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Riesz projectors and acoustic mode decomposition

expanding u in acoustic modes: eigenfunctions of L11 corresponding to discrete
eigenvalues (by Proposition 1)
spectral theory on Krein spaces (Langer et al. [2008], Azizov and Iokhidov [1981]) and
Proposition 1 lead to resolution of the identity for L11 using its eigenfunctions
however, these eigenfunctions are not modes for the operator L; suppose λ ∈ ρ2, which is
outside of the essential spectrum of L (Proposition 2); using the Schur decomposition
(30), we have that

L(λ)

(
u
v

)
= 0

if and only if
S1(λ)u = 0, L−1

22 (λ)L21(λ)u = −v
thus, eigenvalues of L outside the essential spectrum and their corresponding modes
actually correspond to eigenfunctions of S1, and contain a component in Ker(T )
to develop a true expansion for L away from the essential spectrum we should use the
eigenfunctions of S1
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Riesz projectors and acoustic mode decomposition

assume secular stability: γ(a2) = 0 and A
1/2
2 is well defined on D(A2), with a nontrivial

Ker(A
1/2
2 ) coinciding with Ker(A2)

we let

B2 =

(
0 iA

1/2
2

iA
1/2
2 −2RΩ

)
, D(B2) = D(A2)×D(A2) (34)

it is immediate that iB2 is self adjoint on H ×H, equipped with the original inner
product:(
B2

(
u
v

)
,

(
u′

v′

))
= (iA

1/2
2 v, u′)H +(iA

1/2
2 u−2RΩv, v

′)H = −
((

u
v

)
, B2

(
u′

v′

))
(35)

we introduce (noting the minus sign)

L̃(λ) = B2 − λ Id =

(
−λ iA

1/2
2

iA
1/2
2 −λ− 2RΩ

)
and R̃(λ) = L̃(λ)−1 (36)
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Riesz projectors and acoustic mode decomposition

from an analysis of geostrophic modes Remark 4 , 0 /∈ ρ(L), so for λ ∈ ρ(L) we can invert
the previous equation to obtain

R̃(λ) = L̃(λ)−1 =

(
−λ−1(Id−A1/2

2 R(λ)A
1/2
2 ) −iA

1/2
2 R(λ)

−iR(λ)A
1/2
2 −λR(λ)

)
(37)

on the other hand, if λ ∈ ρ(L̃) we have an inverse

R̃(λ) =

(
R̃11(λ) R̃12(λ)

R̃12(λ) R̃22(λ)

)
(38)

the resolvents are related; if λ ̸= 0, R(λ) = −λ−1R̃22(λ)

the presence of geostrophic modes also imply that 0 /∈ ρ(L̃) and so we see that
ρ(L) = ρ(L̃); hence, the spectra are the same
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Riesz projectors and acoustic mode decomposition

suppose λ ∈ σdisc(L) = σdisc(L̃); a corresponding eigenfunction (u, v) ∈ H ×H satisfies

iA
1/2
2 v = λu, iA

1/2
2 u− 2RΩv = λv

restricting to acoustic modes, v = 0 is not possible since λ ̸= 0 (λ = 0 is an eigenvalue
but does not correspond with an acoustic mode)

we combine these formulae:

L(λ)v = 0, u = λ−1iA
1/2
2 v (39)

we introduce Riesz projectors onto the space of acoustic modes, which are the spectrum
of S1: let λ ∈ σ(S1) and Γλ be a contour surrounding λ and no other part of σ(B2); then
consider the standard formula for the projection onto the eigenspace of λ

P̃λ =
1

2πi

˛
Γλ

R̃(ω) dω
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Riesz projectors and acoustic mode decomposition

we further let πv be projection onto the v component and define Pλ = πvP̃λπ
∗
v ; using

(37),

Pλ = − λ

2πi

˛
Γλ

R(ω) dω

we can now use these projectors to define the projection onto (part of) the acoustic part
of the spectrum, which is

E =
∑

λ∈σ(S1)

Pλ

we conclude that the projection onto the eigenspace of λ for L̃ gives a corresponding
projection, by taking the v component as in (39), onto the space Ker(L(λ)) of an
acoustic mode

this projection E shows it is possible to express the acoustic part of the wavefield as a
sum of normal modes (apart from acoustic eigenvalues embedded in σ2)
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Riesz projectors and acoustic mode decomposition

using the above mentioned Riesz projectors, we obtain a partial spectral decomposition of
R̃22(λ):

R̃22(λ)|acoustic =
∑

ω∈σ(S1)

Pω

(ω − λ)

this induces a corresponding partial spectral decomposition of R(λ) from (37):

R(λ)|acoustic =
1

λ

∑
ω∈σ(S1)

Pω

(λ− ω)

(commonly used in computations)
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Inertia-gravity modes and essential spectrum

essential spectrum of L

because L−1
11 (λ) is compact and the Lij(λ) are bounded from Proposition 1, using

Proposition 2 we have that
σess(L) = σess(L22)

using the formula for L22 given in Remark 2 and Lemma 4, this further reduces to

σess(L) = σess
(
π2
(
F (λ) +N2ĝ′0ĝ

′T
0

)
π∗2
)

(40)

thus, referring to (14), we are led to consider the spectrum of

M(λ) = π2(λ
2 Id+2λRΩ +N2ĝ′0ĝ

′T
0 )π∗2 : Ker(T ) → Ker(T )

