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Classical Vdo

A Wdo differential operator is formally defined as

Au(x) = /R d /R D ale,y, O)uly) dy b,

where a(x, y,0) € ST'5(R? x RY x RY), meaning that

m—pla|+4|8]
2

18507 a(x, v, 0)| < Capr(L+101%)

for (x,y) € K compact and 6 € RY.
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Au(x) = /R d /R D ale,y, O)uly) dy b,

where a(x, y,0) € ST'5(R? x RY x RY), meaning that

m—pla|+4|8]
2

18507 a(x, v, 0)| < Capr(L+101%)

for (x,y) € K compact and 6 € RY.
We usually fix (p,d) = (1,0), more generally 0 <6 < p <1 butd #1,
singular case (p,d) = (1,1).
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Classical Vdo

A Wdo differential operator is formally defined as

Au(x) = /R d /R D ale,y, O)uly) dy b,

where a(x, y,0) € ST'5(R? x RY x RY), meaning that

m—pla|+4|8]
2

18507 a(x, v, 0)| < Capr(L+101%)

for (x,y) € K compact and 6 € RY.
We usually fix (p,d) = (1,0), more generally 0 <6 < p <1 butd #1,
singular case (p,d) = (1,1).

e Example : A=3" . aa(x)D* where as(x) € C>®(R9). Formally

u(x) = e/ 8 aq(x)&* .
Au(x) /R/]R (Y aa(x)&™) dy d¢

laj<m
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Formally the symbol of a Wdo is determined as
oa(x, &) = e XAt

Then

au) = [ anxa€yde = [ [ e aaxe)uty)dy de.
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Formally the symbol of a Wdo is determined as
oa(x, &) = e XAt
Then
au) = [ anxa€yde = [ [ e aaxe)uty)dy de.

e Torus case : For g € 57 (T x RY)

P,f(x) = Z o(x, m)F(m)e™x.

meZzd
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Formally the symbol of a Wdo is determined as
oa(x, &) = e XAt

Then
au) = [ anxa€yde = [ [ e aaxe)uty)dy de.

e Torus case : For g € 57 (T x RY)

Pof(x) = " ol(x, m)f(m)e™.
meZd
If 0 = o(x) then P, is a pointwise multiplier, if 0 = o(m) then P, is a

Fourier multiplier.
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Key theorems

Symbol calculus

Theorem

p1, p2 are symbols in S™(RY x RY) and S™(RY x RY) resp. Then there
exists a symbol p3 in S"T"2(RY x RY) such that P,, = P,, P,,. Moreover,
for any Ny > 0,

i—lel

I —

pa— Y. T DEp(x,E)Dgpa(x,€) € M MORY X RY).
|er|1 < No '
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Key theorems

Symbol calculus

Theorem

p1, p2 are symbols in S™(RY x RY) and S™(RY x RY) resp. Then there
exists a symbol ps in S"T(RY x RY) such that P,, = P, P,,. Moreover,
for any Ny > 0,

i—lel

I —

pa— Y. T DEp(x,E)Dgpa(x,€) € M MORY X RY).
|er|1 < No '

Regularity on function spaces (L, Sobolev, Besov, local Hardy), we focus
on Hilbert-Sobolev spaces ||f||ns := ||(1 — A)*/2f||

For p € S", P, is bounded from H3 to H3~". For n <0, P, is bounded on
H3, in particular on L.
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Wdo meets C*-algebra

e Operator valued setting : Let X be a Banach space. u: RY — X,
o :R? x RY — B(X), we may define

Au(x) = [ &, (e) o
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Wdo meets C*-algebra

e Operator valued setting : Let X be a Banach space. u: RY — X,
o :R? x RY — B(X), we may define

Au(x) = [ &, (e) o

e Group action setting : Let (s, u) — as(u) be a C*-action on the
C*-algebra A. For u € A and smooth ¢ : RY — A, Wdo is defined as

