

Pseudodifferential operators in the noncommutative setting

Xiao Xiong

Harbin Institute of Technology

International Conference on Noncommutative Geometry,
Analysis on Groups, and Mathematical Physics
Ghent, 27 February 2024

Classical Ψ do

A Ψ do differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \theta \rangle} a(x, y, \theta) u(y) dy d\theta,$$

where $a(x, y, \theta) \in S_{\rho, \delta}^m(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$, meaning that

$$|\partial_\theta^\alpha \partial_x^\beta a(x, y, \theta)| \leq C_{\alpha, \beta, \kappa} (1 + |\theta|^2)^{\frac{m - \rho|\alpha| + \delta|\beta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$.

Classical Ψ do

A Ψ do differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \theta \rangle} a(x, y, \theta) u(y) dy d\theta,$$

where $a(x, y, \theta) \in S_{\rho, \delta}^m(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$, meaning that

$$|\partial_\theta^\alpha \partial_x^\beta a(x, y, \theta)| \leq C_{\alpha, \beta, \kappa} (1 + |\theta|^2)^{\frac{m - \rho|\alpha| + \delta|\beta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$.

We usually fix $(\rho, \delta) = (1, 0)$, more generally $0 \leq \delta \leq \rho \leq 1$ but $\delta \neq 1$,
singular case $(\rho, \delta) = (1, 1)$.

Classical Ψ do

A Ψ do differential operator is formally defined as

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \theta \rangle} a(x, y, \theta) u(y) dy d\theta,$$

where $a(x, y, \theta) \in S_{\rho, \delta}^m(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$, meaning that

$$|\partial_\theta^\alpha \partial_x^\beta a(x, y, \theta)| \leq C_{\alpha, \beta, K} (1 + |\theta|^2)^{\frac{m - \rho|\alpha| + \delta|\beta|}{2}}$$

for $(x, y) \in K$ compact and $\theta \in \mathbb{R}^d$.

We usually fix $(\rho, \delta) = (1, 0)$, more generally $0 \leq \delta \leq \rho \leq 1$ but $\delta \neq 1$, singular case $(\rho, \delta) = (1, 1)$.

• **Example :** $A = \sum_{|\alpha| \leq m} a_\alpha(x) D^\alpha$, where $a_\alpha(x) \in C^\infty(\mathbb{R}^d)$. Formally

$$Au(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \xi \rangle} \left(\sum_{|\alpha| \leq m} a_\alpha(x) \xi^\alpha \right) dy d\xi.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x, \xi) = e^{-ix \cdot \xi} A e^{ix \cdot \xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \xi \rangle} \sigma_A(x, \xi) u(y) dy d\xi.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x, \xi) = e^{-ix \cdot \xi} A e^{ix \cdot \xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \xi \rangle} \sigma_A(x, \xi) u(y) dy d\xi.$$

- **Torus case :** For $\sigma \in S_{\rho, \delta}^n(\mathbb{T}^d \times \mathbb{R}^d)$

$$P_\sigma f(x) = \sum_{m \in \mathbb{Z}^d} \sigma(x, m) \widehat{f}(m) e^{im \cdot x}.$$

Symbol

Formally the symbol of a Ψ do is determined as

$$\sigma_A(x, \xi) = e^{-ix \cdot \xi} A e^{ix \cdot \xi}.$$

Then

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle x-y, \xi \rangle} \sigma_A(x, \xi) u(y) dy d\xi.$$

- **Torus case :** For $\sigma \in S_{\rho, \delta}^n(\mathbb{T}^d \times \mathbb{R}^d)$

$$P_\sigma f(x) = \sum_{m \in \mathbb{Z}^d} \sigma(x, m) \widehat{f}(m) e^{im \cdot x}.$$

If $\sigma = \sigma(x)$ then P_σ is a pointwise multiplier, if $\sigma = \sigma(m)$ then P_σ is a Fourier multiplier.

