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Stochastic Model

Random Walk in 1D
■ at time t = 0, random walker is in position x = 0
■ random walker jumps at times t = nτ (n = 1,2, . . .)

where τ > 0 is a fixed constant
■ jump length = ξ > 0 (the lattice constant; also fixed)
■ direction of jump is randomly chosen;

equal probabilities for jumps to right and to left
■ Notation: P(x , t) · ξ = probability that random walker’s position

at time t is in interval [x , x + ξ)

■ master equation:

P(x , t + τ) =
1
2

P(x + ξ, t) +
1
2

P(x − ξ, t)
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Stochastic Model

Master equation:

P(x , t + τ) =
1
2

P(x + ξ, t) +
1
2

P(x − ξ, t)

Taylor expansion:

P(x , t + τ) = P(x , t) + τ
∂P
∂t

(x , t) + O
(
τ2
)

P(x ± ξ, t) = P(x , t)± ξ
∂P
∂x

(x , t) +
ξ2

2
∂2P
∂x2 (x , t) + O

(
ξ3
)

Plug into master equation and rearrange:

∂P
∂t

(x , t) =
ξ2

2τ
∂2P
∂x2 (x , t) + ξ · O

(
ξ2

τ

)
+ O(τ)
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Continuum Limit

∂P
∂t

(x , t) =
ξ2

2τ
∂2P
∂x2 (x , t) + ξ · O

(
ξ2

τ

)
+ O(τ)

Continuum limit (τ → 0 and ξ → 0 coupled such that
diffusion coefficient d1 = limτ→0,ξ→0 ξ

2/(2τ) exists):

∂P
∂t

(x , t) = d1
∂2P
∂x2 (x , t) (classical diffusion equation)

Can be generalized to n-dimensional case:

∂P
∂t

(x , t) = d1∆P(x , t) where ∆ =
n∑

j=1

∂2

∂x2
j

(Laplace operator)
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Solution of Classical Diffusion Equation

■ Diffusion equation:

∂P
∂t

(x , t) = d1
∂2P
∂x2 (x , t)

■ Random walker located in position x = 0 at time t = 0
⇒ initial condition P(x ,0) = δ(x) (Dirac distribution)

■ Solution of initial value problem:

P(x , t) =
1√

4πd1t
exp

(
− x2

4d1t

)
■ For fixed t , P(·, t) is (spatial) Gaussian distribution

with mean value µ = 0 and standard deviation σ(t) =
√

2d1t
⇒ mean squared displacement of random walker at time t is

σ2(t) = 2d1t

Kai Diethelm Fractional Diffusion 7



Outlook

Classification of diffusion processes according to behaviour of mean
squared displacement at time t (when t is large):

σ2(t) ∼ tα for t → ∞

■ classical diffusion (see above): α = 1
■ subdiffusion: α < 1
■ superdiffusion: α > 1
■ ballistic diffusion: α = 2

Next steps:
Find mathematical models that exhibit such kinds of behaviour
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Limitations of Stochastic Model

Random Walk in 1D
■ at time t = 0, random walker is in position x = 0
■ random walker jumps at times t = nτ (n = 1,2, . . .)

where τ > 0 is a fixed constant
■ jump length = ξ > 0 (the lattice constant; also fixed)
■ direction of jump is randomly chosen;

equal probabilities for jumps to right and to left

Many deterministic assumptions!
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Continuous-Time Random Walks
■ at time t = 0, random walker is in position x = 0
■ joint probability distribution function ψ(x , t) (so-called jump PDF)

governs lengths of jumps and waiting time between successive
jumps

■ jump length PDF:

λ(x) =
∫ ∞

0
ψ(x , t) dt

■ waiting time PDF:

w(t) =
∫ ∞

−∞
ψ(x , t) dx

■ main characteristic features of CTRW model:

▶ characteristic waiting time T =

∫ ∞

0
tw(t) dt (first moment of w)

▶ jump length variance Σ2 =

∫ ∞

−∞
x2λ(x) dx
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Continuous-Time Random Walks

■ characteristic waiting time T =

∫ ∞

0
tw(t) dt

■ jump length variance Σ2 =

∫ ∞

−∞
x2λ(x) dx

T <∞ T = ∞

Σ2 <∞ classical diffusion (non-Markovian) subdiffusion
(Brownian motion) (time-fractional PDE)

