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Overview .y thws

@ Classical Diffusion

® Generalization of the Classical Diffusion Model

® Time-Fractional Diffusion Equations

@ Space-Fractional and Space-and-Time-Fractional Diffusion
Equations
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Stochastic Model i thws

B attime t = 0, random walker is in position x = 0

B random walker jumps attimes t=nr (n=1,2,...)
where 7 > 0 is a fixed constant

B jump length = ¢ > 0 (the lattice constant; also fixed)

B direction of jump is randomly chosen;
equal probabilities for jumps to right and to left

B Notation: P(x, t) - £ = probability that random walker’s position
attime tis in interval [x, x + &)

B master equation:

Px,t+71)= %P(x-l—&, b+ %P(x— )

Kai Diethelm Fractional Diffusion 4



Stochastic Model D' thws

Master equation:

P(x,t+71)= %P(x+§, )+ %P(x -,

Taylor expansion:

P(x,t+7) = P(x,t) + ng’:(x, n+0(+?)

2 2
P(x +€,1) = P(x, t)ig—( )+%W(X )+0(&)

Plug into master equation and rearrange:

2 2 2
Piey=5 2 Zxnte o<£ >+O(T)
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Continuum Limit G€y thws

oP 2 g2p 2
o xt) = g AAPYENS o(g >+O(T)

Continuum limit (- — 0 and £ — 0 coupled such that
diffusion coefficient dy = lim, 0 ¢0 £2/(27) exists):

oP 9P : e :
E(X, t) = o W(X’ t) (classical diffusion equation)

Can be generalized to n-dimensional case:

%’:(x, t) = d1AP(x,1t) where A = —— (Laplace operator)
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Solution of Classical Diffusion Equation Ly thws

B Diffusion equation:

oP o PP
St = i (1)

B Random walker located in position x =0 attime t =0
= initial condition P(x,0) = 6(x) (Dirac distribution)
B Solution of initial value problem:

P(x,t) =

1 . < x? >
o | -~
Varndt P 4d;t
B Forfixed t, P(-, 1) is (spatial) Gaussian distribution

with mean value i = 0 and standard deviation o(t) = v/2d;t
= mean squared displacement of random walker at time ¢ is

o2(t) = 2d;t
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Outlook i thws

Classification of diffusion processes according to behaviour of mean
squared displacement at time t (when t is large):

o?(t) ~ t° for t — oo

B classical diffusion (see above): o = 1
B subdiffusion: a < 1

B superdiffusion: o > 1

B ballistic diffusion: o = 2

Next steps:
Find mathematical models that exhibit such kinds of behaviour
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Limitations of Stochastic Model i} thws

B attime t = 0, random walker is in position x = 0

B random walker jumnp nes t=nr (n=1,2,...)
where 7 > 0 is .
B jump length = gﬁatticeconstant
B direction of jump is randomly chosen;
equal probabilities for jumps to right and to left

Many deterministic assumptions!
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Continuous-Time Random Walks {0y thws

W attime t = 0, random walker is in position x = 0

M joint probability distribution function ¥ (x, t) (so-called jump PDF)
governs lengths of jumps and waiting time between successive
jumps

B jump length PDF:

A(Xx) = /000 P(x, t)dt
B waiting time PDF:
wit) = / B(x, 1) dx

B main characteristic features of CTRW model:
» characteristic waiting time T:/ tw(t)dt (first moment of w)
0

» jump length variance ¥2 :/ x2\(x) dx

— 00
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Continuous-Time Random Walks L thws

o
B characteristic waiting time T —/ tw(t)dt
0

® jump length variance ¥2 = / x2\(x)dx
T < T=00
2 oo classical diffusion (non-Markovian) subdiffusion
(Brownian motion) (time-fractional PDE)
$2 _ o Markovian Lévy flights non-Markovian Lévy flights
(space-fractional PDE) | (space-and-time-fractional PDE)

Simplifying assumption:
B jump lengths and waiting times are independent random variables
W p(x, 1) = A(x)w(t)
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Continuous-Time Random Walks L thws

n(x,t) = PDF of just having arrived in position x at time ¢

// (€, T)(X — €, — 7Y drde + Po(x)5(t)

(Po = initial condition)

Then,
P(x,t) = PDF of being in position x at time t

t
= / n(x, 7)W(t—71)dr
0

t
where V(t) =1 —/ w(7)dr (“no jump in time interval [0, {]”)
0
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Transforming the PDF @ thws

Application of Fourier transform in space and Laplace transform in time
to this PDF yields

1— Lw(s) FPo(w)

FLPw.S) = == T Fp(w. 9)
C1-Lw(s)  FPyw) "
T s 1 _FAw)Lw(s)
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Anomalous Diffusion

Special case: waiting time PDF with heavy talil

w(t) ~ Ay (%)QH for t — oo

B ae(0,1)

B 7 > 0: characteristic time constant

B A, > 0: normalization factor
Properties:

B wis integrable,

characteristic waiting time (first moment of w): T = .

B Tauberian theorem: Lw(s) ~1 —(sT)*ass — 0

U thws
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Anomalous Diffusion i thws
Concrete example:

waiting time PDF w(t) = —d%EaJ(—to‘)

k

N . = z
with Mittag-Leffler function E, 5(2) = kZ:O Fak 7 9) and0 < o < 1

Gaussian jump length PDF A\(x) =

1 x2
VAaro2 &P 402
such that Y2 = 262 < oo

1

eml) =1

FAw) ~1—-0%w2 (w—0)
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Anomalous Diffusion ' thws

Recalling
1 —Lw(s) FPo(w)
FLPw.8) = = T Faw)zw(s) *)
and plugging in the above statements Lw(s) = 1+15a and

FAw) ~ 1 — o0?w?, we obtain for s — 0 and w — 0 that

.FPo(w)/S

FEP8) ~ 1 g s

with some constant d,,, or

(1 -+ GhePs ) FLP(w,5) ~ 0O
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Anomalous Diffusion 0y thws

Exploiting Fourier and Laplace transforms and their properties, this
yields for large t and |x|
where Jg', is the Riemann-Liouville integral of order a w.r.t. t.