Key theorems

Symbol calculus

Theorem

ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d \times \mathbb{R}^d)$ and $S^{n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ such that $P_{\rho_3} = P_{\rho_1}P_{\rho_2}$. Moreover, for any $N_0 \geq 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{i^{-|\alpha|}}{\alpha!} D_\xi^\alpha \rho_1(x, \xi) D_x^\alpha \rho_2(x, \xi) \in S^{n_1+n_2-N_0}(\mathbb{R}^d \times \mathbb{R}^d).$$

Key theorems

Symbol calculus

Theorem

ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d \times \mathbb{R}^d)$ and $S^{n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d \times \mathbb{R}^d)$ such that $P_{\rho_3} = P_{\rho_1}P_{\rho_2}$. Moreover, for any $N_0 \geq 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{i^{-|\alpha|}}{\alpha!} D_\xi^\alpha \rho_1(x, \xi) D_x^\alpha \rho_2(x, \xi) \in S^{n_1+n_2-N_0}(\mathbb{R}^d \times \mathbb{R}^d).$$

Regularity on function spaces (L_p , Sobolev, Besov, local Hardy), we focus on Hilbert-Sobolev spaces $\|f\|_{H_2^s} := \|(1 - \Delta)^{s/2} f\|_2$

Theorem

For $\rho \in S^n$, P_σ is bounded from H_2^s to H_2^{s-n} . For $n \leq 0$, P_σ is bounded on H_2^s , in particular on L_2 .

Ψ do meets C^* -algebra

- **Operator valued setting :** Let X be a Banach space. $u : \mathbb{R}^d \rightarrow X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \rightarrow B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi.$$

Ψ do meets C^* -algebra

- **Operator valued setting** : Let X be a Banach space. $u : \mathbb{R}^d \rightarrow X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \rightarrow B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi.$$

- **Group action setting** : Let $(s, u) \rightarrow \alpha_s(u)$ be a C^* -action on the C^* -algebra \mathcal{A} . For $u \in \mathcal{A}$ and smooth $\sigma : \mathbb{R}^d \rightarrow \mathcal{A}$, Ψ do is defined as

$$P_\sigma u = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle s, \xi \rangle} \sigma(\xi) \alpha_{-s}(u) ds d\xi.$$

Ψ do meets C^* -algebra

- **Operator valued setting** : Let X be a Banach space. $u : \mathbb{R}^d \rightarrow X$, $\sigma : \mathbb{R}^d \times \mathbb{R}^d \rightarrow B(X)$, we may define

$$Au(x) = \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \sigma_A(x, \xi) \hat{u}(\xi) d\xi.$$

- **Group action setting** : Let $(s, u) \rightarrow \alpha_s(u)$ be a C^* -action on the C^* -algebra \mathcal{A} . For $u \in \mathcal{A}$ and smooth $\sigma : \mathbb{R}^d \rightarrow \mathcal{A}$, Ψ do is defined as

$$P_\sigma u = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\langle s, \xi \rangle} \sigma(\xi) \alpha_{-s}(u) ds d\xi.$$

- **Example** : Quantum torus \mathcal{A}_θ , with a periodic group action.

Quantum tori

- **Noncommutative tori** : $d \geq 2$ and $\theta = (\theta_{kj})$ real skew-symmetric $d \times d$ -matrix. The quantum torus \mathcal{A}_θ is the universal C^* -algebra generated by d unitaries U_1, \dots, U_d satisfying the following commutation relation

$$U_k U_j = e^{2\pi i \theta_{kj}} U_j U_k, \quad j, k = 1, \dots, d.$$

- **Trace** : Let \mathcal{P}_θ denote the involutive subalgebra of polynomials, dense in \mathcal{A}_θ . For any polynomial $x = \sum_{m \in \mathbb{Z}^d} \alpha_m U^m$ define $\tau(x) = \alpha_0$. Then τ extends to a faithful tracial state on \mathcal{A}_θ .

Let \mathbb{T}_θ^d be the w^* -closure of \mathcal{A}_θ in the GNS representation of τ . Then τ becomes a normal faithful tracial state on \mathbb{T}_θ^d . Thus $(\mathbb{T}_\theta^d, \tau)$ is a noncommutative(=quantum) probability space.