Σ2 = ∞ Markovian Lévy flights non-Markovian Lévy flights
(space-fractional PDE) (space-and-time-fractional PDE)

Simplifying assumption:
■ jump lengths and waiting times are independent random variables
■ ψ(x , t) = λ(x)w(t)
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Continuous-Time Random Walks

η(x , t) = PDF of just having arrived in position x at time t

=

∫ ∞

−∞

∫ ∞

0
η(ξ, τ)ψ(x − ξ, t − τ) dτdξ + P0(x)δ(t)

(P0 = initial condition)

Then,

P(x , t) = PDF of being in position x at time t

=

∫ t

0
η(x , τ)Ψ(t − τ) dτ

where Ψ(t) = 1 −
∫ t

0
w(τ) dτ (“no jump in time interval [0, t ]”)
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Transforming the PDF

Application of Fourier transform in space and Laplace transform in time
to this PDF yields

FLP(ω, s) =
1 − Lw(s)

s
· FP0(ω)

1 −FLψ(ω, s)

=
1 − Lw(s)

s
· FP0(ω)

1 −Fλ(ω)Lw(s)
(∗)
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Anomalous Diffusion

Special case: waiting time PDF with heavy tail

w(t) ∼ Aα

(τ
t

)α+1
for t → ∞

■ α ∈ (0,1)
■ τ > 0: characteristic time constant
■ Aα > 0: normalization factor

Properties:
■ w is integrable,

characteristic waiting time (first moment of w): T = ∞.
■ Tauberian theorem: Lw(s) ∼ 1 − (sτ)α as s → 0
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Anomalous Diffusion

Concrete example:

waiting time PDF w(t) = − d
dt

Eα,1(−tα)

with Mittag-Leffler function Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
and 0 < α < 1

Gaussian jump length PDF λ(x) =
1√

4πσ2
exp

(
− x2

4σ2

)
such that Σ2 = 2σ2 <∞

Lw(s) =
1

1 + sα
, Fλ(ω) ∼ 1 − σ2ω2 (ω → 0)
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Anomalous Diffusion

Recalling

FLP(ω, s) =
1 − Lw(s)

s
· FP0(ω)

1 −Fλ(ω)Lw(s)
(∗)

and plugging in the above statements Lw(s) = 1
1+sα and

Fλ(ω) ∼ 1 − σ2ω2, we obtain for s → 0 and ω → 0 that

FLP(ω, s) ∼ FP0(ω)/s
1 + dαω2s−α

with some constant dα, or

(1 + dαω
2s−α)FLP(ω, s) ∼ FP0(ω)

s
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Anomalous Diffusion

Exploiting Fourier and Laplace transforms and their properties, this
yields for large t and |x |

P(x , t)− P0(x) = dαJα
0,tPxx(x , t)

where Jα
0,t is the Riemann-Liouville integral of order α w.r.t. t .

Equivalent formulation: IVP for time-fractional diffusion equation

Dα
∗0,tP(x , t) = dα

∂2P
∂x2 (x , t), P(x ,0) = P0(x),

where Dα
∗0,t is the Caputo derivative of order α w.r.t. t .

Laplace transform techniques lead to

mean squared displacement = σ2(t) =
2dα

Γ(1 + α)
tα
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General Formulation

Dα
∗0,tu(x , t) = −Lu(x , t) + F (x , t), x ∈ G ⊂ Rn, t ∈ (0,T ) (□)

■ α ∈ (0,1]; Dα
∗0,t is the Caputo derivative of order α w.r.t. t

■ G is open and bounded domain in Rn

■ Lu(x , t) = − div(p(x) gradu(x , t)) + q(x)u(x , t)
■ p ∈ C(Ḡ), q ∈ C(Ḡ), p(x) > 0 and q(x) ≥ 0 for x ∈ Ḡ

−L is elliptic differential operator of order 2,

−Lu(x , t) =
n∑

k=1

(
p(x)

∂2u
∂x2

k
(x , t) +

∂p
∂xk

(x)
∂u
∂xk

(x , t)

)
− q(x)u(x , t)

= p(x)∆u(x , t) + (grad p(x , t), gradu(x , t))− q(x)u(x , t)

