

Spectral analysis of terrestrial planets and gas giants

Characterization of the spectra of rotating truncated gas planets, part II

M.V. de Hoop
S. Holman, A. Iantchenko

Rice University

DOE BES, Simons Foundation MATH + X, NSF-DMS
Geo-Mathematical Imaging Group, Oxy

University of Ghent
Oscillation phenomena, PDEs and applications
October 2025

Riesz projectors and acoustic mode decomposition

- expanding u in acoustic modes: eigenfunctions of L_{11} corresponding to discrete eigenvalues (by Proposition 1)
- spectral theory on Krein spaces (Langer et al. [2008], Azizov and Iokhikov [1981]) and Proposition 1 lead to resolution of the identity for L_{11} using its eigenfunctions
- however, these eigenfunctions are not modes for the operator L ; suppose $\lambda \in \rho_2$, which is outside of the essential spectrum of L (Proposition 2); using the Schur decomposition (30), we have that

$$\mathcal{L}(\lambda) \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

if and only if

$$S_1(\lambda)u = 0, \quad L_{22}^{-1}(\lambda)L_{21}(\lambda)u = -v$$

- thus, eigenvalues of L outside the essential spectrum and their corresponding modes actually correspond to eigenfunctions of S_1 , and contain a component in $\text{Ker}(T)$
- to develop a true expansion for L away from the essential spectrum we should use the eigenfunctions of S_1

Riesz projectors and acoustic mode decomposition

- expanding u in acoustic modes: eigenfunctions of L_{11} corresponding to discrete eigenvalues (by Proposition 1)
- spectral theory on Krein spaces (Langer et al. [2008], Azizov and Iokhifov [1981]) and Proposition 1 lead to resolution of the identity for L_{11} using its eigenfunctions
- however, these eigenfunctions are not modes for the operator L ; suppose $\lambda \in \rho_2$, which is outside of the essential spectrum of L (Proposition 2); using the Schur decomposition (30), we have that

$$\mathcal{L}(\lambda) \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

if and only if

$$S_1(\lambda)u = 0, \quad L_{22}^{-1}(\lambda)L_{21}(\lambda)u = -v$$

- thus, eigenvalues of L outside the essential spectrum and their corresponding modes actually correspond to eigenfunctions of S_1 , and contain a component in $\text{Ker}(T)$
- to develop a true expansion for L away from the essential spectrum we should use the eigenfunctions of S_1

Riesz projectors and acoustic mode decomposition

- assume secular stability: $\gamma(a_2) = 0$ and $A_2^{1/2}$ is well defined on $D(A_2)$, with a nontrivial $\text{Ker}(A_2^{1/2})$ coinciding with $\text{Ker}(A_2)$
- we let

$$B_2 = \begin{pmatrix} 0 & iA_2^{1/2} \\ iA_2^{1/2} & -2R_\Omega \end{pmatrix}, \quad D(B_2) = D(A_2) \times D(A_2) \quad (34)$$

- it is immediate that iB_2 is *self adjoint* on $H \times H$, equipped with the original inner product:

$$\left(B_2 \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} u' \\ v' \end{pmatrix} \right) = (iA_2^{1/2}v, u')_H + (iA_2^{1/2}u - 2R_\Omega v, v')_H = - \left(\begin{pmatrix} u \\ v \end{pmatrix}, B_2 \begin{pmatrix} u' \\ v' \end{pmatrix} \right) \quad (35)$$

- we introduce (noting the minus sign)

$$\tilde{L}(\lambda) = B_2 - \lambda \text{Id} = \begin{pmatrix} -\lambda & iA_2^{1/2} \\ iA_2^{1/2} & -\lambda - 2R_\Omega \end{pmatrix} \quad \text{and} \quad \tilde{R}(\lambda) = \tilde{L}(\lambda)^{-1} \quad (36)$$

Riesz projectors and acoustic mode decomposition

- from an analysis of geostrophic modes Remark 4, $0 \notin \rho(L)$, so for $\lambda \in \rho(L)$ we can invert the previous equation to obtain

$$\tilde{R}(\lambda) = \tilde{L}(\lambda)^{-1} = \begin{pmatrix} -\lambda^{-1}(\text{Id} - A_2^{1/2}R(\lambda)A_2^{1/2}) & -iA_2^{1/2}R(\lambda) \\ -iR(\lambda)A_2^{1/2} & -\lambda R(\lambda) \end{pmatrix} \quad (37)$$

- on the other hand, if $\lambda \in \rho(\tilde{L})$ we have an inverse

$$\tilde{R}(\lambda) = \begin{pmatrix} \tilde{R}_{11}(\lambda) & \tilde{R}_{12}(\lambda) \\ \tilde{R}_{12}(\lambda) & \tilde{R}_{22}(\lambda) \end{pmatrix} \quad (38)$$

- the resolvents are related; if $\lambda \neq 0$, $R(\lambda) = -\lambda^{-1}\tilde{R}_{22}(\lambda)$
- the presence of geostrophic modes also imply that $0 \notin \rho(\tilde{L})$ and so we see that $\rho(L) = \rho(\tilde{L})$; hence, the spectra are the same

Riesz projectors and acoustic mode decomposition

- from an analysis of geostrophic modes Remark 4, $0 \notin \rho(L)$, so for $\lambda \in \rho(L)$ we can invert the previous equation to obtain

$$\tilde{R}(\lambda) = \tilde{L}(\lambda)^{-1} = \begin{pmatrix} -\lambda^{-1}(\text{Id} - A_2^{1/2}R(\lambda)A_2^{1/2}) & -iA_2^{1/2}R(\lambda) \\ -iR(\lambda)A_2^{1/2} & -\lambda R(\lambda) \end{pmatrix} \quad (37)$$

- on the other hand, if $\lambda \in \rho(\tilde{L})$ we have an inverse

$$\tilde{R}(\lambda) = \begin{pmatrix} \tilde{R}_{11}(\lambda) & \tilde{R}_{12}(\lambda) \\ \tilde{R}_{12}(\lambda) & \tilde{R}_{22}(\lambda) \end{pmatrix} \quad (38)$$

- the resolvents are related; if $\lambda \neq 0$, $R(\lambda) = -\lambda^{-1}\tilde{R}_{22}(\lambda)$
- the presence of geostrophic modes also imply that $0 \notin \rho(\tilde{L})$ and so we see that $\rho(L) = \rho(\tilde{L})$; hence, the spectra are the same

Riesz projectors and acoustic mode decomposition

- suppose $\lambda \in \sigma_{disc}(L) = \sigma_{disc}(\tilde{L})$; a corresponding eigenfunction $(u, v) \in H \times H$ satisfies
$$iA_2^{1/2}v = \lambda u, \quad iA_2^{1/2}u - 2R_\Omega v = \lambda v$$
- restricting to acoustic modes, $v = 0$ is not possible since $\lambda \neq 0$ ($\lambda = 0$ is an eigenvalue but does not correspond with an acoustic mode)
- we combine these formulae:

$$L(\lambda)v = 0, \quad u = \lambda^{-1}iA_2^{1/2}v \tag{39}$$

- we introduce Riesz projectors onto the space of acoustic modes, which are the spectrum of S_1 : let $\lambda \in \sigma(S_1)$ and Γ_λ be a contour surrounding λ and no other part of $\sigma(B_2)$; then consider the standard formula for the projection onto the eigenspace of λ

$$\tilde{P}_\lambda = \frac{1}{2\pi i} \oint_{\Gamma_\lambda} \tilde{R}(\omega) \, d\omega$$

Riesz projectors and acoustic mode decomposition

- suppose $\lambda \in \sigma_{disc}(L) = \sigma_{disc}(\tilde{L})$; a corresponding eigenfunction $(u, v) \in H \times H$ satisfies

$$iA_2^{1/2}v = \lambda u, \quad iA_2^{1/2}u - 2R_\Omega v = \lambda v$$

- restricting to acoustic modes, $v = 0$ is not possible since $\lambda \neq 0$ ($\lambda = 0$ is an eigenvalue but does not correspond with an acoustic mode)
- we combine these formulae:

$$L(\lambda)v = 0, \quad u = \lambda^{-1}iA_2^{1/2}v \tag{39}$$

- we introduce Riesz projectors onto the space of acoustic modes, which are the spectrum of S_1 : let $\lambda \in \sigma(S_1)$ and Γ_λ be a contour surrounding λ and no other part of $\sigma(B_2)$; then consider the standard formula for the projection onto the eigenspace of λ

$$\tilde{P}_\lambda = \frac{1}{2\pi i} \oint_{\Gamma_\lambda} \tilde{R}(\omega) \, d\omega$$

Riesz projectors and acoustic mode decomposition

- suppose $\lambda \in \sigma_{disc}(L) = \sigma_{disc}(\tilde{L})$; a corresponding eigenfunction $(u, v) \in H \times H$ satisfies

$$iA_2^{1/2}v = \lambda u, \quad iA_2^{1/2}u - 2R_\Omega v = \lambda v$$

- restricting to acoustic modes, $v = 0$ is not possible since $\lambda \neq 0$ ($\lambda = 0$ is an eigenvalue but does not correspond with an acoustic mode)
- we combine these formulae:

$$L(\lambda)v = 0, \quad u = \lambda^{-1}iA_2^{1/2}v \tag{39}$$

- we introduce Riesz projectors onto the space of acoustic modes, which are the spectrum of S_1 : let $\lambda \in \sigma(S_1)$ and Γ_λ be a contour surrounding λ and no other part of $\sigma(B_2)$; then consider the standard formula for the projection onto the eigenspace of λ

$$\tilde{P}_\lambda = \frac{1}{2\pi i} \oint_{\Gamma_\lambda} \tilde{R}(\omega) \, d\omega$$

Riesz projectors and acoustic mode decomposition

- we further let π_v be projection onto the v component and define $P_\lambda = \pi_v \tilde{P}_\lambda \pi_v^*$; using (37),

$$P_\lambda = -\frac{\lambda}{2\pi i} \oint_{\Gamma_\lambda} R(\omega) \, d\omega$$

- we can now use these projectors to define the projection onto (part of) the acoustic part of the spectrum, which is

$$E = \sum_{\lambda \in \sigma(S_1)} P_\lambda$$

- we conclude that the projection onto the eigenspace of λ for \tilde{L} gives a corresponding projection, by taking the v component as in (39), onto the space $\text{Ker}(L(\lambda))$ of an acoustic mode
- this projection E shows it is possible to express the acoustic part of the wavefield as a sum of normal modes (apart from acoustic eigenvalues embedded in σ_2)

Riesz projectors and acoustic mode decomposition

- using the above mentioned Riesz projectors, we obtain a partial spectral decomposition of $\tilde{R}_{22}(\lambda)$:

$$\tilde{R}_{22}(\lambda)|_{acoustic} = \sum_{\omega \in \sigma(S_1)} \frac{P_\omega}{(\omega - \lambda)}$$

- this induces a corresponding partial spectral decomposition of $R(\lambda)$ from (37):

$$R(\lambda)|_{acoustic} = \frac{1}{\lambda} \sum_{\omega \in \sigma(S_1)} \frac{P_\omega}{(\lambda - \omega)}$$

(commonly used in computations)

Inertia-gravity modes and essential spectrum

essential spectrum of L

- because $L_{11}^{-1}(\lambda)$ is compact and the $L_{ij}(\lambda)$ are bounded from Proposition 1, using Proposition 2 we have that

$$\sigma_{ess}(L) = \sigma_{ess}(L_{22})$$

- using the formula for L_{22} given in Remark 2 and Lemma 4, this further reduces to

$$\sigma_{ess}(L) = \sigma_{ess} \left(\pi_2 \left(F(\lambda) + N^2 \hat{g}'_0 \hat{g}'_0^T \right) \pi_2^* \right) \quad (40)$$