- **Noncommutative L_p -spaces** : For $1 \leq p < \infty$ and $x \in \mathbb{T}_\theta^d$ let $\|x\|_p = (\tau(|x|^p))^\frac{1}{p}$ with $|x| = (x^* x)^\frac{1}{2}$. This defines a norm on \mathbb{T}_θ^d . The corresponding completion is denoted by $L_p(\mathbb{T}_\theta^d)$. We also set $L_\infty(\mathbb{T}_\theta^d) = \mathbb{T}_\theta^d$.

Correspondence : torus and quantum torus.

$$\begin{array}{lll} \text{probability space } (\mathbb{T}^d, \mu) & \leftrightarrow & \text{noncom probability space}(\mathbb{T}_\theta^d, \tau) \\ \text{commutative algebra } L_\infty(\mathbb{T}^d) & \leftrightarrow & \text{noncommutative algebra } \mathbb{T}_\theta^d \\ \text{integration against } \mu \int_{\mathbb{T}^d} & \leftrightarrow & \text{trace } \tau \\ & & \int_{\mathbb{T}^d} f d\mu \leftrightarrow \tau(x) \\ \|f\|_p = \left(\int_{\mathbb{T}^d} |f|^p d\mu \right)^{\frac{1}{p}} & \leftrightarrow & \|x\|_p = \left(\tau(|x|^p) \right)^{\frac{1}{p}} \\ L_p(\mathbb{T}^d) & \leftrightarrow & L_p(\mathbb{T}_\theta^d) \end{array}$$

Symbol calculus

$S^n(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d))$ consists of maps $\rho \in C^\infty(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d))$ s.t.

$$\|D_\theta^\alpha D_\xi^\beta \rho(\xi)\| \leq C_{\alpha, \beta} (1 + |\xi|^2)^{\frac{n-|\beta|}{2}}.$$

Theorem (Baaj, Connes, 1980s)

ρ_1, ρ_2 are symbols in $S^{n_1}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d))$ and $S^{n_2}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d))$ resp. Then there exists a symbol ρ_3 in $S^{n_1+n_2}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d))$ such that $P_{\rho_3} = P_{\rho_1} P_{\rho_2}$. Moreover, for any $N_0 \geq 0$,

$$\rho_3 - \sum_{|\alpha|_1 < N_0} \frac{(2\pi i)^{-|\alpha|_1}}{\alpha!} D_\xi^\alpha \rho_1 D_\theta^\alpha \rho_2 \in S^{n_1+n_2-N_0}(\mathbb{R}^d; \mathcal{S}(\mathbb{T}_\theta^d)).$$

Mapping property

Theorem (Xia-X, Ha-Lee-Ponge)

For $\rho \in S^n$, P_σ is bounded from $H_2^s(\mathbb{T}_\theta^d)$ to $H_2^{s-n}(\mathbb{T}_\theta^d)$. For $n \leq 0$, P_σ is bounded on $H_2^s(\mathbb{T}_\theta^d)$, in particular on $L_2(\mathbb{T}_\theta^d)$.

Mapping property

Theorem (Xia-X, Ha-Lee-Ponge)

For $\rho \in S^n$, P_σ is bounded from $H_2^s(\mathbb{T}_\theta^d)$ to $H_2^{s-n}(\mathbb{T}_\theta^d)$. For $n \leq 0$, P_σ is bounded on $H_2^s(\mathbb{T}_\theta^d)$, in particular on $L_2(\mathbb{T}_\theta^d)$.

Easy observation :

- ① $\theta = 0$, for $\rho_1, \rho_2 \in S^0$, $[P_{\rho_1}, P_{\rho_2}] \in S^{-1}$, is **compact**, since

$$\text{sym}(P_{\rho_1} \circ P_{\rho_2}) - \rho_1 \rho_2 \in S^{-1}, \quad \text{sym}(P_{\rho_2} \circ P_{\rho_1}) - \rho_2 \rho_1 \in S^{-1};$$

- ② general θ , if $\rho_1, \rho_2 \in S^0$ are commutative, $[P_{\rho_1}, P_{\rho_2}]$, is **compact**.
- ③ special case : $\rho_1 : \mathbb{R}^d \rightarrow \mathbb{C}$, $\rho_2 \in \mathcal{S}(\mathbb{T}_\theta^d)$, then $[P_{\rho_1}, P_{\rho_2}]$ is **compact**.