M.V. de Hoop Spectral analysis II October 2025 8 / 31



Inertia-gravity modes and essential spectrum

solutions u ∈ Ker(T ) of

∂2t u+ 2Ω× ∂tu+N2ĝ′0ĝ
′T
0 u = 0 (41)

are modes of M , referred to as inertia-gravity modes

restoring force of inertial modes is the Coriolis force: 2Ω× ∂t(ρ0u)

restoring force of gravity modes is the buoyancy: (∇ · ρ0u)g′0 = N2ĝ′0ĝ
′T
0 ρ0u
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Inertia-gravity modes and essential spectrum

P⊥
ξ = σp(π2) defined by (22), which is the projection onto the space orthogonal to ξ

for Ω ∈ R3 let Ωξ be the component of Ω in the direction ξ given by

Ωξ =
ξ · Ω
|ξ|

Definition 2

For x ∈M and ξ ∈ R3 \ {0}, let σpt(x, ξ) be the set of λ ∈ C such that

C3 ∋ η 7→ λ2P⊥
ξ η + 2λP⊥

ξ (Ω× P⊥
ξ η) +N2(ĝ′0 · P⊥

ξ η)P
⊥
ξ ĝ

′
0 (42)

has rank less than two (note that two is the largest possible rank due to P⊥
ξ ).
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Characterization of σpt(x, ξ)

Lemma 5

If λ ∈ σpt(x, ξ), then λ = 0 or

λ = ±i
√
4Ω2

ξ +N2|P⊥
ξ ĝ

′
0|2. (43)

Link to proof

if λ satisfies (43), then

λ2 = − 1

|ξ|2
(
4(Ω · ξ)2 +N2|ξ|2 −N2(ĝ′0 · ξ)2

)
︸ ︷︷ ︸

quadratic form in ξ

(46)

eigenvalues of the matrix corresponding to this quadratic form: N2 and

β± =
1

2

(
4|Ω|2 +N2 ±

√
(N2 + 4|Ω|2)2 − 16(Ω · ĝ′0)2N2

)
(47)
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Range of possible λ2, varying ξ

−1 times the interval between the min/max of these eigenvalues:

if N2 ≥ 0, then this range will be λ2 ∈ −[β−, β+] which leads to λ ∈ ±i[
√
β−,

√
β+]

if N2 < 0, then the range of possible values is λ2 ∈ −[N2, β+], which gives
λ ∈ [−

√
(−N2),

√
(−N2)] ∪ i[−

√
β+,

√
β+]

Lemma 6

Let β± be given by (47). Then

⋃
ξ∈R3\{0}

σpt(x, ξ) =
⋃

±∈{−1,1}

([
−
√
max(0,−N2),

√
max(0,−N2)

]
∪±i

[√
max(0, β−),

√
β+

])
(48)

Furthermore, this set contains
√
−N2.

M.V. de Hoop Spectral analysis II October 2025 12 / 31



Set (48) for x ∈ M fixed dashed region: boundary

ν

ω

λ = ν + iω

−β+

β+

−β−

β−

|P⊥
n ĝ

′
0|
√
N2

−|P⊥
n ĝ

′
0|
√
N2

(a) N2 ≥ 0

ν

ω

−β+

β+

−
√
−N2

√
−N2

(b) N2 < 0
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The essential spectrum

Theorem 1

For x ∈ ∂M , let n(x) denote the inward pointing unit normal vector. The essential spectrum
σess(L) is given by

σess(L) =

 ⋃
x∈M, ±∈{−1,1}

[
−
√

max(0,−N2),
√

max(0,−N2)
]
∪ ±i

[√
max(0, β−),

√
β+

]
⋃( ⋃

x∈∂M
i|P⊥

n ĝ
′
0|
[
−
√
max(0, N2),

√
max(0, N2)

])
. (49)

Proof:

Part 1 (⊃): Link to Part 1

Part 2 (⊂): Link to Part 2
Part 3 (Lemma 7): Link to Part 3
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Elements of the proof: interior

suppose that λ ∈ C is contained in σpt(x0, ξ0) such that x0 ∈M int; thus, there exists
nonzero η orthogonal to ξ0 such that

λ2Pξ0η + 2λPξ(Ω× Pξ0η) +N2(Pξ0 ĝ0 · Pξ0η)Pξ0 ĝ0 = 0

then, for any ϵ > 0, choose a neighborhood U ⊂M int of x0 such that at all x ∈ U

|λ2Pξ0η + 2λPξ0(Ω× Pξ0η) +N2(Pξ0 ĝ0 · Pξ0η)Pξ0 ĝ0| < ϵ

let ϕ ∈ C∞
c (U) be such that ∥ϕ∥L2(ρ0 dx) = 1 and consider

u(x) = ηϕ(x)eitx·ξ0

as t→ ∞, u converges to zero weakly
using the fact that ξ0 is orthogonal to η

π2(u)(x) = ϕ(x)eitx·ξ0η +O

(
1

t

)
Weyl sequence (even though such a sequence is normalized, its mass can move around
the Hilbert space so that it doesn’t overlap with any fixed finite part)
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Elements of the proof: boundary

introduce a certain system of PDEs, then show that this system satisfies the Lopatinskii
conditions Agmon et al. [1964] if and only if λ is in the complement of the right side of
(49)

when the Lopatinskii conditions are satisfied, the system is a Fredholm operator which
implies M(λ) is also Fredholm; therefore, in this case λ ∈ σess(L)

c

the Lopatinskii conditions fail if either the system is not elliptic in the interior, or at the
boundary
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Special cases of (48); upper bound on essential spectrum

if for some value of x we have Ω · ĝ0 = 0, then from (47) we have

β± = min(0, 4|Ω|2 +N2), max(0, 4|Ω|2 +N2)

also, for general points β+ ≤ 4|Ω|2 +N2; therefore, considering (49), we see that the part of
σess(L) along the imaginary axis must be contained in

i
[
−
√

4|Ω|2 +max(0, N2
sup),

√
4|Ω|2 +max(0, N2

sup)
]

on the other hand, directly from (49) we see that the part of σess(L) along the real axis must
be contained in [