Problem (□) reduces to classical parabolic PDE when α = 1
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Initial and Boundary Conditions
Same conditions as in classical parabolic PDE
(with time derivative of order 1):

u(x ,0) = u0(x) for all x ∈ Ḡ,
u(x , t) = v(x , t) for all x ∈ ∂G and t ∈ [0,T ]

Definition
A function u : Ḡ × [0,T ] is called a solution to the IBVP above if
■ u is continuous in its domain of definition,
■ u is twice differentiable with respect to x in G,
■ u is once differentiable with respect to t ∈ (0,T ] such that the first

time derivative is in L1(0,T ),
■ u satisfies the differential equation (□) and the initial and

boundary conditions above.
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Uniqueness of Solutions
General assumptions (can be weakened):
■ forcing function: F ∈ C(Ḡ × [0,T ])

■ initial function: u0 ∈ C(Ḡ)

■ boundary function: v ∈ C(∂G × [0,T ])

Theorem
Under the given assumptions, the time-fractional IBVP above
possesses at most one solution.
The solution depends continuously on F, u0 and v in the following
sense: If u1 and u2 are solutions to the PDE (□) with forcing, initial and
boundary functions F1, u01 and v1 or F2, u02 and v2, respectively, then

∥u1 − u2∥L∞(Ḡ×[0,T ]) ≤ max
{
∥u01 − u02∥L∞(Ḡ), ∥v1 − v2∥L∞(∂G×[0,T ])

}
+

Tα

Γ(1 + α)
∥F1 − F2∥L∞(Ḡ×[0,T ])
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The Maximum Principle

Theorem
Let u be a solution to the IBVP above under the given assumptions
and subject to the condition F (x , t) ≤ 0 for all x and t. Then
■ either u(x , t) ≤ 0 for all x and t
■ or u(x , t) attains its positive maximum on the part

S = (Ḡ × {0}) ∪ (∂G × [0,T ]) of the boundary of its domain of
definition,

i.e.

u(x , t) ≤ max

{
0, max

(ξ,τ)∈S
u(ξ, τ)

}
for all x and t .
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Construction of the Solution
Homogeneous PDE and BC, general IC:

Dα
∗0,tu(x , t) = −Lu(x , t) for all x ∈ G and t ∈ (0,T ),

u(x ,0) = u0(x) for all x ∈ Ḡ,
u(x , t) = 0 for all x ∈ ∂G and t ∈ [0,T ]

ansatz (Fourier): u(x , t) = X (x)T (t)

separation of variables:
Dα
∗0T (t)
T (t)

= −LX (x)
X (x)

= −λ

Decomposition:

Dα
∗0T (t) = −λT (t),

L(X )(x) = λX (x), X (x) = 0 for x ∈ ∂G.

classical eigenvalue problem for elliptic operator L

solution: T (t) = Eα,1(−λtα)
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Construction of the Solution
Consequences:
■ eigenvalue problem (L + BC) is positive definite and self-adjoint
■ eigenvalue problem has countably many eigenvalues λj , j ∈ N,

all of which are in (0,∞) and have finite multiplicity
(WLOG 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .)

■ denote the eigenfunction corresponding to λj by Xj
■ any function of the form uj(x , t) = cjEα,1(−λj tα)Xj(x) satisfies the

PDE and the boundary condition

Theorem
If ∂G is smooth then the function

u(x , t) =
∞∑

j=1

(u0,Xj)Eα,1(−λj tα)Xj(x)

is a formal solution to the fractional initial-boundary value problem.
Under suitable assumptions, it is even an actual solution.
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Comparison to Classical Case

Classical parabolic IBVP (α = 1):

u(x , t) =
∞∑

j=1

(u0,Xj)exp(−λj t)Xj(x)

Fractional parabolic IBVP (0 < α < 1):

u(x , t) =
∞∑

j=1

(u0,Xj)Eα,1(−λj tα)Xj(x)

■ Behaviour with respect to x (smoothness etc.): same in both cases
■ Behaviour with respect to t :

assumption: compatibility of IC & BC; smoothness of given data

infinitely differentiable w.r.t. t on [0,T ]

infinitely differentiable w.r.t. t on (0,T ]; not differentiable at 0

remember λj > 0 for all j

exponential decay as t → ∞

algebraic decay ∼ t−α as t → ∞
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Thank you for your attention!

Contact: kai.diethelm@thws.de
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