Abstract Ψ do

Abstract construction/definition of 0-order Ψ do

Theorem (McDonald-Sukochev-Zanin)

Let $\pi_1 : \mathcal{A}_1 \rightarrow \mathcal{B}(H)$ and $\pi_2 : \mathcal{A}_2 \rightarrow \mathcal{B}(H)$ be representations of C^* -algebras, Π be the C^* -algebra generated by $\pi_1(\mathcal{A}_1)$ and $\pi_2(\mathcal{A}_2)$. If

- ① $\mathcal{A}_1, \mathcal{A}_2$ are unital and \mathcal{A}_2 is abelian;
- ② $[\pi_1(a_1), \pi_2(a_2)]$ is compact;
- ③ $\sum_{k=1}^n \pi_1(a_k)\pi_2(b_k)$ compact implies $\sum a_k \otimes b_k = 0$,

then $\exists \text{sym} : \Pi \rightarrow \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2$ such that

$$\text{sym}(\pi_1(a_1)) = a_1 \otimes 1, \quad \text{sym}(\pi_2(a_2)) = 1 \otimes a_2.$$

Abstract Ψ do

Example :

- ① $\mathcal{A}_1 = C(\mathbb{T}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ② $\mathcal{A}_1 = \mathbb{C} + C_0(\mathbb{R}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ③ $\mathcal{A}_1 = C(\mathbb{T}_\theta^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right).$

Abstract Ψ do

Example :

- ① $\mathcal{A}_1 = C(\mathbb{T}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ② $\mathcal{A}_1 = \mathbb{C} + C_0(\mathbb{R}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ③ $\mathcal{A}_1 = C(\mathbb{T}_\theta^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right).$

Proof : Denote $q : \mathcal{B}(H) \rightarrow \mathcal{B}(H)/\mathcal{K}(H)$. We have a natural $*$ -isomorphism $\pi : \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2 \rightarrow \mathcal{B}(H)$ determined by

$$\pi(a_1 \otimes a_2) = \pi_1(a_1)\pi_2(a_2).$$

The map sym is defined as

$$\text{sym} = \pi^{-1} \circ q : \Pi \rightarrow \mathcal{B}(H)/\mathcal{K}(H) \rightarrow \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2.$$

Abstract Ψ do

Example :

- ① $\mathcal{A}_1 = C(\mathbb{T}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ② $\mathcal{A}_1 = \mathbb{C} + C_0(\mathbb{R}^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right);$
- ③ $\mathcal{A}_1 = C(\mathbb{T}_\theta^d), \mathcal{A}_2 = C(\mathbb{S}^{d-1}), \pi_1(f) = M_f, \pi_2(g) = g\left(\frac{\nabla}{(-\Delta)^{1/2}}\right).$

Proof : Denote $q : \mathcal{B}(H) \rightarrow \mathcal{B}(H)/\mathcal{K}(H)$. We have a natural $*$ -isomorphism $\pi : \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2 \rightarrow \mathcal{B}(H)$ determined by

$$\pi(a_1 \otimes a_2) = \pi_1(a_1)\pi_2(a_2).$$

The map sym is defined as

$$\text{sym} = \pi^{-1} \circ q : \Pi \rightarrow \mathcal{B}(H)/\mathcal{K}(H) \rightarrow \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2.$$

Remark : Positive order Ψ dos are not considered ; Negative order Ψ dos are killed by the quotient map.

Abstract Ψ do of negative order

Ideals of compact op. $\mu_k \in \ell_p \leftrightarrow T \in \mathcal{S}_p$, and $\mu_k = O(k^{-\frac{1}{p}}) \leftrightarrow T \in \mathcal{S}_{p,\infty}$.
Observation : If $\sigma \in S^{-\alpha}$ then $P_\sigma \in \mathcal{S}_{d/\alpha,\infty}$, in particular

$$J^\alpha = (1 - \Delta)^{-\frac{\alpha}{2}}, I^\alpha = (-\Delta)^{-\frac{\alpha}{2}} \in \mathcal{S}_{d/\alpha,\infty}.$$

Theorem (McDonald-Sukochev-X. 2020CMP)

Let $\alpha, \beta \in \mathbb{R}$. For smooth x , if $\alpha < \beta + 1$, then $[J^\alpha, x]J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta-\alpha+1}, \infty}$. If $\alpha = \beta + 1$, then the operator $[J^\alpha, x]J^{-\beta}$ has bounded extension.