- thus, referring to (14), we are led to consider the spectrum of

$$M(\lambda) = \pi_2 (\lambda^2 \text{Id} + 2\lambda R_\Omega + N^2 \hat{g}'_0 \hat{g}'_0^T) \pi_2^* : \text{Ker}(T) \rightarrow \text{Ker}(T)$$

Inertia-gravity modes and essential spectrum

- solutions $u \in \text{Ker}(T)$ of

$$\partial_t^2 u + 2\Omega \times \partial_t u + N^2 \hat{g}'_0 \hat{g}'^T_0 u = 0 \quad (41)$$

are modes of M , referred to as **inertia-gravity modes**

- restoring force of inertial modes is the **Coriolis force**: $2\Omega \times \partial_t(\rho_0 u)$
- restoring force of gravity modes is the **buoyancy**: $(\nabla \cdot \rho_0 u)g'_0 = N^2 \hat{g}'_0 \hat{g}'^T_0 \rho_0 u$

Inertia-gravity modes and essential spectrum

- $P_\xi^\perp = \sigma_p(\pi_2)$ defined by (22), which is the projection onto the space orthogonal to ξ
- for $\Omega \in \mathbb{R}^3$ let Ω_ξ be the component of Ω in the direction ξ given by

$$\Omega_\xi = \frac{\xi \cdot \Omega}{|\xi|}$$

Definition 2

For $x \in M$ and $\xi \in \mathbb{R}^3 \setminus \{0\}$, let $\sigma_{pt}(x, \xi)$ be the set of $\lambda \in \mathbb{C}$ such that

$$\mathbb{C}^3 \ni \eta \mapsto \lambda^2 P_\xi^\perp \eta + 2\lambda P_\xi^\perp (\Omega \times P_\xi^\perp \eta) + N^2 (\hat{g}'_0 \cdot P_\xi^\perp \eta) P_\xi^\perp \hat{g}'_0 \quad (42)$$

has rank less than two (note that two is the largest possible rank due to P_ξ^\perp).

Characterization of $\sigma_{pt}(x, \xi)$

Lemma 5

If $\lambda \in \sigma_{pt}(x, \xi)$, then $\lambda = 0$ or

$$\lambda = \pm i \sqrt{4\Omega_\xi^2 + N^2 |P_\xi^\perp \hat{g}'_0|^2}. \quad (43)$$

[Link to proof](#)

if λ satisfies (43), then

$$\lambda^2 = -\frac{1}{|\xi|^2} \underbrace{\left(4(\Omega \cdot \xi)^2 + N^2 |\xi|^2 - N^2 (\hat{g}'_0 \cdot \xi)^2 \right)}_{\text{quadratic form in } \xi} \quad (46)$$

eigenvalues of the matrix corresponding to this quadratic form: N^2 and

$$\beta_{\pm} = \frac{1}{2} \left(4|\Omega|^2 + N^2 \pm \sqrt{(N^2 + 4|\Omega|^2)^2 - 16(\Omega \cdot \hat{g}'_0)^2 N^2} \right) \quad (47)$$

Range of possible λ^2 , varying ξ

–1 times the interval between the min/max of these eigenvalues:

- if $N^2 \geq 0$, then this range will be $\lambda^2 \in -[\beta_-, \beta_+]$ which leads to $\lambda \in \pm i[\sqrt{\beta_-}, \sqrt{\beta_+}]$
- if $N^2 < 0$, then the range of possible values is $\lambda^2 \in -[N^2, \beta_+]$, which gives $\lambda \in [-\sqrt{(-N^2)}, \sqrt{(-N^2)}] \cup i[-\sqrt{\beta_+}, \sqrt{\beta_+}]$

Lemma 6

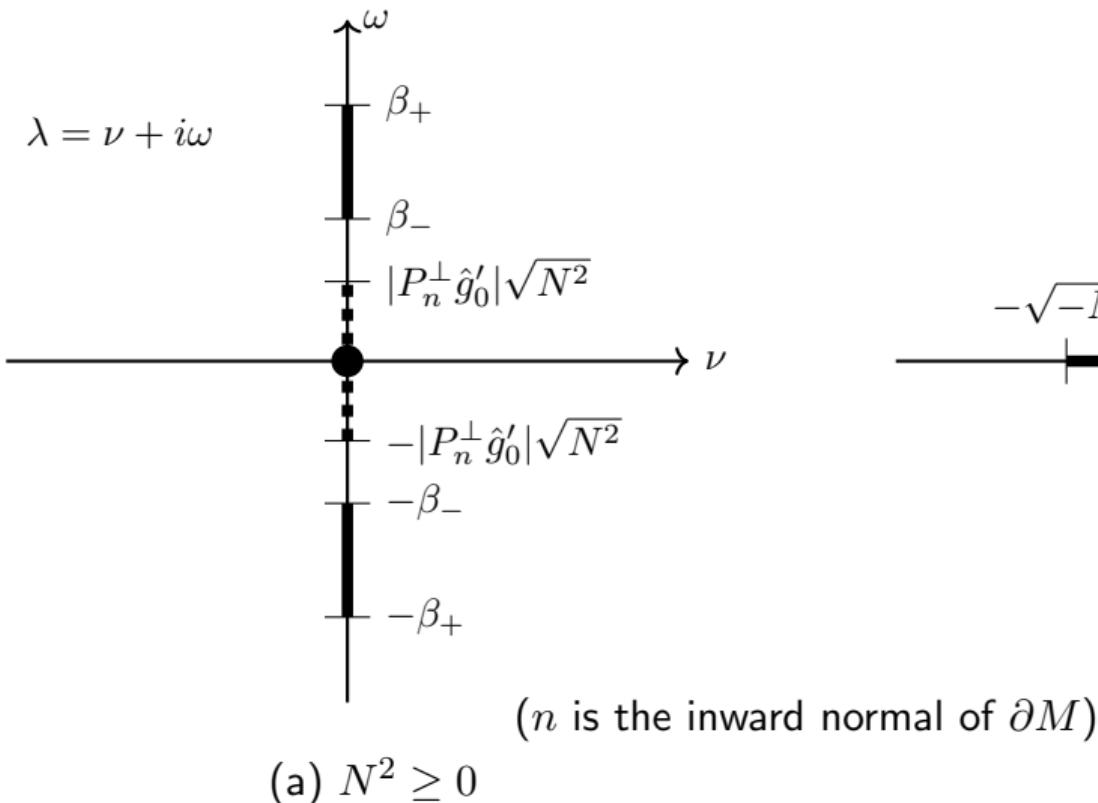
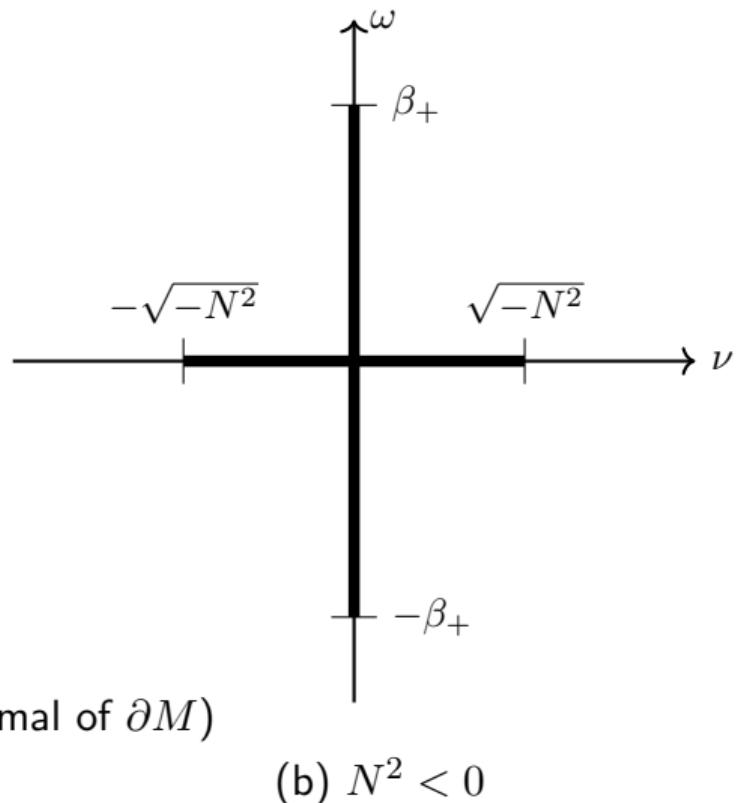
Let β_{\pm} be given by (47). Then

$$\bigcup_{\xi \in \mathbb{R}^3 \setminus \{0\}} \sigma_{pt}(x, \xi) = \bigcup_{\pm \in \{-1, 1\}} \left(\left[-\sqrt{\max(0, -N^2)}, \sqrt{\max(0, -N^2)} \right] \cup \pm i \left[\sqrt{\max(0, \beta_-)}, \sqrt{\beta_+} \right] \right) \quad (48)$$

Furthermore, this set contains $\sqrt{-N^2}$.

Set (48) for $x \in M$ fixed

dashed region: boundary



The essential spectrum

Theorem 1

For $x \in \partial M$, let $n(x)$ denote the inward pointing unit normal vector. The essential spectrum $\sigma_{ess}(L)$ is given by

$$\begin{aligned}\sigma_{ess}(L) = & \left(\bigcup_{x \in M, \pm \in \{-1,1\}} \left[-\sqrt{\max(0, -N^2)}, \sqrt{\max(0, -N^2)} \right] \cup \pm i \left[\sqrt{\max(0, \beta_-)}, \sqrt{\beta_+} \right] \right) \\ & \bigcup \left(\bigcup_{x \in \partial M} i |P_n^\perp \hat{g}'_0| \left[-\sqrt{\max(0, N^2)}, \sqrt{\max(0, N^2)} \right] \right). \end{aligned} \quad (49)$$

Proof:

- Part 1 (\supset): [Link to Part 1](#)
- Part 2 (\subset): [Link to Part 2](#)

- Part 3 (Lemma 7): [Link to Part 3](#)

Elements of the proof: interior

- suppose that $\lambda \in \mathbb{C}$ is contained in $\sigma_{pt}(x_0, \xi_0)$ such that $x_0 \in M^{int}$; thus, there exists nonzero η orthogonal to ξ_0 such that

$$\lambda^2 P_{\xi_0} \eta + 2\lambda P_\xi(\Omega \times P_{\xi_0} \eta) + N^2 (P_{\xi_0} \hat{g}_0 \cdot P_{\xi_0} \eta) P_{\xi_0} \hat{g}_0 = 0$$

- then, for any $\epsilon > 0$, choose a neighborhood $U \subset M^{int}$ of x_0 such that at all $x \in U$

$$|\lambda^2 P_{\xi_0} \eta + 2\lambda P_{\xi_0}(\Omega \times P_{\xi_0} \eta) + N^2 (P_{\xi_0} \hat{g}_0 \cdot P_{\xi_0} \eta) P_{\xi_0} \hat{g}_0| < \epsilon$$

- let $\phi \in C_c^\infty(U)$ be such that $\|\phi\|_{L^2(\rho^0 dx)} = 1$ and consider

$$u(x) = \eta \phi(x) e^{itx \cdot \xi_0}$$

as $t \rightarrow \infty$, u converges to zero weakly

- using the fact that ξ_0 is orthogonal to η

$$\pi_2(u)(x) = \phi(x) e^{itx \cdot \xi_0} \eta + O\left(\frac{1}{t}\right)$$

Weyl sequence (even though such a sequence is normalized, its mass can move around the Hilbert space so that it doesn't overlap with any fixed finite part)