−
√

max(0,−N2
inf),

√
max(0,−N2

inf)

]
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Full spectrum bound

Proposition 3 (Dyson and Schutz)

The spectrum σ(L) satisfies

1

σ(L) ⊆ iR ∪ {λ ∈ C : | Im(λ)| ≤ |Ω|};
2 while A2 is bounded below by γ(A2), λ ∈ σ(L) and λ /∈ iR,

|λ|2 ≤ max(0,−γ(A2)).
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Overview

ν

ω

λ = ν + iω
√

4|Ω|2 +max(0, N2
sup)

|Ω|

−|Ω|

√
max(0,−N2

inf)

max(0,−γ(A2))

S1

×
×

×

×

×

×

×

×

×

×

an illustration of the spectrum σ(L) after
Rogister and Valette [2009]

dark cross: must contain the essential
spectrum σess(L) (but may be larger)

full spectrum σ(L) is contained in the
union of the imaginary axis and region
surrounded by the dashed curve

crosses on the imaginary axis: eigenvalues,
which could also occur within the dashed
curve

red crosses: outside of the essential
spectrum, part of σ(S1) which is (part of)
the acoustic component of the spectrum

M.V. de Hoop Spectral analysis II October 2025 19 / 31



Encore: Hamiltonian

recall
s̃ = ∇ρ0 −

ρ0
c2
g′0 (78)

and the dynamic pressure
P = −c2[∇ · (ρ0u)− s̃ · u] (79)

or
P = −ρ0 [c2∇ · u+ g′0 · u] (80)

using that

s̃ · u =
s̃ · g′0
|g′0|2

(g′0 · u) =
N2

|g′0|2
(g′0 · (ρ0u)) (81)

as ∇ρ0 and g′0 must be parallel, we obtain

P = −c2
[
∇ · (ρ0u)−

N2

|g′0|2
(g′0 · (ρ0u))

]
(82)
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Hamiltonian

while introducing the particle velocity, v = ∂tu, equations (10) and

∇2Φ′ = −4πG∇ · (ρ0u) (⋆)

are equivalent to the system

∂tρ+∇ · (ρ0v) = 0, (83)

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0 − ρ0∇Φ′, (84)

∂tP = c2
[
∂tρ+

N2

|g′0|2
(g′0 · (ρ0v))

]
(85)

supplemented with (⋆)
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Hamiltonian

equivalent to the system in linearized hydrodynamics

∂tρ+∇ · (ρ0v) = 0, (86)

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0 − ρ0∇Φ′, (87)

∂tP + v · ∇P0 = c2[∂tρ+ v · ∇ρ0] (88)

as ∇P0 = −ρ0g′0 (in the Cowling approximation, one drops the term −ρ0∇Φ′) if u ∈ ker(T )
then P = 0 and

ρg′0 = −(∇ · (ρ0u))g′0 = −(s̃ · u)g′0 = −N2ĝ′0(ĝ
′
0 · ρ0u). (89)

then, (84) is seen to be equivalent to

∂tv + 2Ω× v +N2ĝ′0(ĝ
′
0 · u) = 0, Tu = 0

which is closely related to (41)
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Hamiltonian Poincaré operator

upon first introducing
ρ′ = N(ĝ′0 · u︸ ︷︷ ︸

u∥

) (90)

this equation can be written as the system

(∂t +A)

(
v
ρ′

)
= 0 with A =

(
2Ω× Nĝ′0

−Nĝ′T0 0

)
, T v = 0 (91)

in Colin de Verdière and Vidal [2024], this system is formed by expressing v in an orthogonal
basis where one of the basis vectors is ĝ′0; including the projectors

π′2

(
v
ρ′

)
=

(
π2v
ρ′

)
, (92)

the system takes the form

(∂t +H)

(
v
ρ′

)
= 0 with H = π′2Aπ

′
2 (93)
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[Dewberry et al 2021]

[Prat et al 2022]

Inertia gravity modes: Practice
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Model of terrestrial planets

bounded M ⊂ R3, smooth boundary ∂M

M divided into two regions:

ΩF (fluid outer core), annulus
ΩS (solid), two components — inner core (“ball”) and mantle (annulus)

ΣFS = ∂ΩF interface between the fluid and solid regions; two smooth “spheres”

u = u(t, x) ∈ R3 is displacement (as before)
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Model of terrestrial planets

equation of motion for the oscillations of a rotating elastic and self-gravitating planet:

ρ0[∂2t u+ 2 Ω× ∂tu] + ρ0u · ∇∇(Φ0 +Ψs) + ρ0∇S(u)−∇ · (ΛT 0
: ∇u) = 0 (1)

Ψs(x) := −1
2

(
Ω2x2 − (Ω · x)2

)
(centrifugal force) (2)

∆Φ0 = 4πGρ0 (reference gravitational potential) (3)