Abstract Ψ do of negative order

Ideals of compact op. $\mu_k \in \ell_p \leftrightarrow T \in \mathcal{S}_p$, and $\mu_k = O(k^{-\frac{1}{p}}) \leftrightarrow T \in \mathcal{S}_{p,\infty}$.
Observation : If $\sigma \in S^{-\alpha}$ then $P_\sigma \in \mathcal{S}_{d/\alpha,\infty}$, in particular

$$J^\alpha = (1 - \Delta)^{-\frac{\alpha}{2}}, I^\alpha = (-\Delta)^{-\frac{\alpha}{2}} \in \mathcal{S}_{d/\alpha,\infty}.$$

Theorem (McDonald-Sukochev-X. 2020CMP)

Let $\alpha, \beta \in \mathbb{R}$. For smooth x , if $\alpha < \beta + 1$, then $[J^\alpha, x]J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta-\alpha+1}, \infty}$. If $\alpha = \beta + 1$, then the operator $[J^\alpha, x]J^{-\beta}$ has bounded extension.

Theorem (Sukochev-X.-Zanin 2023JFA)

Let $\alpha, \beta \in \mathbb{R}$, and m be a homogeneous symbol of order 0. For smooth x , if $\alpha < \beta + 1$, then $[T_m J^\alpha, x]J^{-\beta} \in \mathcal{L}_{\frac{d}{\beta-\alpha+1}, \infty}$. If $\alpha = \beta + 1$, then the operator $[T_m J^\alpha, x]J^{-\beta}$ has bounded extension.

Asymptotic limits of Ψ do

$T \in \mathcal{S}_{p,\infty}$ means $\sup_t t^{1/p} \mu(t, T) < \infty$.

Now we are interested in $\lim_{t \rightarrow \infty} t^{1/p} \mu(t, T)$.

On \mathbb{T}_θ^d , one can calculate

$$\lim_{t \rightarrow \infty} t^{1/d} \mu(t, J^{-1}) = d^{-\frac{1}{d}}.$$

- **Question** For 0-order Ψ do T , what is $\lim_{t \rightarrow \infty} t^{1/d} \mu(t, TJ^{-1})$?

Asymptotic limits of Ψ do

Another proof of $\lim_{t \rightarrow \infty} t^{1/d} \mu(t, J^{-1}) = d^{-\frac{1}{d}}$ is done using noncommutative Taubrian Theorem (Wiener-Ikehara Theorem) :

Theorem (McDonald-Sukochev-Zanin)

Let $p > 2$ and let $0 \leq A, B \in \mathcal{S}_\infty$ satisfy $B \in \mathcal{S}_{p,\infty}$ and $[B, A^{\frac{1}{2}}] \in \mathcal{S}_{\frac{p}{2},\infty}$. If there exists $0 \leq c \in \mathbb{R}$ such that the function

$$F_{A,B}(z) := \text{Tr}(A^z B^z) - \frac{c}{z-p}, \quad z \in \mathbb{C}, \quad \Re(z) > p,$$

admits a continuous extension to the closed half plane $\{z \in \mathbb{C} : \Re(z) \geq p\}$, then there exists the limit

$$\lim_{t \rightarrow \infty} t^{\frac{1}{p}} \mu(t, AB) = \left(\frac{c}{p}\right)^{\frac{1}{p}}.$$

Asymptotic limits of Ψ_{do}

The calculation $\lim_{t \rightarrow \infty} t^{1/d} \mu(t, J^{-1})$ is reduced to the meromorphic continuation of $\text{Tr}(J^z)$ on $\{z \in \mathbb{C} : \Re(z) > d\}$ to $\{z \in \mathbb{C} : \Re(z) \geq d\}$.
Here

$$\text{Tr}(J^z) = \sum_{m \in \mathbb{Z}^d} (1 + |m|^2)^{\frac{z}{2}}$$

has a simple pole at $z = d$. (see Shubin's book for more general op.)