— i(s,6)
Pyu /Rd /Rd e\ o(&)a—s(u) ds d€.
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Wdo meets C*-algebra

e Operator valued setting : Let X be a Banach space. u: RY — X,
o :R? x RY — B(X), we may define

Au(x) = [ &, (e) o

e Group action setting : Let (s, u) — as(u) be a C*-action on the
C*-algebra A. For u € A and smooth ¢ : RY — A, Wdo is defined as

— i(s,6)
Pyu /Rd /Rd e\ o(&)a—s(u) ds d€.

e Example : Quantum torus Ay, with a periodic group action.
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e Noncommutative tori : d > 2 and 6 = (0y;) real skew-symmetric
d x d-matrix. The quantum torus Ay is the universal C*-algebra generated
by d unitaries Uy, ..., Uy satisfying the following commutation relation

UeU; = ™% Ui Uy, j k=1,...,d.

e Trace : Let Py denote the involutive subalgebra of polynomials, dense in
Ag. For any polynomial x =" /4 anU™ define 7(x) = ap. Then 7
extends to a faithful tracial state on Aj.

Let T¢ be the w*-closure of Ay in the GNS representation of 7. Then 7
becomes a normal faithful tracial state on Tg. Thus (T9,7) is a
noncommutative(=quantum) probability space.

e Noncommutative L,-spaces : For 1 < p < oo and x € ']I‘g let

1
Ixllp = (7(|x[P))?  with |x| = (x*x)%. This defines a norm on TY. The
corresponding completion is denoted by L,(T¢). We also set
Loo(TY) = TY.
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Correspondence : torus and quantum torus.

probability space (T9, 1) < noncom probability space(’]I‘g, T)

commutative algebra Lo(TY) < noncommutative algebra TS

integration against u / < trace T
Td

/T e 7(0)

Il = ([, 1P s lixl, = (r(be)
Ly(T%) & Ly(T5)
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Symbol calculus

S"(R9; S(TY)) consists of maps p € C®(RY; S(TY)) s.t.

o n=15|
10§D p(&)I| < Cap(1+17) =

Theorem (Baaj, Connes, 1980s)

p1, p2 are symbols in S™(R9; S(T9)) and S™(R?; S(TY)) resp. Then
there exists a symbol p3 in ST (RY; S(TY)) such that P,, = Py, P,,.
Moreover, for any Ny > 0,

27i)~lel _
p3 — Z ( ;_D?PlD?PzES"l*"z Mo(R?; S(T9)).

|a|1<No
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Mapping property

Theorem (Xia-X, Ha-Lee-Ponge)

For p € S", P, is bounded from H5(T4) to H5 "(T4). For n <0, Py is
bounded on H3(T¢), in particular on Ly(T).
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Mapping property

Theorem (Xia-X, Ha-Lee-Ponge)

For p € S", P, is bounded from H5(T4) to H5 "(T4). For n <0, Py is
bounded on H3(T¢), in particular on Ly(T).

Easy observation :

@ 0=0, for pg,ps € SO, [P, Po,] € S~1 is compact, since
sym(Pp, o Pp,) — p1p2 € s, sym(Py, o Py) — pap1 € st

@ general 0, if p1, p» € SO are commutative, [Py, Pp,], is compact.
© special case : p1 : RY — C, p2 € S(TY), then [P,,, P,,] is compact .
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Abstract Wdo

Abstract construction/definition of 0-order Wdo

Theorem (McDonald-Sukochev-Zanin)

Let m : A1 — B(H) and 72 : Ay — B(H) be representations of
C*-algebras, I be the C*-algebra generated by m1( A1) and mo(Az). If
Q@ A1, A, are unital and A, is abelian;
@ [mi(a1), m(a2)] is compact;
© > i, m(ak)ma(bk) compact implies " ay ® by =0,
then Asym : M — A1 ®min A2 such that

sym(m(al)) =a1®1, sym(wz(az)) =1® ap.
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Abstract Wdo