Equivalent formulation: IVP for time-fractional diffusion equation

2
D% PO, 1) = du D (1), P(x,0) = Po(x)

where D¢, ; is the Caputo derivative of order oo w.r.t. t.

Laplace transform techniques lead to
2d, f
M1+«

Q

mean squared displacement = o2(t) =
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General Formulation by thws

Do u(x, t) = —Lu(x, t) + F(x, 1), xe GCR" te(0,7T) (O

B «a € (0,1]; DY, is the Caputo derivative of order o w.r.t. t
B Gis open and bounded domain in R"

B Lu(x,t) = —div(p(x)grad u(x, t)) + g(x)u(x, t)

®m peC(G),qge C(G),p(x)>0and g(x) >0forx € G

—L is elliptic differential operator of order 2,

R dPu ap , , du
—Lu(x,t) = kz_; <p(x) ox? (x, 1) + aT(k(x)(f)ka X, t)) —q(x)u(x, 1)
= p(x)Au(x,t) + (grad p(x, t), grad u(x, t)) — q(x)u(x, t)

Problem () reduces to classical parabolic PDE when o = 1
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Initial and Boundary Conditions &) thws

Same conditions as in classical parabolic PDE
(with time derivative of order 1):
u(x,0) = up(x) forall x € G,
u(x,t) =v(x,t) forallx e 9Gand t € [0, T]

A function u : G x [0, T] is called a solution to the IBVP above if
B v is continuous in its domain of definition,
B u is twice differentiable with respect to x in G,
B u is once differentiable with respect to t € (0, T] such that the first
time derivative is in L1(0, T),
B u satisfies the differential equation (CJ) and the initial and
boundary conditions above.

Kai Diethelm Fractional Diffusion 21



Uniqueness of Solutions 1Ly thws

General assumptions (can be weakened):
m forcing function: F € C(G x [0, T])
W initial function: uy € C(G)
B boundary function: v € C(0G x [0, T])

Under the given assumptions, the time-fractional IBVP above
possesses at most one solution.

The solution depends continuously on F, ug and v in the following
sense: If u; and u, are solutions to the PDE (OJ) with forcing, initial and
boundary functions F1, ugy and vy or Fo, Ugo and v», respectively, then

lur = Ul (@xpo, ) < maX{||U01 — ozl (@) V1 — V2||Loo(BG><[O,T])}

Ta
+ m“ﬁ - FZHLOO(GX[O,T])
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The Maximum Principle oy thws

Let u be a solution to the IBVP above under the given assumptions
and subject to the condition F(x,t) < 0 for all x and t. Then

W either u(x,t) <0 for all x and t

B oru(x,t) attains its positive maximum on the part
S=(Gx{0})u(9G x [0, T]) of the boundary of its domain of
definition,

ie.
u(x, t) < max {0, (gmaxs u(ﬁ,T)} for all x and t.

)
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Construction of the Solution 10y thws
Homogeneous PDE and BC, general IC:

D pu(x, t) = —Lu(x, t) foralxe Gand t € (0,7),
u(x,0) = up(x) forall x € G,
u(x,t)=0 foralx e 9Gand t € [0, T]
ansatz (Fourier): u(x,t) = X(x)T(t)
DoT(t) LX(x) _

separation of variables: =-A

T(1) X(x)

Decomposition:

DipT(t) = —AT(1),

[L(X)(x) = MX(x),  X(x)=0forxcdG,|
classical eigenvalue problem for elliptic operator L

solution: T(t) = E, 1(—At%)
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Construction of the Solution U thws

Consequences:

B eigenvalue problem (L + BC) is positive definite and self-adjoint

B eigenvalue problem has countably many eigenvalues ;, j € N,
all of which are in (0, c0) and have finite multiplicity
(WLOGO<)\1 <X §>\3 < )

B denote the eigenfunction corresponding to A; by X;

B any function of the form u;(x, t) = G E, 1(—);t%)Xj(x) satisfies the
PDE and the boundary condition

If G is smooth then the function
o0
u(x, t) =Y (Uo, X)) Ea,1 (= At*)Xj(X)
j=1
is a formal solution to the fractional initial-boundary value problem.
Under suitable assumptions, it is even an actual solution.
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i : rhE
Comparison to Classical Case i thws

assumption: compatibility of IC & BC; smoothness of given data
Classical parabolic IBVP (o = 1):
infinitelyéodifferentiable w.rt. ton [0, T]
u(x, 1) = 3 (U, Xp)exp(— A1) Xi(x)
/=1 exponential decay as t — oo

Fractional parabolic IBVP (0 < a < 1):
infinitely differentiaotgle w.r.t. t on (0, T]; not differentiable at 0

u(x,t) = (o, X)) Eo i (-~ 21") Xi(x)
j=1
algebraic decay ~ t™* as t — oo
B Behaviour with respect to x (smoothness etc.): same in both cases
B Behaviour with respect to t: remember A; > 0 for all j
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U thws
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Thank you for your attention!

Contact: kai.diethelm@thws.de
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