∆S(u) = −4π∇ · (ρ0u) (perturbation of the gravitational potential)

boundary conditions on ∂M :
ν · (ΛT 0

: ∇u)|∂M = 0

interface conditions at ΣFS :

[ν · (ΛT 0
: ∇u)]+− = −ν∇Σ · (p0[u]+−)− p0W [u]+−; [u · ν]+− = 0 on ΣFS

∇Σ· = surface divergence
W = Weingarten operator on the interface
[·]± = jump across ΣFS in the direction of the unit normal vector ν
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Model of terrestrial planets

g′0 := −∇(Φ0 +Ψs)

modified stiffness tensor: ΛT 0

ijkl = Ξijkl + T 0
ikδjl (4)

T 0 = initial static stress

Ξijkl ∈ L∞(X̃) = stiffness tensor of linearization of the constitutive function

initial hydrostatic stress: p0 = −1
3T

0

deviatoric part of the static stress in the solid region: τ0 = T 0 + p0Id

in the fluid region ΩF , we have

∇ · (ΛT 0
: ∇u) = ∇(κ∇ · u) +∇(ρ0u) · g′0 − (∇ · (ρ0u))g′0

using this formula, we see that (1) is equivalent to

ρ0[∂2t u+ 2 Ω× ∂tu] = ∇(κ∇ · u) +∇(ρ0u) · g′0 − (∇ · (ρ0u))g′0 +∇g′0 · ρ0u− ρ0∇S(u)
= ∇(κ∇ · u) +∇(ρ0u · g′0)− (∇ · (ρ0u))g′0 − ρ0∇S(u).
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Function spaces and well-posedness

H(Div,Ω, L2(∂Ω)) =
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω), u|∂Ω · ν ∈ L2(∂Ω)

}
; (5)

(u, v)H(Div,Ω,L2(∂Ω)) = ⟨u, v⟩L2(Ω) + ⟨∇ · u,∇ · v⟩L2(Ω)

+ ⟨u|∂Ω · ν, v|∂Ω · ν⟩L2(∂Ω)

(6)

furthermore
H0(Div,Ω) =

{
u ∈ H(Div,Ω) : u|∂Ω · ν = 0

}
(7)

and
H0(Div 0,Ω) =

{
u ∈ H(Div,Ω) : ∇ · u = 0, u|∂Ω · ν = 0

}
(8)

we can modify (1) to a weak form with domain given by the next definition
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Function spaces and well-posedness

Definition 3

We let

E =

u ∈ L2(M,ρ0 dx) :


u|ΩS

∈ H1(ΩS)

u|ΩF
∈ H

(
Div, ΩF , L

2(∂ΩF )
)

[u · ν]+− = 0 along ΣFS


(u, v)E := (u|ΩS , v|ΩS

)H1(ΩS)
+ (u|ΩF

, v|ΩF
)H(Div,ΩF , L2(∂ΩF )) .

(9)

we observe that

E equipped with the inner product (·, ·)E is a Hilbert space
the injective inclusion of E into H = L2(M,ρ0 dx) is continuous
E is dense in H = L2(M,ρ0 dx)

as a result, we have the setting of a Hilbert triple

E ↪→ H ↪→ E′

weak form
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Above: Conceptual geometry of a terrestrial planet

Right: Topography and crust-mantle interface  
of Mars using MOLA and gravity data

Terrestrial planet geometry
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Selected normal modes of Mars
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back Remark 2: No compact inverse

If we additionally assume that g′0 and ∇ρ0 are parallel, which is a requirement for
well-posedness of the system (1), and use the Brunt-Väisälä frequency N2 (see (9)), the proof
of Proposition 1 implies the following formulae

L12(λ) = π1
(
F (λ) +N2ĝ′0ĝ

′T
0 +∇Sρ0

)
π∗2, L22(λ) = π2

(
F (λ) +N2ĝ′0ĝ

′T
0 +∇Sρ0

)
π∗2,

L21(λ) = π2
(
F (λ) +N2ĝ′0ĝ

′T
0 +∇Sρ0

)
π∗1

(26)

where

ĝ′0 =
g′0
∥g′0∥

.

From these formulae and Lemma 4, L22(λ) cannot have a compact inverse. Thus by taking
u ∈ Ker(T ) we see that L(λ)−1 cannot be compact as observed earlier.
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back Remark 4: Geostrophic modes

For completeness of the characterization, we briefly present how the geostropic modes (see
[Dahlen and Tromp, 1999, Section 4.1.6]) appear in the analysis. Fluid motions which travel
along the level surfaces of ρ0 and preserve the density are generalized eigenfunctions of L, or
geostrophic modes, corresponding to λ = 0. They are necessarily solutions to the problem

s̃ · u = 0,
∇ · (ρ0u) = 0,
∇ · u|∂M = 0.

(31)

Note that if u ∈ H satisfies (31), then u ∈ H2 = Ker(T ). If φ ∈ H1(M) is such that

∇φ · (∇× s̃) = 0 (32)

and we define u by
u = ρ−1

0 ∇φ× s̃, (33)

then u satisfies the first and the second equations of (31) as

∇ · (∇φ× s̃) = s̃ · (∇×∇φ)−∇φ · (∇× s̃).
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back Remark 4: Geostrophic modes

Since we have also
∇ · (ρ−1

0 ∇φ× s̃) = (∇φ× s̃) · ∇ρ−1
0 ,

the boundary condition in (31) is equivalent to

(∇φ× s̃) · ∇ρ−1
0 |∂M = 0.