Example :
0 Ar = C(19), Ao = C(897), mi(F) = Mr,ma(g) = 8( =)
@ A1 =C+ G(RY), A = C(S971), m(f) = My, m2(g) = &((—py72) i
Q Ay = C(T§), Az = C(ST 1), m(F) = My, ma(g) = &(=ay7)-
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Abstract Wdo

Example :

0 Ay = C(T9), Az = C(S1), ma(f) = My, male) = 8 —)
Q@ A; =C+ G(RY), Ay = C(8971), mi(f) = M, ma(g) = g&(
Q Ay = C(T§), Az = C(ST 1), m(F) = My, ma(g) = &(=ay7)-

)
Proof : Denote q : B(H) — B(H)/K(H). We have a natural
x-isomorphism 7 : A1 ®min A2 — B(H) determined by

( A)1/2)

7T(31 X 32) = 7T1(31)7T2(32).
The map sym is defined as

sym=7toq:MN— B(H)/K(H) = A1 @min A2.
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Abstract Wdo

Example :

© Ay = C(T%), A = C(8%Y), m(f) = My mal8) = 8( =)

Q@ A; =C+ G(RY), A = C(ST71), mi(f) = My, ma(g) = (W)
Q Ay = C(T§), Az = C(ST 1), m(F) = My, ma(g) = &(=ay7)-

)
Proof : Denote q : B(H) — B(H)/K(H). We have a natural
x-isomorphism 7 : A1 ®min A2 — B(H) determined by

7T(31 X 32) = 7T1(31)7T2(32).
The map sym is defined as

sym=7toq:MN— B(H)/K(H) = A1 @min A2.

Remark : Positive order Wdos are not considered ; Negative order Wdos are
killed by the quotient map.
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Abstract Wdo of negative order

Ideals of compact op. px € lp <> T € Sp, and e = O(kii) < TeSpw.
Observation : If o € S7* then P, € Sy/q,00, In particular

S =(1=A)2, 1= (~A)"2 € Syjarco-

Theorem (McDonald-Sukochev-X. 2020CMP)

Let o, 3 € R. For smooth x, if o < 3+ 1, then [J%,x]J P ¢ LB - If

—a+1’
« = B+ 1, then the operator [J%,x]J~# has bounded extension.
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Abstract Wdo of negative order

Ideals of compact op. px € lp <> T € Sp, and e = O(kii) < TeSpw.
Observation : If o € S7* then P, € Sy/q,00, In particular

S =(1=A)2, 1= (~A)"2 € Syjarco-

Theorem (McDonald-Sukochev-X. 2020CMP)

Let o, 3 € R. For smooth x, if o < 3+ 1, then [J%,x]J P ¢ LB - If

—a+1?
« = B+ 1, then the operator [J%,x]J~# has bounded extension.

Theorem (Sukochev-X.-Zanin 2023JFA)

Let a, B € R, and m be a homogeneous symbol of order 0. For smooth x,

ifoo < B4 1, then [T, x]J~P ¢ cﬁ ¢ . Ifa=p+1, then the
—a+1’

operator [ T,,J*, x]J~# has bounded extension.
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Asymptotic limits of Wdo

T € Spo means sup, t/Ppu(t, T) < oo,
Now we are interested in lims_yoo tl/”,u(t, 7).

On TY, one can calculate

tlim Y9t 7Y = da.

— 00

e Question For 0-order Wdo T, what is lims_ tl/du(t, TJ )7
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Asymptotic limits of Wdo

Another proof of lim;_ tl/du(t, J 1) = d=4 is done using
noncommutative Taubrian Theorem (Wiener-lkehara Theorem) :

Theorem (McDonald-Sukochev-Zanin)

Let p>2 and let 0 < A, B € S satisfy B € Sp o and [B,A%] € S oo If
there exists 0 < ¢ € R such that the function

Fas(z) := Tr(A*B%) — - < S Z€C (@) >p,

admits a continuous extension to the closed half plane
{z € C: R(z) > p}, then there exists the limit

lim t5u(t. AB) = (S)7
= (— )P
fim ealt, AB) = ()7
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Asymptotic limits of Wdo

The calculation lims_ o tl/d,u(t, J_l) is reduced to the meromorphic
continuation of Tr(J?) on {z € C: R(z) > d} to {z € C: R(z) > d}.

