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Classical Ψdo

A Ψdo differential operator is formally defined as

Au(x) =

∫
Rd

∫
Rd

e i〈x−y ,θ〉a(x , y , θ)u(y) dy dθ,

where a(x , y , θ) ∈ Sm
ρ,δ(Rd × Rd × Rd), meaning that

|∂αθ ∂βx a(x , y , θ)| ≤ Cα,β,K (1 + |θ|2)
m−ρ|α|+δ|β|

2

for (x , y) ∈ K compact and θ ∈ Rd .

We usually fix (ρ, δ) = (1, 0), more generally 0 ≤ δ ≤ ρ ≤ 1 but δ 6= 1,
singular case (ρ, δ) = (1, 1).

• Example : A =
∑
|α|≤m aα(x)Dα, where aα(x) ∈ C∞(Rd). Formally

Au(x) =

∫
Rd

∫
Rd

e i〈x−y ,ξ〉
( ∑
|α|≤m

aα(x)ξα
)
dy dξ.
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Symbol

Formally the symbol of a Ψdo is determined as

σA(x , ξ) = e−ix ·ξAe ix ·ξ.

Then

Au(x) =

∫
Rd

e i〈x ,ξ〉σA(x , ξ)û(ξ) dξ =

∫
Rd

∫
Rd

e i〈x−y ,ξ〉σA(x , ξ)u(y) dy dξ.

• Torus case : For σ ∈ Sn
ρ,δ(Td × Rd)

Pσf (x) =
∑
m∈Zd

σ(x ,m)f̂ (m)e im·x .

If σ = σ(x) then Pσ is a pointwise multiplier, if σ = σ(m) then Pσ is a
Fourier multiplier.
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Key theorems

Symbol calculus

Theorem

ρ1, ρ2 are symbols in Sn1(Rd × Rd) and Sn2(Rd × Rd) resp. Then there
exists a symbol ρ3 in Sn1+n2(Rd × Rd) such that Pρ3 = Pρ1Pρ2 . Moreover,
for any N0 ≥ 0,

ρ3 −
∑
|α|1<N0

i−|α|

α!
Dα
ξ ρ1(x , ξ)Dα

x ρ2(x , ξ) ∈ Sn1+n2−N0(Rd × Rd).

Regularity on function spaces (Lp, Sobolev, Besov, local Hardy), we focus
on Hilbert-Sobolev spaces ‖f ‖Hs

2
:= ‖(1−∆)s/2f ‖2

Theorem

For ρ ∈ Sn, Pσ is bounded from Hs
2 to Hs−n

2 . For n ≤ 0, Pσ is bounded on
Hs

2 , in particular on L2.
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Ψdo meets C ∗-algebra

• Operator valued setting : Let X be a Banach space. u : Rd → X ,
σ : Rd × Rd → B(X ), we may define

Au(x) =

∫
Rd

e i〈x ,ξ〉σA(x , ξ)û(ξ) dξ.

• Group action setting : Let (s, u)→ αs(u) be a C ∗-action on the
C ∗-algebra A. For u ∈ A and smooth σ : Rd → A, Ψdo is defined as

Pσu =

∫
Rd

∫
Rd

e i〈s,ξ〉σ(ξ)α−s(u) ds dξ.

• Example : Quantum torus Aθ, with a periodic group action.
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Quantum tori

• Noncommutative tori : d ≥ 2 and θ = (θkj) real skew-symmetric
d × d-matrix. The quantum torus Aθ is the universal C ∗-algebra generated
by d unitaries U1, . . . ,Ud satisfying the following commutation relation

UkUj = e2πiθkjUjUk , j , k = 1, . . . , d .