Elements of the proof: boundary

- introduce a certain system of PDEs, then show that this system satisfies the Lopatinskii conditions Agmon et al. [1964] if and only if λ is in the complement of the right side of (49)
- when the Lopatinskii conditions are satisfied, the system is a Fredholm operator which implies $M(\lambda)$ is also Fredholm; therefore, in this case $\lambda \in \sigma_{ess}(L)^c$
- the Lopatinskii conditions fail if either the system is not elliptic in the interior, or at the boundary

Special cases of (48); upper bound on essential spectrum

if for some value of x we have $\Omega \cdot \hat{g}_0 = 0$, then from (47) we have

$$\beta_{\pm} = \min(0, 4|\Omega|^2 + N^2), \max(0, 4|\Omega|^2 + N^2)$$

also, for general points $\beta_+ \leq 4|\Omega|^2 + N^2$; therefore, considering (49), we see that the part of $\sigma_{ess}(L)$ along the imaginary axis must be contained in

$$i \left[-\sqrt{4|\Omega|^2 + \max(0, N_{\sup}^2)}, \sqrt{4|\Omega|^2 + \max(0, N_{\sup}^2)} \right]$$

on the other hand, directly from (49) we see that the part of $\sigma_{ess}(L)$ along the real axis must be contained in

$$\left[-\sqrt{\max(0, -N_{\inf}^2)}, \sqrt{\max(0, -N_{\inf}^2)} \right]$$

Full spectrum bound

Proposition 3 (Dyson and Schutz)

The spectrum $\sigma(L)$ satisfies

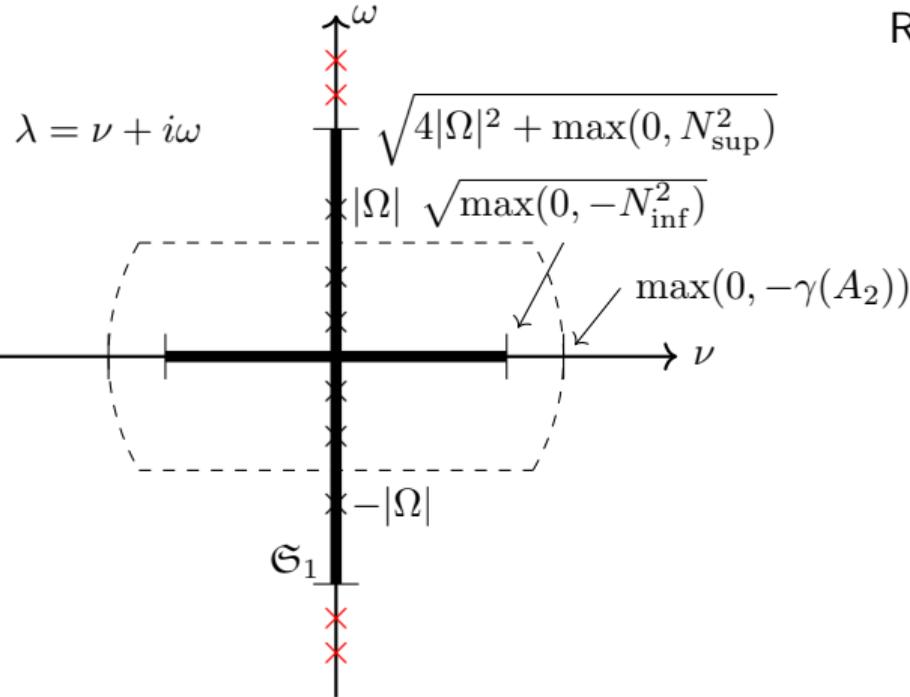
①

$$\sigma(L) \subseteq i\mathbb{R} \cup \{\lambda \in \mathbb{C} : |\operatorname{Im}(\lambda)| \leq |\Omega|\};$$

② while A_2 is bounded below by $\gamma(A_2)$, $\lambda \in \sigma(L)$ and $\lambda \notin i\mathbb{R}$,

$$|\lambda|^2 \leq \max(0, -\gamma(A_2)).$$

Overview



an illustration of the spectrum $\sigma(L)$ after Register and Valette [2009]

- dark cross: must contain the essential spectrum $\sigma_{\text{ess}}(L)$ (but may be larger)
- full spectrum $\sigma(L)$ is contained in the union of the imaginary axis and region surrounded by the dashed curve
- crosses on the imaginary axis: eigenvalues, which could also occur within the dashed curve
- red crosses: outside of the essential spectrum, part of $\sigma(S_1)$ which is (part of) the acoustic component of the spectrum

Encore: Hamiltonian

recall

$$\tilde{s} = \nabla \rho_0 - \frac{\rho_0}{c^2} g'_0 \quad (78)$$

and the dynamic pressure

$$P = -c^2 [\nabla \cdot (\rho_0 u) - \tilde{s} \cdot u] \quad (79)$$

or

$$P = -\rho_0 [c^2 \nabla \cdot u + g'_0 \cdot u] \quad (80)$$

using that

$$\tilde{s} \cdot u = \frac{\tilde{s} \cdot g'_0}{|g'_0|^2} (g'_0 \cdot u) = \frac{N^2}{|g'_0|^2} (g'_0 \cdot (\rho_0 u)) \quad (81)$$

as $\nabla \rho_0$ and g'_0 must be parallel, we obtain

$$P = -c^2 \left[\nabla \cdot (\rho_0 u) - \frac{N^2}{|g'_0|^2} (g'_0 \cdot (\rho_0 u)) \right] \quad (82)$$

Hamiltonian

while introducing the particle velocity, $v = \partial_t u$, equations (10) and

$$\nabla^2 \Phi' = -4\pi G \nabla \cdot (\rho_0 u) \quad (\star)$$

are equivalent to the system

$$\partial_t \rho + \nabla \cdot (\rho_0 v) = 0, \quad (83)$$

$$\partial_t (\rho_0 v) + 2\Omega \times (\rho_0 v) = -\nabla P + \rho g'_0 - \rho_0 \nabla \Phi', \quad (84)$$

$$\partial_t P = c^2 \left[\partial_t \rho + \frac{N^2}{|g'_0|^2} (g'_0 \cdot (\rho_0 v)) \right] \quad (85)$$

supplemented with (\star)

Hamiltonian

equivalent to the system in linearized hydrodynamics

$$\partial_t \rho + \nabla \cdot (\rho_0 v) = 0, \quad (86)$$

$$\partial_t (\rho_0 v) + 2\Omega \times (\rho_0 v) = -\nabla P + \rho g'_0 - \rho_0 \nabla \Phi', \quad (87)$$

$$\partial_t P + v \cdot \nabla P_0 = c^2 [\partial_t \rho + v \cdot \nabla \rho_0] \quad (88)$$

as $\nabla P_0 = -\rho_0 g'_0$ (in the Cowling approximation, one drops the term $-\rho_0 \nabla \Phi'$) if $u \in \ker(T)$ then $P = 0$ and

$$\rho g'_0 = -(\nabla \cdot (\rho_0 u)) g'_0 = -(\tilde{s} \cdot u) g'_0 = -N^2 \hat{g}'_0 (\hat{g}'_0 \cdot \rho_0 u). \quad (89)$$

then, (84) is seen to be equivalent to

$$\partial_t v + 2\Omega \times v + N^2 \hat{g}'_0 (\hat{g}'_0 \cdot u) = 0, \quad Tu = 0$$

which is closely related to (41)

upon first introducing

$$\rho' = N \underbrace{(\hat{g}'_0 \cdot u)}_{u_{\parallel}} \quad (90)$$

this equation can be written as the system

$$(\partial_t + A) \begin{pmatrix} v \\ \rho' \end{pmatrix} = 0 \quad \text{with } A = \begin{pmatrix} 2\Omega \times & N\hat{g}'_0 \\ -N\hat{g}'_0^T & 0 \end{pmatrix}, \quad Tv = 0 \quad (91)$$

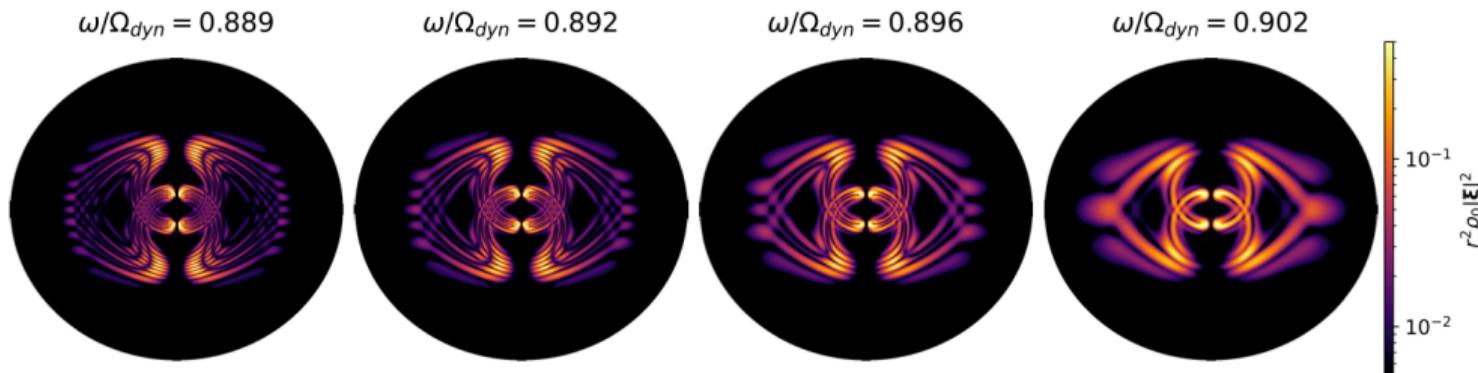
in Colin de Verdière and Vidal [2024], this system is formed by expressing v in an orthogonal basis where one of the basis vectors is \hat{g}'_0 ; including the projectors

$$\pi'_2 \begin{pmatrix} v \\ \rho' \end{pmatrix} = \begin{pmatrix} \pi_2 v \\ \rho' \end{pmatrix}, \quad (92)$$

the system takes the form

$$(\partial_t + H) \begin{pmatrix} v \\ \rho' \end{pmatrix} = 0 \quad \text{with } H = \pi'_2 A \pi'_2 \quad (93)$$

Inertia gravity modes: Practice



[Dewberry et al 2021]

[Prat et al 2022]

Model of terrestrial planets

- bounded $M \subset \mathbb{R}^3$, smooth boundary ∂M
- M divided into two regions:
 - Ω_F (fluid outer core), annulus
 - Ω_S (solid), two components — inner core (“ball”) and mantle (annulus)
- $\Sigma_{FS} = \partial\Omega_F$ interface between the fluid and solid regions; two smooth “spheres”
- $u = u(t, x) \in \mathbb{R}^3$ is displacement (as before)

Model of terrestrial planets

equation of motion for the oscillations of a rotating elastic and self-gravitating planet:

$$\rho^0 [\partial_t^2 u + 2 \Omega \times \partial_t u] + \rho^0 u \cdot \nabla \nabla (\Phi^0 + \Psi^s) + \rho^0 \nabla S(u) - \nabla \cdot (\Lambda^{T^0} : \nabla u) = 0 \quad (1)$$

$$\Psi^s(x) := -\frac{1}{2} (\Omega^2 x^2 - (\Omega \cdot x)^2) \quad (\text{centrifugal force}) \quad (2)$$

$$\Delta \Phi^0 = 4\pi G \rho^0 \quad (\text{reference gravitational potential}) \quad (3)$$

$$\Delta S(u) = -4\pi \nabla \cdot (\rho^0 u) \quad (\text{perturbation of the gravitational potential})$$

boundary conditions on ∂M :

$$\nu \cdot (\Lambda^{T^0} : \nabla u)|_{\partial M} = 0$$

interface conditions at Σ_{FS} :

$$[\nu \cdot (\Lambda^{T^0} : \nabla u)]_-^+ = -\nu \nabla^\Sigma \cdot (p^0[u]_-^+) - p^0 W[u]_-^+; \quad [u \cdot \nu]_-^+ = 0 \text{ on } \Sigma_{FS}$$