Asymptotic limits of Ψ do

The calculation $\lim_{t \rightarrow \infty} t^{1/d} \mu(t, J^{-1})$ is reduced to the meromorphic continuation of $\text{Tr}(J^z)$ on $\{z \in \mathbb{C} : \Re(z) > d\}$ to $\{z \in \mathbb{C} : \Re(z) \geq d\}$. Here

$$\text{Tr}(J^z) = \sum_{m \in \mathbb{Z}^d} (1 + |m|^2)^{\frac{z}{2}}$$

has a simple pole at $z = d$. (see Shubin's book for more general op.)

Similarly we can establish the following

Theorem (Sukochev-X.-Zanin)

Let $d \geq 2$. If $T \in \Pi(C(\mathbb{T}_\theta^d), C(\mathbb{S}^{d-1}))$, then

$$\lim_{t \rightarrow \infty} t^{\frac{1}{d}} \mu(t, T(-\Delta)^{-\frac{1}{2}}) = d^{-\frac{1}{d}} \|\text{sym}(T)\|_{L_d(L_\infty(\mathbb{T}_\theta^d) \bar{\otimes} L_\infty(\mathbb{S}^{d-1}))}.$$

Similar results for classical Ψ do are obtained by Birman, Solomyak and their coauthors.

Summary

$T(-\Delta)^{-\frac{1}{2}}$ is a pseudodifferential operator of order -1 :

$$T(-\Delta)^{-\frac{1}{2}} \sim \sigma_{-1}(x, \xi) + \sigma_{-2}(x, \xi) + \sigma_{-3}(x, \xi) + \sigma_{-4}(x, \xi) + \dots$$

$$\text{Psi do} \quad \mathcal{S}^{-1} \quad S^{-2} \quad S^{-3} \quad S^{-4} \quad \dots$$

$$\text{Cpt. op.} \quad \mathcal{S}_{d,\infty} \quad \mathcal{S}_{d/2,\infty} \quad \mathcal{S}_{d/3,\infty} \quad \mathcal{S}_{d/4,\infty} \quad \dots$$

Summary

$T(-\Delta)^{-\frac{1}{2}}$ is a pseudodifferential operator of order -1 :

$$T(-\Delta)^{-\frac{1}{2}} \sim \sigma_{-1}(x, \xi) + \sigma_{-2}(x, \xi) + \sigma_{-3}(x, \xi) + \sigma_{-4}(x, \xi) + \dots$$

$$\text{PsiDO} \quad S^{-1} \quad S^{-2} \quad S^{-3} \quad S^{-4} \quad \dots$$

$$\text{Cpt. op.} \quad \mathcal{S}_{d,\infty} \quad \mathcal{S}_{d/2,\infty} \quad \mathcal{S}_{d/3,\infty} \quad \mathcal{S}_{d/4,\infty} \quad \dots$$

When taking the asymptotic limit, σ_{-k} , $k > 1$ vanish.

$$\lim_{t \rightarrow \infty} t^{\frac{1}{d}} \mu(t, T(-\Delta)^{-\frac{1}{2}}) = d^{-\frac{1}{d}} \|\sigma_{-1}\|_d.$$

Quantum differential of Connes

- **Def :** Let \mathcal{A} be an involutive algebra over \mathbb{C} . Then a **Fredholm module** over \mathcal{A} is given by
 - ① an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
 - ② an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any $a \in \mathcal{A}$.

Quantum differential of Connes

- **Def** : Let \mathcal{A} be an involutive algebra over \mathbb{C} . Then a **Fredholm module** over \mathcal{A} is given by
 - ① an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
 - ② an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any $a \in \mathcal{A}$. (Atiyah's definition of abstract elliptic)

Quantum differential of Connes

- **Def** : Let \mathcal{A} be an involutive algebra over \mathbb{C} . Then a **Fredholm module** over \mathcal{A} is given by

- ① an involutive representation π of \mathcal{A} on a Hilbert space \mathcal{H} ,
- ② an operator $F = F^*$, $F^2 = 1$, on \mathcal{H} such that $[F, \pi(a)]$ is a compact operator for any $a \in \mathcal{A}$. (Atiyah's definition of abstract elliptic)

- **Quantized calculus** of differential forms :

- ① the differential df of $f \in \mathcal{A}$:

$$df = i[F, f] = i(Ff - fF);$$

- ② the integration $T \mapsto \text{Tr}_\omega(T)$.