• Trace : Let Pθ denote the involutive subalgebra of polynomials, dense in
Aθ. For any polynomial x =

∑
m∈Zd αmU

m define τ(x) = α0. Then τ
extends to a faithful tracial state on Aθ.
Let Td

θ be the w*-closure of Aθ in the GNS representation of τ . Then τ
becomes a normal faithful tracial state on Td

θ . Thus (Td
θ , τ) is a

noncommutative(=quantum) probability space.
• Noncommutative Lp-spaces : For 1 ≤ p <∞ and x ∈ Td

θ let

‖x‖p =
(
τ(|x |p)

) 1
p with |x | = (x∗x)

1
2 . This defines a norm on Td

θ . The
corresponding completion is denoted by Lp(Td

θ ). We also set
L∞(Td

θ ) = Td
θ .
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Correspondence : torus and quantum torus.

probability space (Td , µ) ↔ noncom probability space(Td
θ , τ)

commutative algebra L∞(Td) ↔ noncommutative algebra Td
θ

integration against µ

∫
Td

↔ trace τ∫
Td

fdµ ↔ τ(x)

‖f ‖p =
( ∫

Td

|f |pdµ
) 1

p ↔ ‖x‖p =
(
τ(|x |p)

) 1
p

Lp(Td) ↔ Lp(Td
θ )

Xiao Xiong NC Ψdo 27 Feb 2024 7 / 23



Symbol calculus

Sn(Rd ;S(Td
θ )) consists of maps ρ ∈ C∞(Rd ;S(Td

θ )) s.t.

‖Dα
θ D

β
ξ ρ(ξ)‖ ≤ Cα,β(1 + |ξ|2)

n−|β|
2 .

Theorem (Baaj, Connes, 1980s)

ρ1, ρ2 are symbols in Sn1(Rd ;S(Td
θ )) and Sn2(Rd ;S(Td

θ )) resp. Then
there exists a symbol ρ3 in Sn1+n2(Rd ;S(Td

θ )) such that Pρ3 = Pρ1Pρ2 .
Moreover, for any N0 ≥ 0,

ρ3 −
∑
|α|1<N0

(2πi)−|α|1

α!
Dα
ξ ρ1D

α
θ ρ2 ∈ Sn1+n2−N0(Rd ;S(Td

θ )).
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Mapping property

Theorem (Xia-X, Ha-Lee-Ponge)

For ρ ∈ Sn, Pσ is bounded from Hs
2(Td

θ ) to Hs−n
2 (Td

θ ). For n ≤ 0, Pσ is
bounded on Hs

2(Td
θ ), in particular on L2(Td

θ ).

Easy observation :

1 θ = 0, for ρ1, ρ2 ∈ S0, [Pρ1 ,Pρ2 ] ∈ S−1, is compact, since

sym(Pρ1 ◦ Pρ2)− ρ1ρ2 ∈ S−1, sym(Pρ2 ◦ Pρ1)− ρ2ρ1 ∈ S−1;

2 general θ, if ρ1, ρ2 ∈ S0 are commutative, [Pρ1 ,Pρ2 ], is compact.

3 special case : ρ1 : Rd → C, ρ2 ∈ S(Td
θ ), then [Pρ1 ,Pρ2 ] is compact .
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Abstract Ψdo

Abstract construction/definition of 0-order Ψdo

Theorem (McDonald-Sukochev-Zanin)

Let π1 : A1 → B(H) and π2 : A2 → B(H) be representations of
C ∗-algebras, Π be the C ∗-algebra generated by π1(A1) and π2(A2). If

1 A1,A2 are unital and A2 is abelian ;

2 [π1(a1), π2(a2)] is compact ;

3
∑n

k=1 π1(ak)π2(bk) compact implies
∑

ak ⊗ bk = 0,

then ∃ sym : Π→ A1 ⊗min A2 such that

sym(π1(a1)) = a1 ⊗ 1, sym(π2(a2)) = 1⊗ a2.
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Abstract Ψdo

Example :

1 A1 = C (Td),A2 = C (Sd−1), π1(f ) = Mf , π2(g) = g( ∇
(−∆)1/2 ) ;

2 A1 = C + C0(Rd),A2 = C (Sd−1), π1(f ) = Mf , π2(g) = g( ∇
(−∆)1/2 ) ;

3 A1 = C (Td
θ ),A2 = C (Sd−1), π1(f ) = Mf , π2(g) = g( ∇

(−∆)1/2 ).

Proof : Denote q : B(H)→ B(H)/K(H). We have a natural
∗-isomorphism π : A1 ⊗min A2 → B(H) determined by

π(a1 ⊗ a2) = π1(a1)π2(a2).