- $\nabla^\Sigma \cdot$ = surface divergence
- W = Weingarten operator on the interface
- $[\cdot]^\pm$ = jump across Σ_{FS} in the direction of the unit normal vector ν

Model of terrestrial planets

- $g'_0 := -\nabla(\Phi^0 + \Psi^s)$
- modified stiffness tensor: $\Lambda_{ijkl}^{T^0} = \Xi_{ijkl} + T_{ik}^0 \delta_{jl}$ (4)
- T^0 = initial static stress
- $\Xi_{ijkl} \in L^\infty(\tilde{X})$ = stiffness tensor of linearization of the constitutive function
- initial hydrostatic stress: $p^0 = -\frac{1}{3}T^0$
- deviatoric part of the static stress in the solid region: $\tau^0 = T^0 + p^0 \text{Id}$

in the fluid region Ω_F , we have

$$\nabla \cdot (\Lambda^{T^0} : \nabla u) = \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u) \cdot g'_0 - (\nabla \cdot (\rho^0 u)) g'_0$$

using this formula, we see that (1) is equivalent to

$$\begin{aligned} \rho^0 [\partial_t^2 u + 2 \Omega \times \partial_t u] &= \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u) \cdot g'_0 - (\nabla \cdot (\rho^0 u)) g'_0 + \nabla g'_0 \cdot \rho^0 u - \rho^0 \nabla S(u) \\ &= \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u \cdot g'_0) - (\nabla \cdot (\rho^0 u)) g'_0 - \rho^0 \nabla S(u). \end{aligned}$$

Model of terrestrial planets

- $g'_0 := -\nabla(\Phi^0 + \Psi^s)$
- modified stiffness tensor: $\Lambda_{ijkl}^{T^0} = \Xi_{ijkl} + T_{ik}^0 \delta_{jl}$ (4)
- T^0 = initial static stress
- $\Xi_{ijkl} \in L^\infty(\tilde{X})$ = stiffness tensor of linearization of the constitutive function
- initial hydrostatic stress: $p^0 = -\frac{1}{3}T^0$
- deviatoric part of the static stress in the solid region: $\tau^0 = T^0 + p^0 \text{Id}$

in the fluid region Ω_F , we have

$$\nabla \cdot (\Lambda^{T^0} : \nabla u) = \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u) \cdot g'_0 - (\nabla \cdot (\rho^0 u)) g'_0$$

using this formula, we see that (1) is equivalent to

$$\begin{aligned} \rho^0 [\partial_t^2 u + 2 \Omega \times \partial_t u] &= \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u) \cdot g'_0 - (\nabla \cdot (\rho^0 u)) g'_0 + \nabla g'_0 \cdot \rho^0 u - \rho^0 \nabla S(u) \\ &= \nabla(\kappa \nabla \cdot u) + \nabla(\rho^0 u \cdot g'_0) - (\nabla \cdot (\rho^0 u)) g'_0 - \rho^0 \nabla S(u). \end{aligned}$$

Function spaces and well-posedness

$$H(\text{Div}, \Omega, L^2(\partial\Omega)) = \{u \in L^2(\Omega) : \nabla \cdot u \in L^2(\Omega), \ u|_{\partial\Omega} \cdot \nu \in L^2(\partial\Omega)\}; \quad (5)$$

$$\begin{aligned} (u, v)_{H(\text{Div}, \Omega, L^2(\partial\Omega))} = & \langle u, v \rangle_{L^2(\Omega)} + \langle \nabla \cdot u, \nabla \cdot v \rangle_{L^2(\Omega)} \\ & + \langle u|_{\partial\Omega} \cdot \nu, v|_{\partial\Omega} \cdot \nu \rangle_{L^2(\partial\Omega)} \end{aligned} \quad (6)$$

furthermore

$$H_0(\text{Div}, \Omega) = \{u \in H(\text{Div}, \Omega) : u|_{\partial\Omega} \cdot \nu = 0\} \quad (7)$$

and

$$H_0(\text{Div } 0, \Omega) = \{u \in H(\text{Div}, \Omega) : \nabla \cdot u = 0, \ u|_{\partial\Omega} \cdot \nu = 0\} \quad (8)$$

we can modify (1) to a weak form with domain given by the next definition

Function spaces and well-posedness

Definition 3

We let

$$E = \left\{ u \in L^2(M, \rho^0 \, dx) : \begin{cases} u|_{\Omega_S} \in H^1(\Omega_S) \\ u|_{\Omega_F} \in H(\text{Div}, \Omega_F, L^2(\partial\Omega_F)) \\ [u \cdot \nu]_+^0 = 0 \text{ along } \Sigma_{FS} \end{cases} \right\} \quad (9)$$
$$(u, v)_E := (u|_{\Omega_S}, v|_{\Omega_S})_{H^1(\Omega_S)} + (u|_{\Omega_F}, v|_{\Omega_F})_{H(\text{Div}, \Omega_F, L^2(\partial\Omega_F))}.$$

we observe that

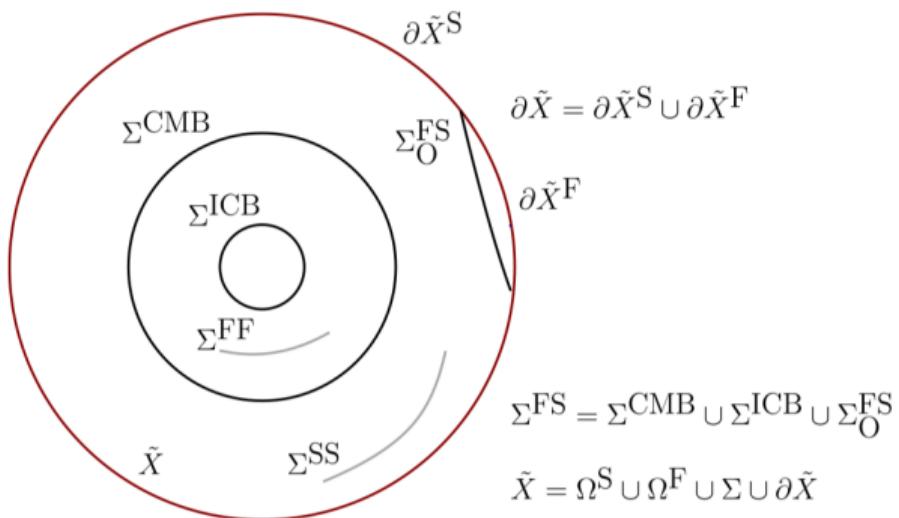
- E equipped with the inner product $(\cdot, \cdot)_E$ is a Hilbert space
- the injective inclusion of E into $H = L^2(M, \rho^0 \, dx)$ is continuous
- E is dense in $H = L^2(M, \rho^0 \, dx)$

as a result, we have the setting of a Hilbert triple

$$E \hookrightarrow H \hookrightarrow E'$$

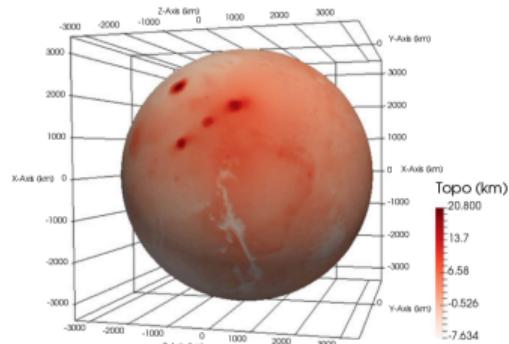
weak form

Terrestrial planet geometry

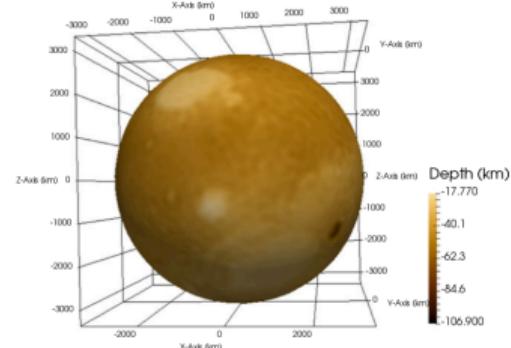


Above: Conceptual geometry of a terrestrial planet

Right: Topography and crust-mantle interface of Mars using MOLA and gravity data

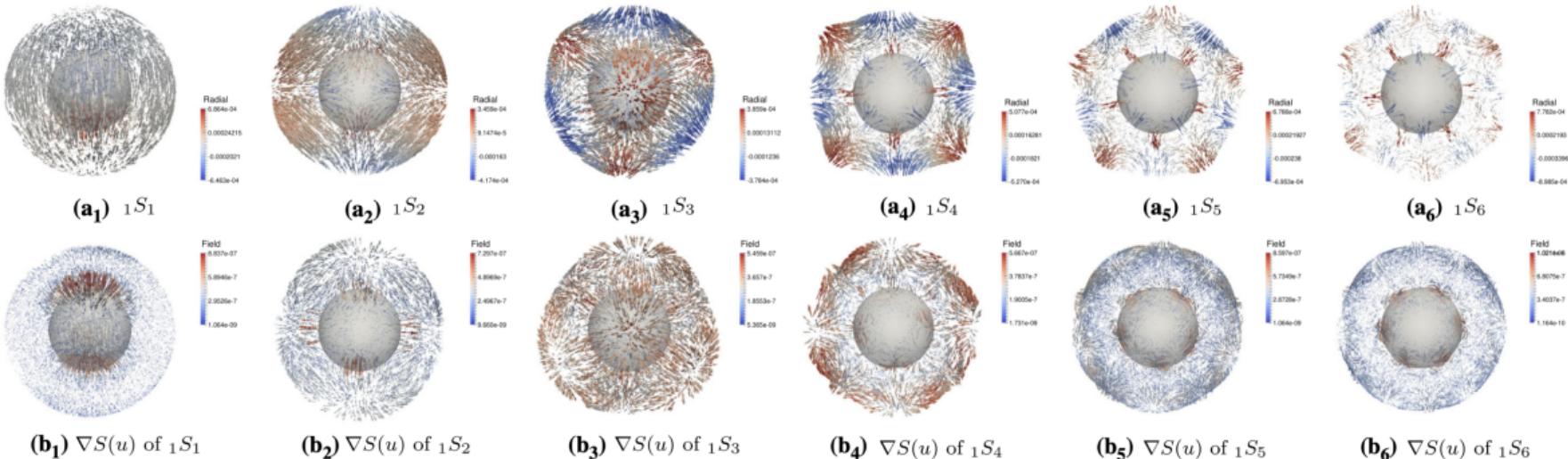


(a) Topography



(b) Crust-mantle interface

Selected normal modes of Mars



References

Shmuel Agmon, Avron Douglis, and Louis Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. *Communications on pure and applied mathematics*, 17(1):35–92, 1964.

Giovanni S Alberti, Malcolm Brown, Marco Marletta, and Ian Wood. Essential spectrum for Maxwell's equations. In *Annales Henri Poincaré*, volume 20, pages 1471–1499. Springer, 2019.

T. Ya Azizov and I. S. Iokhikov. Linear operators in spaces with indefinite metric and their applications. *Journal of Soviet Mathematics*, 15(4):438–490, 1981.

Yves Colin de Verdière and Jérémie Vidal. On gravito-inertial surface waves. *arXiv preprint arXiv:2402.12992*, 2024.