Assuming that g′0, ∇ρ0 and n are parallel on ∂M , which is required for well-posedness of the
system, this boundary condition is automatically satisfied.

The geostrophic modes form a infinite-dimensional subspace of H2. This is consistent with the
fact that the essential spectrum of L corresponds with the H2 component (i.e. L(0) fails to
be Fredholm because of an infinite dimensional kernel contained in H2).
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back Proof of Lemma 5

first, assume that P⊥
ξ ĝ

′
0 ̸= 0 and set

η = a P⊥
ξ ĝ

′
0 + b ξ × P⊥

ξ ĝ
′
0 (44)

where a and b are constants, not both equal to zero, to be determined; calculation shows

P⊥
ξ (Ω× P⊥

ξ (ξ × P⊥
ξ ĝ

′
0)) = P⊥

ξ (Ω× (ξ × P⊥
ξ ĝ

′
0))

= −|ξ|ΩξP
⊥
ξ ĝ

′
0

and

P⊥
ξ (Ω× P⊥

ξ ĝ
′
0) =

Ωξ

|ξ|
ξ × P⊥

ξ ĝ
′
0

if λ ∈ σpt(x, ξ) then for some a and b(
λ2a− 2λ|ξ|Ωξb+N2|P⊥

ξ ĝ0|2a
)
Pξ ĝ

′
0 +

(
λ2b+ 2λ

Ωξ

|ξ|
a

)
ξ × P⊥

ξ ĝ
′
0 = 0
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back Proof of Lemma 5

setting the two coefficients equal to zero, we see that either λ = 0 and a = 0 or

λ2 = −4Ω2
ξ −N2|P⊥

ξ ĝ
′
0|2 (45)

which completes the proof in this case

when P⊥
ξ ĝ

′
0 = 0, we choose arbitrary w orthogonal to ξ and start with

η = a w + b ξ × w

instead of (44); a similar calculation gives λ = 0 or (45) in this case, and so the lemma is
proven
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back Proof of Theorem 1 (Part 1)

we begin by proving the inclusion,

σess(L) ⊃
⋃

x∈M, ±∈{−1,1}

[
−
√

max(0,−N2),
√

max(0,−N2)
]
∪ ±i

[√
max(0, β−),

√
β+

]
=

⋃
(x,ξ)∈M×R3\{0}

σpt(x, ξ) (51)

suppose that λ ∈ C is contained in σpt(x0, ξ0) such that x0 ∈M int

there exists nonzero η orthogonal to ξ0 such that

λ2Pξ0η + 2λPξ(Ω× Pξ0η) +N2(Pξ0 ĝ
′
0 · Pξ0η)Pξ0 ĝ

′
0 = 0 (52)

for any ϵ > 0, choose a neighbourhood U ⊂M int of x0 such that at all x ∈ U

|λ2Pξ0η + 2λPξ0(Ω× Pξ0η) +N2(Pξ0 ĝ
′
0 · Pξ0η)Pξ0 ĝ

′
0| < ϵ

let ϕ ∈ C∞
c (U) be such that ∥ϕ∥L2(ρ0 dx) = 1 and consider

u(x) = ηϕ(x)eitx·ξ0
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back Proof of Theorem 1 (Part 1)

considering the Fourier transform, we can see that as t→ ∞, u converges to zero weakly

since π2 is a pseudodifferential operator with principal symbol given by (22), using the
fact that ξ0 is orthogonal to η, we have

π2(u)(x) = ϕ(x)eitx·ξ0η +O

(
1

t

)
for t sufficiently large ∥π2(u)∥L2(ρ0 dx)3 > C > 0 where C is a constant independent of t;
since π2 is continuous π2(u) converges weakly to zero as t→ ∞
let

v =
π2(u)

∥π2(u)∥H
∈ Ker(T ),

then

M(λ)v =
1

∥π2(u)∥H
π2(λ

2 Id+2λRΩ +N2ĝ′0ĝ
′T
0 )π2u

and the operator on the right side is a pseudodifferential operator with principal symbol
given by the map (42)
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back Proof of Theorem 1 (Part 1)

thus

M(λ)v =
1

∥π2(u)∥H

(
λ2Pξ0η+2λPξ0(Ω×Pξ0η)+N

2(Pξ0 ĝ
′
0·Pξ0η)Pξ0 ĝ

′
0

)
ϕ(x)eitx·ξ0+O

(
1

t

)
and so by taking t sufficiently large

∥M(λ)v∥L2(ρ0 dx)3 ≤ 2

∥π2(u)∥H
ϵ

since ϵ > 0 was arbitrary we see that M(λ)v converges to zero strongly and so v defines a
Weyl sequence; therefore λ ∈ σess(M) = σess(L), and this proves σpt(x0, ξ0) ⊂ σess(L)
for x0 ∈M int

since the essential spectrum is closed and (43) is a continuous function of x once ± is
chosen, for x0 ∈ ∂M we can take a limit from M int to show σpt(x0, ξ0) ⊂ σess(L); this
completes the proof of (51)
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back Proof of Theorem 1 (Part 2)

To complete the proof, we will introduce a certain system of PDEs which satisfies the
Lopatinskii conditions if and only if λ is in the complement of the right side of (49).