Here
() = 3 1+ mP)?

mezd

has a simple pole at z = d. (see Shubin's book for more general op.)
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Asymptotic limits of Wdo

The calculation lims_ o tl/d,u(t, J_l) is reduced to the meromorphic
continuation of Tr(J?) on {z € C: R(z) > d} to {z € C: R(z) > d}.

Here
Tr(J%) = > (1+|mP)z
mezZd

has a simple pole at z = d. (see Shubin's book for more general op.)

Similarly we can establish the following

Theorem (Sukochev-X.-Zanin)

Let d > 2. If T € N(C(TY), C(S-1)), then

. 1 _1 _1
Jim tap(t, T(=A)72) = d™4[lsym(T)l| (1 (re)p L0 (59-1))-

Similar results for classical Wdo are obtained by Birman, Solomyak and
their coauthors.
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T(—A)_% is a pseudodifferential operator of order —1 :

T(_A)_% ~ O’fl(va) +0-72(Xa§) +O-*3(Xa£) +074(X7£) T+
Vdo s-1 §2 s-3 S

Cpt. op. Sd,oo Sd/2,oo Sd/3,oo 8d/4,oo
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T(—A)_% is a pseudodifferential operator of order —1 :

T(_A)_% ~ O’fl(Xvé_) +0-72(Xa§) +O-*3(Xa£) +074(X7£) T+
Vdo st §2 s3 s
Cpt. op. Sd,oo Sd/2,oo Sd/3,oo 8d/4,oo
When taking the asymptotic limit, o_x, k > 1 vanish.

lim tap(t, T(~A)"2) = d~dl|o_1]4.

t—00
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Quantum differential of Connes

e Def : Let A be an involutive algebra over C. Then a Fredholm module
over A is given by

@ an involutive representation 7 of A on a Hilbert space H,

@ an operator F = F* , F2 =1, on H such that [F, 7(a)] is a compact
operator for any a € A.
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Quantum differential of Connes

e Def : Let A be an involutive algebra over C. Then a Fredholm module
over A is given by

@ an involutive representation 7 of A on a Hilbert space H,

@ an operator F = F* , F2 =1, on H such that [F, 7(a)] is a compact
operator for any a € A. (Atiyah's definition of abstract elliptic)
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Quantum differential of Connes

e Def : Let A be an involutive algebra over C. Then a Fredholm module
over A is given by

@ an involutive representation 7 of A on a Hilbert space H,

@ an operator F = F* , F2 =1, on H such that [F, 7(a)] is a compact
operator for any a € A. (Atiyah's definition of abstract elliptic)
e Quantized calculus of differential forms :

@ the differential df of f € A :

ar = i[F, f] = i(Ff — fF);

@ the integration T +— Tr(T).
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Traces on &1

Definition

A linear functional ¢ : 81,00 — C is called a trace if p(AB) = ¢(BA) for
every A € 81, and for every B € B(H).