F A Dahlen and Jeroen Tromp. *Theoretical Global Seismology*. Princeton University Press, 1999.

References cont'd

Heinz Langer, Branko Najman, and Christiane Tretter. Spectral theory of the Klein–Gordon equation in Krein spaces. *Proceedings of the Edinburgh Mathematical Society*, 51(3): 711–750, 2008.

Yves Rogister and Bernard Valette. Influence of liquid core dynamics on rotational modes. *Geophysical Journal International*, 176(2):368–388, 2009.

Remark 2: No compact inverse

If we additionally assume that g'_0 and $\nabla \rho_0$ are parallel, which is a requirement for well-posedness of the system (1), and use the Brunt-Väisälä frequency N^2 (see (9)), the proof of Proposition 1 implies the following formulae

$$\begin{aligned} L_{12}(\lambda) &= \pi_1 (F(\lambda) + N^2 \hat{g}'_0 \hat{g}'_0{}^T + \nabla S \rho_0) \pi_2^*, & L_{22}(\lambda) &= \pi_2 (F(\lambda) + N^2 \hat{g}'_0 \hat{g}'_0{}^T + \nabla S \rho_0) \pi_2^*, \\ L_{21}(\lambda) &= \pi_2 (F(\lambda) + N^2 \hat{g}'_0 \hat{g}'_0{}^T + \nabla S \rho_0) \pi_1^* \end{aligned} \tag{26}$$

where

$$\hat{g}'_0 = \frac{g'_0}{\|g'_0\|}.$$

From these formulae and Lemma 4, $L_{22}(\lambda)$ cannot have a compact inverse. Thus by taking $u \in \text{Ker}(T)$ we see that $L(\lambda)^{-1}$ cannot be compact as observed earlier.

Remark 4: Geostrophic modes

For completeness of the characterization, we briefly present how the geostrophic modes (see [Dahlen and Tromp, 1999, Section 4.1.6]) appear in the analysis. Fluid motions which travel along the level surfaces of ρ_0 and preserve the density are generalized eigenfunctions of L , or geostrophic modes, corresponding to $\lambda = 0$. They are necessarily solutions to the problem

$$\begin{cases} \tilde{s} \cdot u = 0, \\ \nabla \cdot (\rho_0 u) = 0, \\ \nabla \cdot u|_{\partial M} = 0. \end{cases} \quad (31)$$

Note that if $u \in H$ satisfies (31), then $u \in H_2 = \text{Ker}(T)$. If $\varphi \in H^1(M)$ is such that

$$\nabla \varphi \cdot (\nabla \times \tilde{s}) = 0 \quad (32)$$

and we define u by

$$u = \rho_0^{-1} \nabla \varphi \times \tilde{s}, \quad (33)$$

then u satisfies the first and the second equations of (31) as

$$\nabla \cdot (\nabla \varphi \times \tilde{s}) = \tilde{s} \cdot (\nabla \times \nabla \varphi) - \nabla \varphi \cdot (\nabla \times \tilde{s}).$$

Remark 4: Geostrophic modes

Since we have also

$$\nabla \cdot (\rho_0^{-1} \nabla \varphi \times \tilde{s}) = (\nabla \varphi \times \tilde{s}) \cdot \nabla \rho_0^{-1},$$

the boundary condition in (31) is equivalent to

$$(\nabla \varphi \times \tilde{s}) \cdot \nabla \rho_0^{-1}|_{\partial M} = 0.$$

Assuming that g'_0 , $\nabla \rho_0$ and n are parallel on ∂M , which is required for well-posedness of the system, this boundary condition is automatically satisfied.

The geostrophic modes form a infinite-dimensional subspace of H_2 . This is consistent with the fact that the essential spectrum of L corresponds with the H_2 component (i.e. $L(0)$ fails to be Fredholm because of an infinite dimensional kernel contained in H_2).

Proof of Lemma 5

- first, assume that $P_\xi^\perp \hat{g}'_0 \neq 0$ and set

$$\eta = a P_\xi^\perp \hat{g}'_0 + b \xi \times P_\xi^\perp \hat{g}'_0 \quad (44)$$

where a and b are constants, not both equal to zero, to be determined; calculation shows

$$\begin{aligned} P_\xi^\perp(\Omega \times P_\xi^\perp(\xi \times P_\xi^\perp \hat{g}'_0)) &= P_\xi^\perp(\Omega \times (\xi \times P_\xi^\perp \hat{g}'_0)) \\ &= -|\xi| \Omega_\xi P_\xi^\perp \hat{g}'_0 \end{aligned}$$

and

$$P_\xi^\perp(\Omega \times P_\xi^\perp \hat{g}'_0) = \frac{\Omega_\xi}{|\xi|} \xi \times P_\xi^\perp \hat{g}'_0$$

- if $\lambda \in \sigma_{pt}(x, \xi)$ then for some a and b

$$\left(\lambda^2 a - 2\lambda |\xi| \Omega_\xi b + N^2 |P_\xi^\perp \hat{g}_0|^2 a \right) P_\xi \hat{g}'_0 + \left(\lambda^2 b + 2\lambda \frac{\Omega_\xi}{|\xi|} a \right) \xi \times P_\xi^\perp \hat{g}'_0 = 0$$

Proof of Lemma 5

- setting the two coefficients equal to zero, we see that either $\lambda = 0$ and $a = 0$ or

$$\lambda^2 = -4\Omega_\xi^2 - N^2|P_\xi^\perp \hat{g}'_0|^2 \quad (45)$$

which completes the proof in this case

- when $P_\xi^\perp \hat{g}'_0 = 0$, we choose arbitrary w orthogonal to ξ and start with

$$\eta = a w + b \xi \times w$$

instead of (44); a similar calculation gives $\lambda = 0$ or (45) in this case, and so the lemma is proven \square

Proof of Theorem 1 (Part 1)

we begin by proving the inclusion,

$$\begin{aligned}
 \sigma_{ess}(L) &\supset \bigcup_{x \in M, \pm \in \{-1, 1\}} \left[-\sqrt{\max(0, -N^2)}, \sqrt{\max(0, -N^2)} \right] \cup \pm i \left[\sqrt{\max(0, \beta_-)}, \sqrt{\beta_+} \right] \\
 &= \bigcup_{(x, \xi) \in M \times \mathbb{R}^3 \setminus \{0\}} \sigma_{pt}(x, \xi)
 \end{aligned} \tag{51}$$

- suppose that $\lambda \in \mathbb{C}$ is contained in $\sigma_{pt}(x_0, \xi_0)$ such that $x_0 \in M^{int}$
- there exists nonzero η orthogonal to ξ_0 such that

$$\lambda^2 P_{\xi_0} \eta + 2\lambda P_\xi(\Omega \times P_{\xi_0} \eta) + N^2 (P_{\xi_0} \hat{g}'_0 \cdot P_{\xi_0} \eta) P_{\xi_0} \hat{g}'_0 = 0 \tag{52}$$

- for any $\epsilon > 0$, choose a neighbourhood $U \subset M^{int}$ of x_0 such that at all $x \in U$

$$|\lambda^2 P_{\xi_0} \eta + 2\lambda P_{\xi_0}(\Omega \times P_{\xi_0} \eta) + N^2 (P_{\xi_0} \hat{g}'_0 \cdot P_{\xi_0} \eta) P_{\xi_0} \hat{g}'_0| < \epsilon$$

- let $\phi \in C_c^\infty(U)$ be such that $\|\phi\|_{L^2(\rho^0 dx)} = 1$ and consider

$$u(x) = \eta \phi(x) e^{itx \cdot \xi_0}$$

Proof of Theorem 1 (Part 1)

- considering the Fourier transform, we can see that as $t \rightarrow \infty$, u converges to zero weakly
- since π_2 is a pseudodifferential operator with principal symbol given by (22), using the fact that ξ_0 is orthogonal to η , we have

$$\pi_2(u)(x) = \phi(x) e^{itx \cdot \xi_0} \eta + O\left(\frac{1}{t}\right)$$

- for t sufficiently large $\|\pi_2(u)\|_{L^2(\rho_0 \, dx)^3} > C > 0$ where C is a constant independent of t ;
since π_2 is continuous $\pi_2(u)$ converges weakly to zero as $t \rightarrow \infty$
- let

$$v = \frac{\pi_2(u)}{\|\pi_2(u)\|_H} \in \text{Ker}(T),$$

then

$$M(\lambda)v = \frac{1}{\|\pi_2(u)\|_H} \pi_2(\lambda^2 \text{Id} + 2\lambda R_\Omega + N^2 \hat{g}'_0 \hat{g}'_0^T) \pi_2 u$$

and the operator on the right side is a pseudodifferential operator with principal symbol given by the map (42)

Proof of Theorem 1 (Part 1)

- thus

$$M(\lambda)v = \frac{1}{\|\pi_2(u)\|_H} \left(\lambda^2 P_{\xi_0} \eta + 2\lambda P_{\xi_0}(\Omega \times P_{\xi_0} \eta) + N^2 (P_{\xi_0} \hat{g}'_0 \cdot P_{\xi_0} \eta) P_{\xi_0} \hat{g}'_0 \right) \phi(x) e^{itx \cdot \xi_0} + O\left(\frac{1}{t}\right)$$

and so by taking t sufficiently large

$$\|M(\lambda)v\|_{L^2(\rho_0 \, dx)^3} \leq \frac{2}{\|\pi_2(u)\|_H} \epsilon$$

- since $\epsilon > 0$ was arbitrary we see that $M(\lambda)v$ converges to zero strongly and so v defines a Weyl sequence; therefore $\lambda \in \sigma_{ess}(M) = \sigma_{ess}(L)$, and this proves $\sigma_{pt}(x_0, \xi_0) \subset \sigma_{ess}(L)$ for $x_0 \in M^{int}$
- since the essential spectrum is closed and (43) is a continuous function of x once \pm is chosen, for $x_0 \in \partial M$ we can take a limit from M^{int} to show $\sigma_{pt}(x_0, \xi_0) \subset \sigma_{ess}(L)$; this completes the proof of (51)

Proof of Theorem 1 (Part 2)

To complete the proof, we will introduce a certain system of PDEs which satisfies the **Lopatinskii conditions** if and only if λ is in the complement of the right side of (49).