Lopatinskii satisfied ⇒ system is a Fredholm operator ⇒M(λ) is Fredholm, λ ∈ σess(L)
c

the Lopatinskii conditions fail if the system is not elliptic in the interior or at the boundary

interior ellipticity: equivalent to

λ ∈

 ⋃
(x,ξ)∈M×R3\{0}

σpt(x, ξ)

c

(53)

we have already shown that failure of this condition leads to existence of a Weyl sequence

assuming interior ellipticity, we will show boundary ellipticity: equivalent to

λ ∈

( ⋃
x∈∂M

i|P⊥
n ĝ

′
0|
[
−
√
max(0, N2),

√
max(0, N2)

])c

we will show that failure of this condition also leads to existence of a Weyl sequence
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back Proof of Theorem 1 (Part 2)

Let us begin now deriving the PDE system:

for any v ∈ H, consider the decomposition given by Lemma 2:

v = w + T ∗φ

where w ∈ Ker(T ) and φ ∈ H1(M)

decompose w according the standard Helmholtz decomposition as

w = ∇× (ρ0wv) +∇φv

where φv ∈ H1(M) and the vector potential ρ0wv is in the space

HCurl,0(M) = {u ∈ L2(ρ0 dx) : ∇× u ∈ L2(ρ0 dx), n× u|∂M = 0},

while also satisfying
∇ · (ρ0wv) = 0

given that M is a “ball”, a unique such decomposition exists (see [Alberti et al., 2019,
Section 3])
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back Proof of Theorem 1 (Part 2)

set ρ0zv = ∇φv which must then satisfy ∇× (ρ0zv) = 0
w ∈ Ker(T ) is equivalent to

∇ · (ρ0zv) +
g′0
c2

· ∇ × (ρ0wv) +
ρ0g

′
0

c2
· zv = 0, n · zv|∂M = 0

suppose that u ∈ Ker(T ) satisfies M(λ)u = f
as described above for v, there will be wu and zu such that

u = ∇× (ρ0wu) + ρ0zu

where ∇× (ρ0zu) = 0 (55)

∇ · (ρ0wu) = 0 (56)

∇ · (ρ0zu) +
g′0
c2

· ∇ × (ρ0wu) +
ρ0g

′
0

c2
· zu = 0 (57)

n · zu|∂M = 0 (58)

n× wu|∂M = 0 (59)
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back Proof of Theorem 1 (Part 2)

the same equations (55)–(59) will hold for wv and zv constructed above for arbitrary v:
let V (λ) = λ2I + 2λRΩ +N2ĝ′0ĝ

′T
0 and

v = V (λ)u

so that f = π2v; (55)-(59) become

∇× (ρ0wv) + ρ0zv + T ∗φv = V (λ)(∇× (ρ0wu) + ρ0zu) (60)

f = ∇× (ρ0wv) + ρ0zv (61)

to make the system elliptic, we will extend it with several potentials ψu, ψv and φ̃; setting
these equal to zero, we find that the following system is satisfied:
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back Proof of Theorem 1 (Part 2)



g′T
0

c2 ∇× ρ0 ∇ · ρ0 + ρ0g
′T
0

c2 0 0 0 0 0 0
0 ∇× ρ0 ∇ρ0 0 0 0 0 0

∇ · ρ0 0 0 0 0 0 0 0

0 0 0
g′T
0

c2 ∇× ρ0 ∇ · ρ0 + ρ0g
′T
0

c2 0 0 0
0 0 0 0 ∇× ρ0 ∇ρ0 0 0
0 0 0 ∇ · ρ0 0 0 0 0

V (λ)∇× ρ0 V (λ)ρ0 0 −∇× ρ0 −ρ0I 0 −T ∗ 0
0 0 0 ∇× ρ0 ρ0I 0 0 −T ∗





wu

zu
ψu

wv

zv
ψv

φv

φ̃


=



0
0
0
0
0
0
0
f


(62)

n× wu|∂M = n× wv|∂M = 0, n · zu|∂M = n · zv|∂M = ψu|∂M = ψv|∂M = 0
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back Proof of Theorem 1 (Part 2)

in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when λ is
in the complement of the right side of (49)

therefore, for such λ and by when acting on H1(M)16 the corresponding operator is
Fredholm

considering that whenever M(λ)u = f we have (62), we therefore conclude that M(λ) is
also Fredholm in this case

thus these λ ∈ σess(M)c = σess(L)
c which shows the right inclusion for (49)
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back Proof of Theorem 1 (Part 3)

key technical step in the proof of Theorem 1:

Lemma 7

Suppose that λ is in the complement of the right side of (49). Then the system (62) satisfies
the Lopatinskii conditions. Furthermore, suppose

λ ∈

( ⋃
x∈∂M

i|Pnĝ
′
0|
[
−
√
max(0, N2),

√
max(0, N2)

])⋂ ⋃
(x,ξ)∈M×R3\{0}

σpt(x, ξ)

c

. (63)

Then λ ∈ σess(M).