The map sym is defined as

sym = π−1 ◦ q : Π→ B(H)/K(H)→ A1 ⊗min A2.

Remark : Positive order Ψdos are not considered ; Negative order Ψdos are
killed by the quotient map.
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Abstract Ψdo of negative order

Ideals of compact op. µk ∈ `p ↔ T ∈ Sp, and µk = O(k−
1
p )↔ T ∈ Sp,∞.

Observation : If σ ∈ S−α then Pσ ∈ Sd/α,∞, in particular

Jα = (1−∆)−
α
2 , Iα = (−∆)−

α
2 ∈ Sd/α,∞.

Theorem (McDonald-Sukochev-X. 2020CMP)

Let α, β ∈ R. For smooth x, if α < β + 1, then [Jα, x ]J−β ∈ L d
β−α+1

,∞. If

α = β + 1, then the operator [Jα, x ]J−β has bounded extension.

Theorem (Sukochev-X.-Zanin 2023JFA)

Let α, β ∈ R, and m be a homogeneous symbol of order 0. For smooth x,
if α < β + 1, then [TmJ

α, x ]J−β ∈ L d
β−α+1

,∞. If α = β + 1, then the

operator [TmJ
α, x ]J−β has bounded extension.
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Asymptotic limits of Ψdo

T ∈ Sp,∞ means supt t
1/pµ(t,T ) <∞.

Now we are interested in limt→∞ t1/pµ(t,T ).

On Td
θ , one can calculate

lim
t→∞

t1/dµ(t, J−1) = d−
1
d .

• Question For 0-order Ψdo T , what is limt→∞ t1/dµ(t,TJ−1) ?
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Asymptotic limits of Ψdo

Another proof of limt→∞ t1/dµ(t, J−1) = d−
1
d is done using

noncommutative Taubrian Theorem (Wiener-Ikehara Theorem) :

Theorem (McDonald-Sukochev-Zanin)

Let p > 2 and let 0 ≤ A,B ∈ S∞ satisfy B ∈ Sp,∞ and [B,A
1
2 ] ∈ S p

2
,∞. If

there exists 0 ≤ c ∈ R such that the function

FA,B(z) := Tr(AzBz)− c

z − p
, z ∈ C, <(z) > p,

admits a continuous extension to the closed half plane
{z ∈ C : <(z) ≥ p}, then there exists the limit

lim
t→∞

t
1
pµ(t,AB) =

(c
p

) 1
p .
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Asymptotic limits of Ψdo

The calculation limt→∞ t1/dµ(t, J−1) is reduced to the meromorphic
continuation of Tr(Jz) on {z ∈ C : <(z) > d} to {z ∈ C : <(z) ≥ d}.
Here

Tr(Jz) =
∑
m∈Zd

(1 + |m|2)
z
2

has a simple pole at z = d . (see Shubin’s book for more general op.)

Similarly we can establish the following

Theorem (Sukochev-X.-Zanin)

Let d ≥ 2. If T ∈ Π(C (Td
θ ),C (Sd−1)), then

lim
t→∞

t
1
d µ(t,T (−∆)−

1
2 ) = d−

1
d ‖sym(T )‖Ld (L∞(Td

θ)⊗̄L∞(Sd−1)).

Similar results for classical Ψdo are obtained by Birman, Solomyak and
their coauthors.
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Summary

T (−∆)−
1
2 is a pseudodifferential operator of order −1 :

T (−∆)−
1
2 ∼ σ−1(x , ξ) +σ−2(x , ξ) +σ−3(x , ξ) +σ−4(x , ξ) + · · ·

Ψdo S−1 S−2 S−3 S−4 · · ·

Cpt. op. Sd ,∞ Sd/2,∞ Sd/3,∞ Sd/4,∞ · · ·

When taking the asymptotic limit, σ−k , k > 1 vanish.

lim
t→∞

t
1
d µ(t,T (−∆)−

1
2 ) = d−

1
d ‖σ−1‖d .
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Quantum differential of Connes

• Def : Let A be an involutive algebra over C. Then a Fredholm module
over A is given by

1 an involutive representation π of A on a Hilbert space H,

2 an operator F = F ∗ , F 2 = 1, on H such that [F , π(a)] is a compact
operator for any a ∈ A.