Definition

A linear functional $\varphi : \mathcal{S}_{1,\infty} \rightarrow \mathbb{C}$ is called a trace if $\varphi(AB) = \varphi(BA)$ for every $A \in \mathcal{S}_{1,\infty}$ and for every $B \in B(H)$.

The trace φ is called normalised if $\varphi(\text{diag}(\{\frac{1}{k+1}\}_{k \geq 0})) = 1$.

There exists a plethora of (normalised) traces on $\mathcal{S}_{1,\infty}$. The most famous ones are Dixmier traces.

Dixmier traces

An extended limit is a bounded functional ω in ℓ_∞ which extends the “limit” functional on the subspace c of convergent sequences.

$(\ell_\infty)^* = (\ell_\infty)_n^* \oplus (\ell_\infty)_s^*$, then $\omega \in (\ell_\infty)_s^*$.

Definition (Dixmier)

If ω is an extended limit then the functional

$$T \rightarrow \omega \left(\frac{1}{\log(n+2)} \sum_{k=0}^n \mu(k, T) \right), \quad 0 \leq T \in \mathcal{L}_{1,\infty}$$

is finite and additive on the positive cone of $\mathcal{S}_{1,\infty}$. Thus, it uniquely extends to a unitarily invariant linear functional on $\mathcal{S}_{1,\infty}$. The latter is called a Dixmier trace and is denoted by Tr_ω .

Dixmier traces

An extended limit is a bounded functional ω in ℓ_∞ which extends the “limit” functional on the subspace c of convergent sequences.

$(\ell_\infty)^* = (\ell_\infty)_n^* \oplus (\ell_\infty)_s^*$, then $\omega \in (\ell_\infty)_s^*$.

Definition (Dixmier)

If ω is an extended limit then the functional

$$T \rightarrow \omega \left(\frac{1}{\log(n+2)} \sum_{k=0}^n \mu(k, T) \right), \quad 0 \leq T \in \mathcal{L}_{1,\infty}$$

is finite and additive on the positive cone of $\mathcal{S}_{1,\infty}$. Thus, it uniquely extends to a unitarily invariant linear functional on $\mathcal{S}_{1,\infty}$. The latter is called a Dixmier trace and is denoted by Tr_ω .

Thus for a compact operator $T \in \mathcal{S}_{1,\infty}$,

$$\lim_{t \rightarrow \infty} t \mu(t, T) = \text{Tr}_\omega(T).$$

Quantum derivative on quantum tori

C^* -algebra : \mathcal{A}_θ ; Hilbert space : $L_2(\mathbb{T}_\theta^d)$.

Quantum derivative on quantum tori

C^* -algebra : \mathcal{A}_θ ; Hilbert space : $L_2(\mathbb{T}_\theta^d)$.

- **Construction of F** : $D_j = -i\partial_j$ are self-adjoint, so is $\mathcal{D} = \sum_j \gamma_j \otimes D_j$.
By functional calculus

$$F = \text{sgn}(\mathcal{D}) = \sum_j \gamma_j \otimes \frac{D_j}{\sqrt{D_1^2 + \cdots + D_d^2}}.$$

Then $F = F^*$, $F^2 = 1$.

Quantum derivative on quantum tori

C^* -algebra : \mathcal{A}_θ ; Hilbert space : $L_2(\mathbb{T}_\theta^d)$.

- **Construction of F** : $D_j = -i\partial_j$ are self-adjoint, so is $\mathcal{D} = \sum_j \gamma_j \otimes D_j$.
By functional calculus

$$F = \text{sgn}(\mathcal{D}) = \sum_j \gamma_j \otimes \frac{D_j}{\sqrt{D_1^2 + \cdots + D_d^2}}.$$

Then $F = F^*$, $F^2 = 1$.

- **Quantum derivative** : Let $M_x : y \mapsto xy$ left multiplication representing \mathcal{A}_θ on $L_2(\mathbb{T}_\theta^d)$.

$$dx = i[F, M_x].$$

Question in Connes' framework

Question 1 : characterise differentiable elements on \mathbb{T}_θ^d .