- Lopatinskii satisfied \Rightarrow system is a Fredholm operator $\Rightarrow M(\lambda)$ is Fredholm, $\lambda \in \sigma_{ess}(L)^c$
- the Lopatinskii conditions fail if the system is not elliptic in the **interior** or at the **boundary**
- **interior ellipticity**: equivalent to

$$\lambda \in \left(\bigcup_{(x,\xi) \in M \times \mathbb{R}^3 \setminus \{0\}} \sigma_{pt}(x, \xi) \right)^c \quad (53)$$

we have already shown that failure of this condition leads to existence of a Weyl sequence

- assuming interior ellipticity, we will show **boundary ellipticity**: equivalent to

$$\lambda \in \left(\bigcup_{x \in \partial M} i|P_n^\perp \hat{g}'_0| \left[-\sqrt{\max(0, N^2)}, \sqrt{\max(0, N^2)} \right] \right)^c$$

we will show that failure of this condition also leads to existence of a Weyl sequence

Proof of Theorem 1 (Part 2)

Let us begin now deriving the PDE system:

- for any $v \in H$, consider the decomposition given by Lemma 2:

$$v = w + T^* \varphi$$

where $w \in \text{Ker}(T)$ and $\varphi \in H^1(M)$

- decompose w according the standard Helmholtz decomposition as

$$w = \nabla \times (\rho_0 w_v) + \nabla \varphi_v$$

where $\varphi_v \in H^1(M)$ and the vector potential $\rho_0 w_v$ is in the space

$$H_{\text{Curl},0}(M) = \{u \in L^2(\rho_0 \, dx) : \nabla \times u \in L^2(\rho_0 \, dx), \, n \times u|_{\partial M} = 0\},$$

while also satisfying

$$\nabla \cdot (\rho_0 w_v) = 0$$

- given that M is a “ball”, a unique such decomposition exists (see [Alberti et al., 2019, Section 3])

Proof of Theorem 1 (Part 2)

- set $\rho_0 z_v = \nabla \varphi_v$ which must then satisfy $\nabla \times (\rho_0 z_v) = 0$
- $w \in \text{Ker}(T)$ is equivalent to

$$\nabla \cdot (\rho_0 z_v) + \frac{g'_0}{c^2} \cdot \nabla \times (\rho_0 w_v) + \frac{\rho_0 g'_0}{c^2} \cdot z_v = 0, \quad n \cdot z_v|_{\partial M} = 0$$

- suppose that $u \in \text{Ker}(T)$ satisfies $M(\lambda)u = f$
- as described above for v , there will be w_u and z_u such that

$$u = \nabla \times (\rho_0 w_u) + \rho_0 z_u$$

where

$$\nabla \times (\rho_0 z_u) = 0 \tag{55}$$

$$\nabla \cdot (\rho_0 w_u) = 0 \tag{56}$$

$$\nabla \cdot (\rho_0 z_u) + \frac{g'_0}{c^2} \cdot \nabla \times (\rho_0 w_u) + \frac{\rho_0 g'_0}{c^2} \cdot z_u = 0 \tag{57}$$

$$n \cdot z_u|_{\partial M} = 0 \tag{58}$$

$$n \times w_u|_{\partial M} = 0 \tag{59}$$

Proof of Theorem 1 (Part 2)

- the same equations (55)–(59) will hold for w_v and z_v constructed above for arbitrary v : let $V(\lambda) = \lambda^2 I + 2\lambda R_\Omega + N^2 \hat{g}'_0 \hat{g}'_0^T$ and

$$v = V(\lambda)u$$

so that $f = \pi_2 v$; (55)–(59) become

$$\nabla \times (\rho_0 w_v) + \rho_0 z_v + T^* \varphi_v = V(\lambda) (\nabla \times (\rho_0 w_u) + \rho_0 z_u) \quad (60)$$

$$f = \nabla \times (\rho_0 w_v) + \rho_0 z_v \quad (61)$$

- to make the system elliptic, we will extend it with several potentials ψ_u , ψ_v and $\tilde{\varphi}$; setting these equal to zero, we find that the following system is satisfied:

Proof of Theorem 1 (Part 2)

$$\begin{pmatrix}
 \frac{g_0'^T}{c^2} \nabla \times \rho_0 & \nabla \cdot \rho_0 + \frac{\rho_0 g_0'^T}{c^2} & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & \nabla \times \rho_0 & \nabla \rho_0 & 0 & 0 & 0 & 0 & 0 \\
 \nabla \cdot \rho_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & \frac{g_0'^T}{c^2} \nabla \times \rho_0 & \nabla \cdot \rho_0 + \frac{\rho_0 g_0'^T}{c^2} & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & \nabla \times \rho_0 & \nabla \rho_0 & 0 & 0 \\
 0 & 0 & 0 & \nabla \cdot \rho_0 & 0 & 0 & 0 & 0 \\
 V(\lambda) \nabla \times \rho_0 & V(\lambda) \rho_0 & 0 & -\nabla \times \rho_0 & -\rho_0 I & 0 & -T^* & 0 \\
 0 & 0 & 0 & \nabla \times \rho_0 & \rho_0 I & 0 & 0 & -T^*
 \end{pmatrix}
 \begin{pmatrix}
 w_u \\
 z_u \\
 \psi_u \\
 w_v \\
 z_v \\
 \psi_v \\
 \varphi_v \\
 \tilde{\varphi}
 \end{pmatrix}
 = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 f
 \end{pmatrix} \quad (62)$$

$$n \times w_u|_{\partial M} = n \times w_v|_{\partial M} = 0, \quad n \cdot z_u|_{\partial M} = n \cdot z_v|_{\partial M} = \psi_u|_{\partial M} = \psi_v|_{\partial M} = 0$$

Proof of Theorem 1 (Part 2)

- in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when λ is in the complement of the right side of (49)
- therefore, for such λ and by acting on $H^1(M)^{16}$ the corresponding operator is Fredholm
- considering that whenever $M(\lambda)u = f$ we have (62), we therefore conclude that $M(\lambda)$ is also Fredholm in this case
- thus these $\lambda \in \sigma_{ess}(M)^c = \sigma_{ess}(L)^c$ which shows the right inclusion for (49)

Proof of Theorem 1 (Part 2)

- in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when λ is in the complement of the right side of (49)
- therefore, for such λ and by when acting on $H^1(M)^{16}$ the corresponding operator is Fredholm
- considering that whenever $M(\lambda)u = f$ we have (62), we therefore conclude that $M(\lambda)$ is also Fredholm in this case
- thus these $\lambda \in \sigma_{ess}(M)^c = \sigma_{ess}(L)^c$ which shows the right inclusion for (49)

Proof of Theorem 1 (Part 2)

- in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when λ is in the complement of the right side of (49)
- therefore, for such λ and by acting on $H^1(M)^{16}$ the corresponding operator is Fredholm
- considering that whenever $M(\lambda)u = f$ we have (62), we therefore conclude that $M(\lambda)$ is also Fredholm in this case
- thus these $\lambda \in \sigma_{ess}(M)^c = \sigma_{ess}(L)^c$ which shows the right inclusion for (49)

Proof of Theorem 1 (Part 2)

- in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when λ is in the complement of the right side of (49)
- therefore, for such λ and by when acting on $H^1(M)^{16}$ the corresponding operator is Fredholm
- considering that whenever $M(\lambda)u = f$ we have (62), we therefore conclude that $M(\lambda)$ is also Fredholm in this case
- thus these $\lambda \in \sigma_{ess}(M)^c = \sigma_{ess}(L)^c$ which shows the right inclusion for (49)

key technical step in the proof of Theorem 1:

Lemma 7

Suppose that λ is in the complement of the right side of (49). Then the system (62) satisfies the Lopatinskii conditions. Furthermore, suppose

$$\lambda \in \left(\bigcup_{x \in \partial M} i|P_n \hat{g}'_0| \left[-\sqrt{\max(0, N^2)}, \sqrt{\max(0, N^2)} \right] \right) \cap \left(\bigcup_{(x, \xi) \in M \times \mathbb{R}^3 \setminus \{0\}} \sigma_{pt}(x, \xi) \right)^c. \quad (63)$$

Then $\lambda \in \sigma_{ess}(M)$.

[Link to proof.](#)

- let the operator on the left side of (62) be labeled $m(\lambda)$
- we collect the relevant operators for the boundary conditions in one large matrix

$$\mathcal{B} = \begin{pmatrix} n \times & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & n^T & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & n \times & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & n^T & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \quad (64)$$

- the principal symbol of $m(\lambda)$ is

$$\sigma_p(m(\lambda))(., \xi) = i\rho_0 \begin{pmatrix} \frac{g_0'^T}{c^2} \xi \times & \xi^T & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \xi \times & \xi & 0 & 0 & 0 & 0 & 0 \\ \xi^T & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{g_0'^T}{c^2} \xi \times & \xi^T & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \xi \times & \xi & 0 & 0 \\ 0 & 0 & 0 & \xi^T & 0 & 0 & 0 & 0 \\ V(\lambda) \xi \times & 0 & 0 & -\xi \times & 0 & 0 & \xi & 0 \\ 0 & 0 & 0 & \xi \times & 0 & 0 & 0 & \xi \end{pmatrix} \quad (65)$$

- this is invertible if $V(\lambda)$ is invertible when projected onto the space orthogonal to ξ :

we define

$$V_{\xi \perp \xi \perp}(\lambda) = P_\xi^\perp V(\lambda) P_\xi^\perp, \quad V_{\xi \xi \perp}(\lambda) = P_\xi V(\lambda) P_\xi^\perp$$

where P_ξ is the projection onto the span of ξ and P_ξ^\perp the projection onto the space orthogonal to ξ

- condition (53) is equivalent to invertibility of $\tilde{V}_\xi(\lambda) = V_{\xi \perp \xi \perp}(\lambda) + P_\xi$ at all points $(x, \xi) \in M \times (\mathbb{R}^3 \setminus \{0\})$

we will sometimes suppress the dependence on λ to ease the notation

we define

$$V_{\xi \perp \xi \perp}(\lambda) = P_\xi^\perp V(\lambda) P_\xi^\perp, \quad V_{\xi \xi \perp}(\lambda) = P_\xi V(\lambda) P_\xi^\perp$$

where P_ξ is the projection onto the span of ξ and P_ξ^\perp the projection onto the space orthogonal to ξ

- condition (53) is equivalent to invertibility of $\tilde{V}_\xi(\lambda) = V_{\xi \perp \xi \perp}(\lambda) + P_\xi$ at all points $(x, \xi) \in M \times (\mathbb{R}^3 \setminus \{0\})$

we will sometimes suppress the dependence on λ to ease the notation

- when it exists, the inverse of $\sigma_p(m(\lambda))$ is given by

$$\sigma_p(m(\lambda))(.,\xi)^{-1} = -\frac{i}{\rho_0|\xi|^2} \begin{pmatrix} 0 & 0 & \xi & 0 & 0 & 0 & -\xi \times \tilde{V}_\xi^{-1} & -\xi \times \tilde{V}_\xi^{-1} \\ \xi & -\xi \times & 0 & 0 & 0 & 0 & -\xi \frac{g_0'^T}{c^2} P_\xi^\perp \tilde{V}_\xi^{-1} & -\xi \frac{g_0'^T}{c^2} P_\xi^\perp \tilde{V}_\xi^{-1} \\ 0 & \xi^T & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi & 0 & -\xi \times \\ 0 & 0 & 0 & \xi & -\xi \times & 0 & 0 & -\xi \frac{g_0'^T}{c^2} P_\xi^\perp \\ 0 & 0 & 0 & 0 & \xi^T & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \xi^T(I - V_{\xi\xi^\perp}) \tilde{V}_\xi^{-1} & -\xi^T V_{\xi\xi^\perp} \tilde{V}_\xi^{-1} P_\xi^\perp \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \xi^T \end{pmatrix} \quad (66)$$

Lemma 7 Proof

- **Lopatinskii condition** in boundary normal coordinates (\tilde{x}, x^3) where we freeze all coefficients at the central point where the Euclidean metric is the identity and write n for the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system

$$\sigma_p(m)(., \tilde{\xi} + nD_3)U = 0, \quad \mathcal{B}U = \eta \quad (67)$$

for any non-zero real $\tilde{\xi} \in \mathbb{R}^3$ orthogonal to n and $\eta \in \mathbb{C}^8$

- assuming $\lambda \in \sigma_{pt}((\tilde{x}, x^3), n)^c$, the ODE (67) is equivalent to

$$\frac{dU}{dx^3} = \underbrace{-\sigma_p(m) \left(., \frac{n}{i}\right)^{-1} \sigma_p(m)(., \tilde{\xi}) U}_K$$

and checking the condition amounts to analyzing the eigenvalues and eigenvectors of the matrix K on the right side of this equation

Lemma 7 Proof

- **Lopatinskii condition** in boundary normal coordinates (\tilde{x}, x^3) where we freeze all coefficients at the central point where the Euclidean metric is the identity and write n for the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system

$$\sigma_p(m)(., \tilde{\xi} + nD_3)U = 0, \quad \mathcal{B}U = \eta \quad (67)$$

for any non-zero real $\tilde{\xi} \in \mathbb{R}^3$ orthogonal to n and $\eta \in \mathbb{C}^8$

