K_n \subset E(\mathcal{M}_{p_n}, \tau)$ such that $E(\mathcal{M}_{p_n}, \tau) = \overline{\text{span } K_n}$, $n \in \mathbb{N}$. We claim that $\cup_{n \geq 1} \frac{1}{n} K_n$ is a weakly compact subset generating $E(\mathcal{M}, \tau)$. For each $x \in E(\mathcal{M}, \tau)$, we have $\|p_n x p_n - x\|_E \rightarrow 0$ as $n \rightarrow \infty$. It suffices to prove that $\cup_{n \geq 1} \frac{1}{n} K_n$ is weakly compact. Indeed, for any sequence $(x_k)_k$ in $\cup_{n \geq 1} \frac{1}{n} K_n$ either

- ① all x_k 's belong to $\cup_{1 \leq k \leq n} \frac{1}{k} K_k$ for some $n < \infty$, then done.
- ② there exists a subsequence $(x_{n_k})_k$ of $(x_n)_n$ such that $x_{n_k} \in \frac{1}{m_k} K_{m_k}$ with $n_k, m_k \rightarrow_k \infty$. In this case, we have $x_{n_k} \rightarrow_k 0$ in norm.

Interrelations between properties in NC setting



$E(\mathcal{M}, \tau)$ is a strongly symmetric space affiliated with a semifinite von Neumann algebra \mathcal{M}