(Atiyah’s definition of abstract elliptic)

• Quantized calculus of differential forms :

1 the differential df of f ∈ A :

d̄ f = i [F , f ] = i(Ff − fF );

2 the integration T 7→ Trω(T ).
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Traces on S1,∞

Definition

A linear functional ϕ : S1,∞ → C is called a trace if ϕ(AB) = ϕ(BA) for
every A ∈ S1,∞ and for every B ∈ B(H).

The trace ϕ is called normalised if ϕ(diag({ 1
k+1}k≥0)) = 1.

There exists a plethora of (normalised) traces on S1,∞. The most famous
ones are Dixmier traces.
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Dixmier traces

An extended limit is a bounded functional ω in `∞ which extends the
“limit” functional on the subspace c of convergent sequences.
(`∞)∗ = (`∞)∗n ⊕ (`∞)∗s , then ω ∈ (`∞)∗s .

Definition (Dixmier)

If ω is an extended limit then the functional

T → ω

(
1

log(n + 2)

n∑
k=0

µ(k ,T )

)
, 0 ≤ T ∈ L1,∞

is finite and additive on the positive cone of S1,∞. Thus, it uniquely
extends to a unitarily invariant linear functional on S1,∞. The latter is
called a Dixmier trace and is denoted by Trω.

Thus for a compact operator T ∈ S1,∞,

lim
t→∞

t µ(t,T ) = Trω(T ).
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Quantum derivative on quantum tori

C ∗-algebra : Aθ; Hilbert space : L2(Td
θ ).

• Construction of F : Dj = −i∂j are self-adjoint, so is D =
∑

j γj ⊗ Dj .
By functional calculus

F = sgn(D) =
∑
j

γj ⊗
Dj√

D2
1 + · · ·+ D2

d

.

Then F = F ∗, F 2 = 1.

• Quantum derivative : Let Mx : y 7→ xy left multiplication representing
Aθ on L2(Td

θ ).
d̄x = i [F ,Mx ].
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Question in Connes’ framework

Question 1 : characterise differentiable elements on Td
θ .

Theorem (McDonald-Sukochev-X. 2019CMP)

For x ∈ Td
θ , d̄x ∈ Sd ,∞ iff x ∈ Ẇ 1

d (Td
θ ).

Question 2 : calculate the quantum integration (Dixmier trace) of d̄x .

Theorem (Sukochev-X.-Zanin 2023JFA)

Let d ≥ 2. If x ∈ Ẇ 1
d (Td

θ ), then

lim
t→∞

t
1
d µ(t, d̄x) = d−

1
d

∥∥∥ d∑
j=1

γj ⊗ Djx ⊗ 1−
d∑

j ,k=1

γj ⊗ Dkx ⊗ sksj

∥∥∥
d
.
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Conclusion

• Let x ∈ Ẇ 1
d (Td

θ ). For any continuous normalized trace ϕ on L1,∞ we
have

ϕ(|d̄x |d) = cd

∫
Sd−1

τ
(( d∑

j=1

|∂jx − sj

d∑
k=1

sk∂kx |2
) d

2

)
ds ≈d ‖x‖Ẇ 1

d
.

If θ = 0, the above ≈ is in fact “=”, because of rotation invariance :∫
Sd−1

(
∑
j

|∂jx−sj
∑
k

sk∂kx |2)
d
2 ds = ‖∇x‖

d
2
2

∫
Sd−1

(
∑
j

|uj−sj
∑
k

skuk |2)
d
2 ds.

• Alain Connes’ idea (1988) : “The next result shows how to pass from
quantized 1-forms to ordinary forms, not by a classical limit, but by a
direct application of the Dixmier trace.”

Trω(|d̄ f |d) = cd

∫
Td

(
d∑

j=1

|∂j f (ξ)|2)
d
2 dξ = cd‖f ‖dẆ 1

d
.
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Thank you !
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