- assuming $\lambda \in \sigma_{pt}((\tilde{x}, x^3), n)^c$, the ODE (67) is equivalent to

$$\frac{dU}{dx^3} = \underbrace{-\sigma_p(m) \left(., \frac{n}{i}\right)^{-1} \sigma_p(m)(., \tilde{\xi}) U}_K$$

and checking the condition amounts to analyzing the eigenvalues and eigenvectors of the matrix K on the right side of this equation

- because of (66), when the ellipticity condition is satisfied at the boundary K cannot have any eigenvalues with zero real part
- considerable calculation shows that the eigenvalues of K are $\pm|\tilde{\xi}|$ each with algebraic multiplicity 7 and

$$\alpha_{\pm} = i|\tilde{\xi}| \left(n^T V_{nn\perp} \tilde{V}_n^{-1} \hat{\xi} + \hat{\xi}^T \tilde{V}_n^{-1} V_{n\perp n} n \right. \\ \left. \mp \sqrt{(n^T V_{nn\perp} \tilde{V}_n^{-1} \hat{\xi} - \hat{\xi}^T \tilde{V}_n^{-1} V_{n\perp n} n)^2 - 4(\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi}) n^T (V_{nn} - V_{nn\perp} \tilde{V}_n^{-1} V_{n\perp n}) n} \right) / 2$$

with multiplicity 1, or possibly $\pm|\tilde{\xi}|$ with multiplicity 8 if $\alpha_{\pm} = \pm|\tilde{\xi}|$
 (provided (53) holds, α_{\pm} must have non-zero real part by the ellipticity condition)

- because of (66), when the ellipticity condition is satisfied at the boundary K cannot have any eigenvalues with zero real part
- considerable calculation shows that the eigenvalues of K are $\pm|\tilde{\xi}|$ each with algebraic multiplicity 7 and

$$\begin{aligned}\alpha_{\pm} = i|\tilde{\xi}| & \left(n^T V_{nn\perp} \tilde{V}_n^{-1} \hat{\xi} + \hat{\xi}^T \tilde{V}_n^{-1} V_{n\perp n} n \right. \\ & \left. \mp \sqrt{(n^T V_{nn\perp} \tilde{V}_n^{-1} \hat{\xi} - \hat{\xi}^T \tilde{V}_n^{-1} V_{n\perp n} n)^2 - 4(\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi}) n^T (V_{nn} - V_{nn\perp} \tilde{V}_n^{-1} V_{n\perp n}) n} \right) / 2\end{aligned}$$

with multiplicity 1, or possibly $\pm|\tilde{\xi}|$ with multiplicity 8 if $\alpha_{\pm} = \pm|\tilde{\xi}|$
(provided (53) holds, α_{\pm} must have non-zero real part by the ellipticity condition)

- we introduce the notation

$$\hat{\xi} = \frac{\tilde{\xi}}{|\tilde{\xi}|}, \quad n_{\perp} = \hat{\xi} \times n$$

- eigenvectors for $\pm|\tilde{\xi}|$ are

$$U_{1,\pm} = \begin{pmatrix} n \pm i\hat{\xi} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad U_{2,\pm} = \begin{pmatrix} 0 \\ n \pm i\hat{\xi} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad U_{3,\pm} = \begin{pmatrix} 0 \\ n_{\perp} \\ \pm i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad U_{4,\pm} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad U_{5,\pm} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n \pm i\hat{\xi} \\ 0 \\ 0 \end{pmatrix}, \quad U_{6,\pm} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n_{\perp} \\ \pm i \end{pmatrix}$$

... and there are either eigenvectors or generalized eigenvectors for $\pm|\xi|$ of the form

$$U_{7,\pm} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ n_{\perp} \\ a_{7,\pm}n + b_{7,\pm}\hat{\xi} \\ 0 \\ \pm i \\ \mp i \end{pmatrix}$$

for some constants $a_{7,\pm}, b_{7,\pm} \in \mathbb{C}$

Lemma 7 Proof

... finally, either eigenvectors for α_{\pm} or generalized eigenvectors for $\pm|\hat{\xi}|$ are given by

$$U_{8,\pm} = \begin{pmatrix} 2(\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi})n_{\perp} + a_{8,\pm}n + b_{8,\pm}\hat{\xi} \\ c_{8,\pm}n + d_{8,\pm}\hat{\xi} \\ 0 \\ 0 \\ 0 \\ 0 \\ (n^T V_{nn_{\perp}} \tilde{V}_n^{-1} \hat{\xi} - \hat{\xi}^T \tilde{V}_n^{-1} V_{n_{\perp}n}n) \\ \pm \sqrt{(n^T V_{nn_{\perp}} \tilde{V}_n^{-1} \hat{\xi} - \hat{\xi}^T \tilde{V}_n^{-1} V_{n_{\perp}n}n)^2 - 4(\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi})n^T (V_{nn} - V_{nn_{\perp}} \tilde{V}_n^{-1} V_{n_{\perp}n})n} \\ 0 \end{pmatrix}$$

for some constants $a_{8,\pm}, b_{8,\pm}, c_{8,\pm}, d_{8,\pm} \in \mathbb{C}$

Lemma 7 Proof

- for the Lopatinskii condition we must restrict to the generalized eigenspace corresponding to eigenvalues with negative real part. Thus, existence of a unique bounded solution of (67) is equivalent to a unique solution $(c_1, \dots, c_8) \in \mathbb{C}^8$ of the system

$$\mathcal{B} \sum_{j=1}^8 c_j U_{j,-} = \eta$$

- using (64) and the equations for $U_{j,-}$ above we see that this linear system will have a unique solution if and only if $\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi} \neq 0$; calculations show

$$\tilde{V}_n^{-1} = P_n + \frac{1}{\lambda^4 + \lambda^2(N^2|P_n^\perp \hat{g}'_0|^2 + 4\Omega_n^2)} \left(\lambda^2 P_n^\perp - 2\lambda\Omega_n R_n + N^2|P_n^\perp \hat{g}'_0|^2 P_n^\perp P_{(P_n^\perp \hat{g}'_0)}^\perp P_n^\perp \right)$$

and so, since $\hat{\xi}$ is orthogonal to n ,

$$\hat{\xi}^T \tilde{V}_n^{-1} \hat{\xi} = \frac{\lambda^2 + N^2|P_n^\perp \hat{g}'_0|^2 \hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}}{\lambda^4 + \lambda^2(N^2|P_n^\perp \hat{g}'_0|^2 + 4\Omega_n^2)}$$

- therefore, for λ satisfying the interior ellipticity condition (53), the Lopatinskii condition fails if and only if

$$\lambda^2 = -N^2 |P_n^\perp \hat{g}'_0|^2 \hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$$

- if $|P_n^\perp \hat{g}'_0| \neq 0$, then $\hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$ takes all values in $[0, 1]$ while if $|P_n^\perp \hat{g}'_0| = 0$ then the right side of this equation is always equal zero
- therefore, we see that the range of possible values of λ satisfying this equation is $|P_n^\perp \hat{g}'_0| [-\sqrt{-N^2}, \sqrt{-N^2}]$
- if $N^2 < 0$, this is already contained in the interior part of the essential spectrum given by the first line of (49)
- if $N^2 \geq 0$, this interval will not be contained in the interior part of the essential spectrum and is given, for a single $x \in \partial M$, by the second line in (49) (see Figure 1(a))

- therefore, for λ satisfying the interior ellipticity condition (53), the Lopatinskii condition fails if and only if

$$\lambda^2 = -N^2 |P_n^\perp \hat{g}'_0|^2 \hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$$

- if $|P_n^\perp \hat{g}'_0| \neq 0$, then $\hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$ takes all values in $[0, 1]$ while if $|P_n^\perp \hat{g}'_0| = 0$ then the right side of this equation is always equal zero
- therefore, we see that the range of possible values of λ satisfying this equation is $|P_n^\perp \hat{g}'_0| [-\sqrt{-N^2}, \sqrt{-N^2}]$
- if $N^2 < 0$, this is already contained in the interior part of the essential spectrum given by the first line of (49)
- if $N^2 \geq 0$, this interval will not be contained in the interior part of the essential spectrum and is given, for a single $x \in \partial M$, by the second line in (49) (see Figure 1(a))

- therefore, for λ satisfying the interior ellipticity condition (53), the Lopatinskii condition fails if and only if

$$\lambda^2 = -N^2 |P_n^\perp \hat{g}'_0|^2 \hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$$

- if $|P_n^\perp \hat{g}'_0| \neq 0$, then $\hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$ takes all values in $[0, 1]$ while if $|P_n^\perp \hat{g}'_0| = 0$ then the right side of this equation is always equal zero
- therefore, we see that the range of possible values of λ satisfying this equation is $|P_n^\perp \hat{g}'_0| [-\sqrt{-N^2}, \sqrt{-N^2}]$
- if $N^2 < 0$, this is already contained in the interior part of the essential spectrum given by the first line of (49)
- if $N^2 \geq 0$, this interval will not be contained in the interior part of the essential spectrum and is given, for a single $x \in \partial M$, by the second line in (49) (see Figure 1(a))

- therefore, for λ satisfying the interior ellipticity condition (53), the Lopatinskii condition fails if and only if

$$\lambda^2 = -N^2 |P_n^\perp \hat{g}'_0|^2 \hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$$

- if $|P_n^\perp \hat{g}'_0| \neq 0$, then $\hat{\xi}^T P_{(P_n^\perp \hat{g}'_0)}^\perp \hat{\xi}$ takes all values in $[0, 1]$ while if $|P_n^\perp \hat{g}'_0| = 0$ then the right side of this equation is always equal zero
- therefore, we see that the range of possible values of λ satisfying this equation is $|P_n^\perp \hat{g}'_0| [-\sqrt{-N^2}, \sqrt{-N^2}]$
- if $N^2 < 0$, this is already contained in the interior part of the essential spectrum given by the first line of (49)
- if $N^2 \geq 0$, this interval will not be contained in the interior part of the essential spectrum and is given, for a single $x \in \partial M$, by the second line in (49) (see Figure 1(a))

Lemma 7 Proof

- it remains to show that given (63), $\lambda \in \sigma_{ess}(M)$; we will do this by showing the existence of a Weyl sequence
- by the calculations above, we see that when the Lopatinskii condition fails, for some $\tilde{\xi}$ orthogonal to n if we set $\zeta = U_{8,-} - ib_{8,-}U_{1,-} - id_{8,-}U_{2,-}$, then we have

$$\mathcal{B}\zeta = 0$$

- since ζ is composed of eigenvectors for eigenvalues with negative real part, there will be a corresponding non-zero bounded solution U_ζ of the ODE in (67) with $U_\zeta(\tilde{\xi}, x^3 = 0) = \zeta$
- given $\epsilon > 0$, let us choose a neighborhood Ω of x sufficiently small so that all coefficients of operator \mathcal{M} vary by at most ϵ within the neighborhood, and let $\phi \in C_c^\infty(\Omega)$
- then we set

$$u(x) = \phi(x) e^{it\tilde{x} \cdot \tilde{\xi}} U_\zeta(\tilde{\xi}, tx^3) \quad (68)$$

which is in $H^1(M)^{16}$

Lemma 7 Proof

- with this choice of \mathcal{U} we have

$$\begin{aligned}
 m\mathcal{U} &= m|_{x=0}\mathcal{U} + \epsilon\mathcal{O}(t) \\
 &= it\phi(x)\sigma_p(m)|_{x=0}(\tilde{\xi} + nD_3)\mathcal{U} + \epsilon\mathcal{O}(t) + \mathcal{O}(1) \\
 &= \epsilon\mathcal{O}(t) + \mathcal{O}(1) \quad \text{as } t \rightarrow \infty \text{ with norm } H^1(M)^{16}
 \end{aligned}$$