Link to proof.
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back Lemma 7 Proof

let the operator on the left side of (62) be labeled M(λ)

we collect the relevant operators for the boundary conditions in one large matrix

B =



n× 0 0 0 0 0 0 0
0 nT 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 n× 0 0 0 0
0 0 0 0 nT 0 0 0
0 0 0 0 0 1 0 0

 (64)
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back Lemma 7 Proof

the principal symbol of M(λ) is

σp(M(λ))(., ξ) = iρ0



g′T0
c2
ξ× ξT 0 0 0 0 0 0
0 ξ× ξ 0 0 0 0 0
ξT 0 0 0 0 0 0 0

0 0 0
g′T0
c2
ξ× ξT 0 0 0

0 0 0 0 ξ× ξ 0 0
0 0 0 ξT 0 0 0 0

V (λ)ξ× 0 0 −ξ× 0 0 ξ 0
0 0 0 ξ× 0 0 0 ξ


(65)

this is invertible if V (λ) is invertible when projected onto the space orthogonal to ξ:
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back Lemma 7 Proof

we define
Vξ⊥ξ⊥(λ) = P⊥

ξ V (λ)P⊥
ξ , Vξξ⊥(λ) = PξV (λ)P⊥

ξ

where Pξ is the projection onto the span of ξ and P⊥
ξ the projection onto the space orthogonal

to ξ

condition (53) is equivalent to invertibility of Ṽξ(λ) = Vξ⊥ξ⊥(λ) + Pξ at all points
(x, ξ) ∈M × (R3 \ {0})

we will sometimes suppress the dependence on λ to ease the notation
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back Lemma 7 Proof
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back Lemma 7 Proof

when it exists, the inverse of σp(M(λ)) is given by

σp(M(λ))(., ξ)−1 = − i

ρ0|ξ|2



0 0 ξ 0 0 0 −ξ × Ṽ −1
ξ −ξ × Ṽ −1

ξ

ξ −ξ× 0 0 0 0 −ξ g
′T
0
c2
P⊥
ξ Ṽ

−1
ξ −ξ g

′T
0
c2
P⊥
ξ Ṽ

−1
ξ

0 ξT 0 0 0 0 0 0
0 0 0 0 0 ξ 0 −ξ×
0 0 0 ξ −ξ× 0 0 −ξ g

′T
0
c2
P⊥
ξ

0 0 0 0 ξT 0 0 0

0 0 0 0 0 0 ξT (I − Vξξ⊥)Ṽ
−1
ξ −ξTVξξ⊥ Ṽ

−1
ξ P⊥

ξ

0 0 0 0 0 0 0 ξT


(66)
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back Lemma 7 Proof

Lopatinskii condition in boundary normal coordinates (x̃, x3) where we freeze all
coefficients at the central point where the Euclidean metric is the identity and write n for
the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system

σp(M)(., ξ̃ + nD3)U = 0, BU = η (67)

for any non-zero real ξ̃ ∈ R3 orthogonal to n and η ∈ C8

assuming λ ∈ σpt((x̃, x
3), n)c, the ODE (67) is equivalent to

dU

dx3
= −σp(M)

(
.,
n

i

)−1
σp(M)(., ξ̃)︸ ︷︷ ︸

K

U

and checking the condition amounts to analyzing the eigenvalues and eigenvectors of the
matrix K on the right side of this equation

M.V. de Hoop Spectral analysis II October 2025 20 / 36



back Lemma 7 Proof

Lopatinskii condition in boundary normal coordinates (x̃, x3) where we freeze all
coefficients at the central point where the Euclidean metric is the identity and write n for
the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system

σp(M)(., ξ̃ + nD3)U = 0, BU = η (67)

for any non-zero real ξ̃ ∈ R3 orthogonal to n and η ∈ C8

assuming λ ∈ σpt((x̃, x
3), n)c, the ODE (67) is equivalent to

dU

dx3
= −σp(M)

(
.,
n

i

)−1
σp(M)(., ξ̃)︸ ︷︷ ︸

K

U

and checking the condition amounts to analyzing the eigenvalues and eigenvectors of the
matrix K on the right side of this equation

M.V. de Hoop Spectral analysis II October 2025 20 / 36



back Lemma 7 Proof

because of (66), when the ellipticity condition is satisfied at the boundary K cannot have
any eigenvalues with zero real part

considerable calculation shows that the eigenvalues of K are ±|ξ̃| each with algebraic
multiplicity 7 and

α± = i|ξ̃|
(
nTVnn⊥ Ṽ

−1
n ξ̂ + ξ̂T Ṽ −1

n Vn⊥nn

∓
√

(nTVnn⊥ Ṽ
−1
n ξ̂ − ξ̂T Ṽ −1

n Vn⊥nn)2 − 4(ξ̂Ṽ −1
n ξ̂)nT (Vnn − Vnn⊥ Ṽ

−1
n Vn⊥n)n

)
/2

with multiplicity 1, or possibly ±|ξ̃| with multiplicity 8 if α± = ±|ξ̃|
(provided (53) holds, α± must have non-zero real part by the ellipticity condition)
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(provided (53) holds, α± must have non-zero real part by the ellipticity condition)
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back Lemma 7 Proof

we introduce the notation

ξ̂ =
ξ̃

|ξ̃|
, n⊥ = ξ̂ × n

eigenvectors for ±|ξ̃| are

U1,± =



n± iξ̂
0
0
0
0
0
0
0


, U2,± =



0

n± iξ̂
0
0
0
0
0
0


, U3,± =



0
n⊥
±i
0
0
0
0
0


, U4,± =



0
0
0

n± iξ̂
0
0
0
0


, U5,± =



0
0
0
0

n± iξ̂
0
0
0


, U6,± =



0
0
0
0
n⊥
±i
0
0


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back Lemma 7 Proof

... and there are either eigenvectors or generalized eigenvectors for ±|ξ̃| of the form

U7,± =



0
0
0
n⊥

a7,±n+ b7,±ξ̂
0
±i
∓i


for some constants a7,±, b7,± ∈ C
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back Lemma 7 Proof

