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1 Motivation

Group cohomology is a set of mathematical tools used to study
groups. It...

I ... encodes interesting connections between algebraic and
geometric or topological properties of groups.

I ... touches many other important notions, e.g. amenability,
Kazhdan’s property (T), a-T-menability, and the Haagerup
property.

Personal motivation: Study of 1-cocycles that naturally occur in
compact quantum metric space theory.
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1 Cohomology with coefficients in Banach spaces

Setting: Let G be a topological group, V a Banach space, and let
ρ : G→ GL(V ) ⊆ B(V ) be a uniformly bounded, strongly operator
continuous linear representation.
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Equip

Cn(G,V )G := {f : Gn → V | f continuous and equivariant}

with the topology of uniform convergence on compact subsets.
Consider the cochain complex

C0(G,V )G ∂0
−→ C1(G,V )G ∂1

−→ ...
∂n−1
−→ Cn(G,V )G ∂n

−→ ...,

with the standard differentials

(∂nf) (g1, ..., gn+1) :=
n+1∑
i=1

(−1)i+1f(g1, ..., ĝi, ..., gn+1).

The ∂n are continuous with ∂n+1 ◦ ∂n = 0 for all n ∈ N.
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Definition

The subspace of cocycles is given by Zn(G,V ) := ker(∂n+1), whereas
Bn(G,V ) := im(∂n) denotes the subspace of coboundaries. Define
the n-th continuous reduced cohomology group by

H
n
c (G,V ) := Zn(G,V )/Bn(G,V ).

Cohomology has mostly been studied for Hilbert spaces. In recent
years the study of general Banach spaces has gained increased
attention.
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2 Weakly almost periodic representations

In 2014 the study of (the cohomology of) weakly almost periodic
representations was initiated.

Definition (Bader-Rosendal-Sauer, 2014)

The representation ρ is called weakly almost periodic (wap) if the orbit
{ρg(v) | g ∈ G} ⊆ V is relatively weakly compact for every v ∈ V .

I Representations on reflexive Banach spaces are wap;
I For an action Gy X by measure preserving transformations on

a probability space (X,µ) the induced representation
ρ : G→ GL(L1(X,µ)) is wap.
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However: Many examples (especially many representations on
C∗-algebras) are not covered.
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2 Weakly uniquely stationary representations

For a probability measure µ ∈ Prob(G) and v ∈ V define an element
in the bidual V ∗∗ via V ∗ → C, φ 7→

∫
G φ (ρg(v)) dµ(g).

Definition

Call ρ BP-integrable if the element above is contained in the isometric
image of V in V ∗∗ for all µ ∈ Prob(G), v ∈ V . In this case write
ρµ(v) for its preimage in V . Further define

V µ := {v ∈ V | ρµ(v) = v},
(V ∗)µ := {φ ∈ V ∗ | φ ◦ ρµ̆ = φ},

where µ̆ is the symmetric opposite of µ.
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Definition

Assume that ρ is BP-integrable. For µ ∈ Prob(G) we say that ρ is
weakly uniquely µ-stationary, if every non-trivial functional φ ∈ (V ∗)µ
admits an element v ∈ V µ with φ(v) 6= 0.

I If ρ is wap, then ρ is BP-integrable and weakly uniquely
µ-stationary for every µ ∈ Prob(G).

I Uniquely µ-stationary C∗-dynamical systems give BP-integrable
and weakly uniquely µ-stationary representations.
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3 Application to cohomology

Idea: Combine the notion of weak unique µ-stationarity with
“commutativity”.
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3 Decomposition of cocycles

Theorem

Let N,C ≤ G be subgroups with C ⊆ CG(N) and µ ∈ Prob(C).
Assume that ρ|C is weakly uniquely µ-stationary. Then for every
b ∈ Zn(G,V ) the restriction b|Nn ∈ Zn(N,V ) is almost
cohomologous to a cocycle with values in V µ.

Corollary

Let µ ∈ Prob(Z(G)) and ρ|Z(G) weakly uniquely µ-stationary. Then,
H
n
c (G,V ) ∼= H

n
c (G,V µ) for all n ∈ N.
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3 Cohomology of products of groups

The statement of the previous slide generalizes a theorem by
Bader-Rosendal-Sauer (2014). It is an important ingredient in the
proof of the following theorem.

Theorem (Shalom, 2004; Bader-Rosendal-Sauer, 2014)

If ρ : G1 ×G2 → U(H) is a unitary representation, then

H
1
c(G1 ×G2,H) ∼= H

1
c(G1,HG2)⊕H1

c(G2,HG1).

It is open whether this holds for arbitrary wap (or even uniformly
convex) representations. The statement is used to prove many rigidity
theorems.
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A partial generalization for arbitrary Banach spaces:

Theorem

Let G = G1 ×G2, µ1 ∈ Prob(G1), µ2 ∈ Prob(G2). Assume that ρ|G1

is weakly uniquely µ1-stationary and that ρ|G2 is weakly uniquely
µ2-stationary without almost invariant vectors. Then,

H
1
c(G1 ×G2, V ) ∼= H

1
c(G1, V

µ2)⊕H1
c(G2, V

µ1).

Corollary

Let ρ : G1 ×G2 → GL(V ) be wap and assume that ρ|G2 has no
almost invariant vectors. Then, H1

c(G1 ×G2, V ) ∼= H
1
c(G2, V

G1).
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3 Other results

Theorem

Let µ ∈ Prob(Z(G)) and assume that ρ|Z(G) is weakly uniquely
µ-stationary. If Hom(Z(G)µ,R) = {0}, where Z(G)µ is the smallest
closed subgroup of Z(G) that contains the support of µ, then

H
1
c(G,V ) ∼= H

1
c(G/Z(G)µ, V µ).

Corollary

Let G be nilpotent, V separable, and ρ wap. Then,

H
1
c(G,V ) ∼= H

1
c(Gab, V [G,G]).
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Theorem

Assume that G is nilpotent, Hausdorff and second-countable, and let
H ≤ [G,G] be a subgroup. Then the image of the restriction map

H
1
c(G,V )→ H

1
c(H,V )

is zero.

For wap representations the topological assumptions can be dropped.

This generalizes a theorem by Fernós-Valette-Martin (2012) to
arbitrary Banach spaces.
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Thank you!
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