- now let w_u and z_u be the corresponding components of \mathcal{U} . Since $\tilde{\xi}^T \tilde{V}_n^{-1} \tilde{\xi} = 0$, in the case when $\alpha_- \neq -|\tilde{\xi}|$ these are explicitly given by

$$\begin{aligned}
 w_u &= e^{t(x^3\alpha_- + i\tilde{x}\cdot\tilde{\xi})}(a_{8,-}n + b_{8,-}\hat{\xi}) - ib_{8,-}e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(n - i\hat{\xi}), \\
 z_u &= e^{t(x^3\alpha_- + i\tilde{x}\cdot\tilde{\xi})}(c_{8,-}n + d_{8,-}\hat{\xi}) - id_{8,-}e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(n - i\hat{\xi})
 \end{aligned} \tag{69}$$

- in the case that $\alpha_- = -|\tilde{\xi}|$ and $U_{8,-}$ is a generalized eigenvector, these are replaced by

$$\begin{aligned}
 w_u &= e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(a_{8,-} - ib_{8,-})n + tx^3e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(n - i\hat{\xi}), \\
 z_u &= e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(c_{8,-} - id_{8,-})n + tx^3e^{t(-x^3|\tilde{\xi}| + i\tilde{x}\cdot\tilde{\xi})}(n - i\hat{\xi})
 \end{aligned} \tag{70}$$

- considering the first component of (62), we have $\nabla \times (\rho_0 w_u) + \rho_0 z_u \in D(T)$ and

$$T(\nabla \times (\rho_0 w_u) + \rho_0 z_u) = \epsilon \mathcal{O}(t) + \mathcal{O}(1).$$

- by the construction of π_2 described just above Lemma 3, we have

$$\pi_2(\nabla \times (\rho_0 w_u) + \rho_0 z_u) = \nabla \times (\rho_0 w_u) + \rho_0 z_u + \epsilon \mathcal{O}(t) + \mathcal{O}(1)$$

with the H norm

- we set $u = \pi_2(\nabla \times (\rho_0 w_u) + \rho_0 z_u) \in \text{Ker}(T)$
- using the last and second to last lines in (62) and the fact that most components of \mathcal{U} are zero, we obtain

$$M(\lambda)u = \epsilon \mathcal{O}(t) + \mathcal{O}(1)$$

Lemma 7 Proof

- to construct a Weyl sequence, we need to normalize u , and so we consider $\|\nabla \times (\rho_0 w_u) + \rho_0 z_u\|_H$
- in the case $U_{8,-}$ is not a generalized eigenvector, using (69) we see

$$\begin{aligned} \nabla \times (\rho_0 w_u) + \rho_0 z_u &= t e^{t(x^3 \alpha_- + i \tilde{x} \cdot \tilde{\xi})} \left(-\frac{\alpha_-}{|\tilde{\xi}|} b_{8,-} + i a_{8,-} \right) |\tilde{\xi}| n_\perp \\ &\quad + t e^{t(-x^3 |\tilde{\xi}| + i \tilde{x} \cdot \tilde{\xi})} i b_{8,-} |\tilde{\xi}| n_\perp + \mathcal{O}(1) \end{aligned}$$

- since, from the calculation constructing $U_{8,-}$, we know that $a_{8,-}$ and $b_{8,-}$ cannot simultaneously vanish, from this last formula we see that

$$\|u\|_H = \|\nabla \times (\rho_0 w_u) + \rho_0 z_u\|_H + \epsilon \mathcal{O}(t) + \mathcal{O}(t) \approx \mathcal{O}(t)$$

(by this notation, we mean that $\|u\|_H$ is bounded below by Ct as $t \rightarrow \infty$ for some constant $C > 0$)

- a similar calculation beginning with (70) proves the same result when $U_{8,-}$ is a generalized eigenvector
- therefore

$$M(\lambda) \frac{u}{\|u\|_H} = \epsilon \mathcal{O}(1) + \mathcal{O}(t^{-1})$$

and so by choosing t sufficiently large we can obtain a sequence $v_\epsilon = u/\|u\|_H \in \text{Ker}(T)$ with H -norm equal to one and such that $M(\lambda)v_\epsilon \rightarrow 0$ as $\epsilon \rightarrow 0$

- because of the oscillatory nature of (68), it is also clear that v_ϵ converges weakly to zero, meaning it is a Weyl sequence and so $\lambda \in \sigma_{ess}(M)$

this completes the proof \square

Terrestrial weak form

we consider the weak form of (1), which can be formulated in the setting of $E \hookrightarrow H \hookrightarrow E'$ on $(0, T)$ for $T > 0$ as follows:

u is a weak solution of (1) if $u \in \mathcal{C}^0([0, T]; E)$, $\dot{u} \in \mathcal{C}^0([0, T]; H)$ and

$$\forall v \in E : \quad \frac{d}{dt}(\partial_t u, v)_H + (2R_\Omega \partial_t u, v)_H + a_2(u, v) = 0 \text{ in } \mathcal{D}'(0, T) \quad (12)$$

Terrestrial weak form

$$\begin{aligned}
a_2(u, v) := & \int_{\Omega_S} \left((\Lambda^{T^0} : \nabla u) : \nabla \bar{v} + \sigma_N \nabla u : \nabla \bar{v}^T - \sigma_N (\nabla \cdot u) (\nabla \cdot \bar{v}) \right) dV \\
& + \int_{\Omega_S} \left(-\mathfrak{S}\{(g'_0 \cdot u)(\bar{v} \cdot \nabla \rho^0)\} + \mathfrak{S}\{-(\nabla \sigma_N + \rho^0 g'_0) \cdot u (\nabla \cdot \bar{v})\} \right. \\
& \left. + \mathfrak{S}\{(\nabla \sigma_N - \rho^0 g'_0) \cdot \nabla u \cdot \bar{v}\} \right) dV \\
& + \int_{\Omega_F} \left(\frac{p^0 \gamma}{(\rho^0)^2} (\nabla \cdot (\rho^0 u) - \tilde{s} \cdot u) (\nabla \cdot (\rho^0 v) - \tilde{s} \cdot \bar{v}) \right. \\
& \left. - \tilde{s} \cdot g'_0 \frac{(g'_0 \cdot u)(\bar{v} \cdot g'_0)}{\|g'_0\|^2} \right) dV - \int_{\Sigma_{FS}} \mathfrak{S}\{(\bar{v} \cdot \nu) (u_+ \cdot [\rho^0]_+^+ g'_0)\} d\Sigma \\
& - \frac{1}{4\pi G} \int_{\mathbb{R}^3} \nabla S(u) \cdot \nabla S(\bar{v}) dV + \int_{\partial M} \mathfrak{S}\{\rho^0 (u \cdot g'_0) \bar{v} \cdot \nu\} d\Sigma
\end{aligned} \tag{13}$$

- \mathfrak{S} denotes symmetrisation in u and v ,

$$\tilde{s} = \nabla \rho^0 + \frac{g'_0(\rho^0)^2}{p^0 \gamma},$$

- σ_N is a regular scalar function which is equal to $-p^0$ in Ω^F and 0 outside of a small neighborhood of Ω^F
- \pm indicates limits from either side of the interface where the “+” side is chosen in the same direction as the unit normal vector ν to the interface
- along Σ_{FS} , ν is chosen to point from the fluid region to the solid region so that u_+ is the limit from the solid region, which is well defined since $u \in \mathcal{C}^0([0, T]; E)$

Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

- there exists $c > 0$ so that for all 2-tensors η_{ij}

$$c|\eta_{ij} + \eta_{ji}|^2 \leq (\Xi_{ijkl} - p^0 \delta_{ik} \delta_{jl}) \eta_{kl} \bar{\eta}_{ij} \quad (14)$$

in the solid region Ω_S

- $\Xi_{ijkl} \in L^\infty(M)$
- p^0 is piece-wise $W^{1,\infty}$ with discontinuities only on the boundary Σ_{FS} and is bounded away from zero
- $p^0 \in L^\infty(M)$ with p^0 bounded away from zero, and $\nabla p^0 \in L^\infty(U)$ for U a neighborhood of Σ_{FS}
- $g'_0 \in L^M(\tilde{X})$ with $\|g'_0\|$ bounded away from zero
- $\gamma \in L^\infty(\Omega^F)$ with γ bounded away from zero

Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

- there exists $c > 0$ so that for all 2-tensors η_{ij}

$$c|\eta_{ij} + \eta_{ji}|^2 \leq (\Xi_{ijkl} - p^0 \delta_{ik} \delta_{jl}) \eta_{kl} \bar{\eta}_{ij} \quad (14)$$

in the solid region Ω_S

- $\Xi_{ijkl} \in L^\infty(M)$
- p^0 is piece-wise $W^{1,\infty}$ with discontinuities only on the boundary Σ_{FS} and is bounded away from zero
- $p^0 \in L^\infty(M)$ with p^0 bounded away from zero, and $\nabla p^0 \in L^\infty(U)$ for U a neighborhood of Σ_{FS}
- $g'_0 \in L^M(\tilde{X})$ with $\|g'_0\|$ bounded away from zero
- $\gamma \in L^\infty(\Omega^F)$ with γ bounded away from zero

Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

- there exists $c > 0$ so that for all 2-tensors η_{ij}

$$c|\eta_{ij} + \eta_{ji}|^2 \leq (\Xi_{ijkl} - p^0 \delta_{ik} \delta_{jl}) \eta_{kl} \bar{\eta}_{ij} \quad (14)$$

in the solid region Ω_S

- $\Xi_{ijkl} \in L^\infty(M)$
- p^0 is piece-wise $W^{1,\infty}$ with discontinuities only on the boundary Σ_{FS} and is bounded away from zero
- $p^0 \in L^\infty(M)$ with p^0 bounded away from zero, and $\nabla p^0 \in L^\infty(U)$ for U a neighborhood of Σ_{FS}
- $g'_0 \in L^M(\tilde{X})$ with $\|g'_0\|$ bounded away from zero
- $\gamma \in L^\infty(\Omega^F)$ with γ bounded away from zero

Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

- there exists $c > 0$ so that for all 2-tensors η_{ij}

$$c|\eta_{ij} + \eta_{ji}|^2 \leq (\Xi_{ijkl} - p^0 \delta_{ik} \delta_{jl}) \eta_{kl} \bar{\eta}_{ij} \quad (14)$$

in the solid region Ω_S

- $\Xi_{ijkl} \in L^\infty(M)$
- p^0 is piece-wise $W^{1,\infty}$ with discontinuities only on the boundary Σ_{FS} and is bounded away from zero
- $p^0 \in L^\infty(M)$ with p^0 bounded away from zero, and $\nabla p^0 \in L^\infty(U)$ for U a neighborhood of Σ_{FS}
- $g'_0 \in L^M(\tilde{X})$ with $\|g'_0\|$ bounded away from zero
- $\gamma \in L^\infty(\Omega^F)$ with γ bounded away from zero

Terrestrial weak form; coercivity

with these assumptions a_2 is bounded on E and for $\|\tau^0\|_{L^\infty(\tilde{X})}$ sufficiently small, σ_N such that

$$\|\sigma_N\|_{L^\infty(\Omega^S)} \leq \|\tau_0\|_{L^\infty(\tilde{X})}, \text{ and } \|\nabla \sigma_N\|_{L^\infty(\Omega^S)} \leq \|\nabla p^0\|_{L^\infty(U)}$$

there exist $\alpha, \beta > 0$ such that

$$a_2(u, u) \geq \alpha \|u\|_E^2 - \beta \|u\|_H^2, \quad \forall u \in E \quad (15)$$