Theorem (McDonald-Sukochev-X. 2019CMP)

For $x \in \mathbb{T}_\theta^d$, $\tilde{d}x \in \mathcal{S}_{d,\infty}$ iff $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$.

Question in Connes' framework

Question 1 : characterise differentiable elements on \mathbb{T}_θ^d .

Theorem (McDonald-Sukochev-X. 2019CMP)

For $x \in \mathbb{T}_\theta^d$, $\bar{d}x \in \mathcal{S}_{d,\infty}$ iff $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$.

Question 2 : calculate the quantum integration (Dixmier trace) of $\bar{d}x$.

Theorem (Sukochev-X.-Zanin 2023JFA)

Let $d \geq 2$. If $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$, then

$$\lim_{t \rightarrow \infty} t^{\frac{1}{d}} \mu(t, \bar{d}x) = d^{-\frac{1}{d}} \left\| \sum_{j=1}^d \gamma_j \otimes D_j x \otimes 1 - \sum_{j,k=1}^d \gamma_j \otimes D_k x \otimes s_k s_j \right\|_d.$$

Conclusion

- Let $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$. For any continuous normalized trace φ on $\mathcal{L}_{1,\infty}$ we have

$$\varphi(|dx|^d) = c_d \int_{\mathbb{S}^{d-1}} \tau \left(\left(\sum_{j=1}^d |\partial_j x - s_j \sum_{k=1}^d s_k \partial_k x|^2 \right)^{\frac{d}{2}} \right) ds \approx_d \|x\|_{\dot{W}_d^1}.$$

Conclusion

- Let $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$. For any continuous normalized trace φ on $\mathcal{L}_{1,\infty}$ we have

$$\varphi(|dx|^d) = c_d \int_{\mathbb{S}^{d-1}} \tau \left(\left(\sum_{j=1}^d |\partial_j x - s_j \sum_{k=1}^d s_k \partial_k x|^2 \right)^{\frac{d}{2}} \right) ds \approx_d \|x\|_{\dot{W}_d^1}.$$

If $\theta = 0$, the above \approx is in fact “ $=$ ”, because of rotation invariance :

$$\int_{\mathbb{S}^{d-1}} \left(\sum_j |\partial_j x - s_j \sum_k s_k \partial_k x|^2 \right)^{\frac{d}{2}} ds = \|\nabla x\|_2^{\frac{d}{2}} \int_{\mathbb{S}^{d-1}} \left(\sum_j |u_j - s_j \sum_k s_k u_k|^2 \right)^{\frac{d}{2}} ds.$$

Conclusion

- Let $x \in \dot{W}_d^1(\mathbb{T}_\theta^d)$. For any continuous normalized trace φ on $\mathcal{L}_{1,\infty}$ we have

$$\varphi(|dx|^d) = c_d \int_{\mathbb{S}^{d-1}} \tau \left(\left(\sum_{j=1}^d |\partial_j x - s_j \sum_{k=1}^d s_k \partial_k x|^2 \right)^{\frac{d}{2}} \right) ds \approx_d \|x\|_{\dot{W}_d^1}.$$

If $\theta = 0$, the above \approx is in fact “ $=$ ”, because of rotation invariance :

$$\int_{\mathbb{S}^{d-1}} \left(\sum_j |\partial_j x - s_j \sum_k s_k \partial_k x|^2 \right)^{\frac{d}{2}} ds = \|\nabla x\|_2^2 \int_{\mathbb{S}^{d-1}} \left(\sum_j |u_j - s_j \sum_k s_k u_k|^2 \right)^{\frac{d}{2}} ds.$$

- Alain Connes' idea (1988) : “*The next result shows how to pass from quantized 1-forms to ordinary forms, not by a classical limit, but by a direct application of the Dixmier trace.*”

$$\text{Tr}_\omega(|df|^d) = c_d \int_{\mathbb{T}^d} \left(\sum_{j=1}^d |\partial_j f(\xi)|^2 \right)^{\frac{d}{2}} d\xi = c_d \|f\|_{\dot{W}_d^1}^d.$$

Thank you !