The trace ¢ is called normalised if go(diag({ﬁ}kzo)) =1
There exists a plethora of (normalised) traces on S; . The most famous
ones are Dixmier traces.
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Dixmier traces

An extended limit is a bounded functional w in {5, which extends the
“limit" functional on the subspace c of convergent sequences.
(loo)* = (boo)h @ (Uo)%, then w € (Lo,

Definition (Dixmier)

If w is an extended limit then the functional

1 n

T — —_— k,T)], 0<TeL
“ <Iog(n +2) ;),u( )> - Lioo

is finite and additive on the positive cone of S . Thus, it uniquely

extends to a unitarily invariant linear functional on &1 . The latter is

called a Dixmier trace and is denoted by Tr,,.
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Dixmier traces

An extended limit is a bounded functional w in {5, which extends the
“limit" functional on the subspace c of convergent sequences.
(loo)* = (boo)h @ (Uo)%, then w € (Lo,

Definition (Dixmier)

If w is an extended limit then the functional

1 n
T _ k, T 0<TE/Lieo
o (g o). 0sTen

is finite and additive on the positive cone of S . Thus, it uniquely
extends to a unitarily invariant linear functional on &1 . The latter is
called a Dixmier trace and is denoted by Tr,,.

Thus for a compact operator T € S; o,

tILrgo tu(t, T) =Tr,(T).
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Quantum derivative on quantum tori

C*-algebra : Ay; Hilbert space : Lo(Tg).
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Quantum derivative on quantum tori

C*-algebra : Ay; Hilbert space : Lo(Tg).

e Construction of F : D; = —i0; are self-adjoint, sois D =3 _.v; ® D;
By functional calculus

D.
F =sgn(D) = ZVJ ” ~
D; -+ Dj

Then F = F*, F2=1.
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Quantum derivative on quantum tori

C*-algebra : Ay; Hilbert space : Lo(Tg).

e Construction of F : D; = —i0; are self-adjoint, so is D = Zj v ® D;.
By functional calculus

D;
=sgn(D) = Zvj o7 T D2
+

Then F = F*, F2 =1.
e Quantum derivative : Let M, : y — xy left multiplication representing

Ag on Ly(T9).
dx = i[F, My].
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Question in Connes’' framework

Question 1 : characterise differentiable elements on Tg.

Theorem (McDonald-Sukochev-X. 2019CMP)

For x € Td, dx € Sy iff x € Wj(']l‘g).
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Question in Connes’' framework

Question 1 : characterise differentiable elements on Tg.

Theorem (McDonald-Sukochev-X. 2019CMP)

For x € Td, dx € Sy iff x € Wj(']I‘g).

Question 2 : calculate the quantum integration (Dixmier trace) of dx.

Theorem (Sukochev-X.-Zanin 2023JFA)

Let d > 2. If x € W}(Tg), then

d d
27j®DjX®1_Z’Yj®DkX®Sk5j” 5
= = d

lim tapu(t,dx)=d a

t—00
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Conclusion

o let x € Wo}(Tg). For any continuous normalized trace ¢ on L1 o, we
have

d d
d
plaxt®) = co [ (10— 5 3 s0®) ) ds o lxl
j=1 k=1
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Conclusion

o let x € Wo}(Tg). For any continuous normalized trace ¢ on L1 o, we
have

d d
d
pllaxd’) =ca [ 7((3010x 5D sudux®) ) o a1y,
st o k=1
If § = 0, the above = is in fact “"=", because of rotation invariance :

d g d
/Sdl(z |0jx—s; Zskf)kx|2)2 ds = ||Vx||3 /Sdl(z |uj—s; Zskuk|2)2 ds.
j k J k
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Conclusion

o let x € Wo}(Tg). For any continuous normalized trace ¢ on L1 o, we
have

d d
d
pllaxd’) =ca [ 7((3010x 5D sudux®) ) o a1y,
st o k=1
If § = 0, the above = is in fact “"=", because of rotation invariance :

d g d
/Sdl(z |0jx—s; Zskf)kx|2)2 ds = ||Vx||3 /Sdl(z |uj—s; Zskuk|2)2 ds.
j k J k

e Alain Connes’ idea (1988) : "The next result shows how to pass from
quantized 1-forms to ordinary forms, not by a classical limit, but by a
direct application of the Dixmier trace.”

d

Tr(9f1%) = ca | (S 102 dé = callfl5,.

Jj=1
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Thank you'!
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