... finally, either eigenvectors for α± or generalized eigenvectors for ±|ξ̃| are given by

U8,± =



2(ξ̂T Ṽ −1
n ξ̂)n⊥ + a8,±n+ b8,±ξ̂

c8,±n+ d8,±ξ̂
0
0
0
0

(nTVnn⊥ Ṽ
−1
n ξ̂ − ξ̂T Ṽ −1

n Vn⊥nn)

±
√

(nTVnn⊥ Ṽ
−1
n ξ̂ − ξ̂T Ṽ −1

n Vn⊥nn)2 − 4(ξ̂T Ṽ −1
n ξ̂)nT (Vnn − Vnn⊥ Ṽ

−1
n Vn⊥n)n

0


for some constants a8,±, b8,±, c8,±, d8,± ∈ C
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back Lemma 7 Proof

for the Lopatinskii condition we must restrict to the generalized eigenspace corresponding
to eigenvalues with negative real part. Thus, existence of a unique bounded solution of
(67) is equivalent to a unique solution (c1, . . . , c8) ∈ C8 of the system

B

8∑
j=1

cjUj,− = η

using (64) and the equations for Uj,− above we see that this linear system will have a

unique solution if and only if ξ̂T Ṽ −1
n ξ̂ ̸= 0; calculations show

Ṽ −1
n = Pn+

1

λ4 + λ2(N2|P⊥
n ĝ

′
0|2 + 4Ω2

n)

(
λ2P⊥

n − 2λΩnRn+N2|P⊥
n ĝ

′
0|2P⊥

n P
⊥
(P⊥

n ĝ′0)
P⊥
n

)
and so, since ξ̂ is orthogonal to n,

ξ̂T Ṽ −1
n ξ̂ =

λ2 +N2|P⊥
n ĝ

′
0|2ξ̂TP⊥

(P⊥
n ĝ′0)

ξ̂

λ4 + λ2(N2|P⊥
n ĝ

′
0|2 + 4Ω2

n)
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back Lemma 7 Proof

therefore, for λ satisfying the interior ellipticity condition (53), the Lopatinskii condition
fails if and only if

λ2 = −N2|P⊥
n ĝ

′
0|2ξ̂TP⊥

(P⊥
n ĝ′0)

ξ̂

if |P⊥
n ĝ

′
0| ̸= 0, then ξ̂TP⊥

(P⊥
n ĝ′0)

ξ̂ takes all values in [0, 1] while if |P⊥
n ĝ

′
0| = 0 then the right

side of this equation is always equal zero

therefore, we see that the range of possible values of λ satisfying this equation is
|P⊥

n ĝ
′
0|[−

√
−N2,

√
−N2]

if N2 < 0, this is already contained in the interior part of the essential spectrum given by
the first line of (49)

if N2 ≥ 0, this interval will not be contained in the interior part of the essential spectrum
and is given, for a single x ∈ ∂M , by the second line in (49) (see Figure 1(a))
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′
0| ̸= 0, then ξ̂TP⊥

(P⊥
n ĝ′0)
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back Lemma 7 Proof

it remains to show that given (63), λ ∈ σess(M); we will do this by showing the existence
of a Weyl sequence

by the calculations above, we see that when the Lopatinskii condition fails, for some ξ̃
orthogonal to n if we set ζ = U8,− − ib8,−U1,− − id8,−U2,−, then we have

Bζ = 0

since ζ is composed of eigenvectors for eigenvalues with negative real part, there will be a
corresponding non-zero bounded solution Uζ of the ODE in (67) with Uζ(ξ̃, x

3 = 0) = ζ

given ϵ > 0, let us choose a neighborhood Ω of x sufficiently small so that all coefficients
of operator M vary by at most ϵ within the neighborhood, and let ϕ ∈ C∞

c (Ω)

then we set
U(x) = ϕ(x)eitx̃·ξ̃Uζ(ξ̃, tx

3) (68)

which is in H1(M)16
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back Lemma 7 Proof

with this choice of U we have

MU = M|x=0U + ϵO(t)

= itϕ(x)σp(M)|x=0(ξ̃ + nD3)U + ϵO(t) +O(1)

= ϵO(t) +O(1) as t→ ∞ with norm H1(M)16

now let wu and zu be the corresponding components of U. Since ξ̂T Ṽ −1
n ξ̂ = 0, in the

case when α− ̸= −|ξ̃| these are explicitly given by

wu = et(x
3α−+ix̃·ξ̃)(a8,−n+ b8,−ξ̂)− ib8,−e

t(−x3|ξ̃|+ix̃·ξ̃)(n− iξ̂),

zu = et(x
3α−+ix̃·ξ̃)(c8,−n+ d8,−ξ̂)− id8,−e

t(−x3|ξ̃|+ix̃·ξ̃)(n− iξ̂)
(69)

in the case that α− = −|ξ̃| and U8,− is a generalized eigenvector, these are replaced by

wu = et(−x3|ξ̃|+ix̃·ξ̃)(a8,− − ib8,−)n+ tx3et(−x3|ξ̃|+ix̃·ξ̃)(n− iξ̂),

zu = et(−x3|ξ̃|+ix̃·ξ̃)(c8,− − id8,−)n+ tx3et(−x3|ξ̃|+ix̃·ξ̃)(n− iξ̂)
(70)
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back Lemma 7 Proof

considering the first component of (62), we have ∇× (ρ0wu) + ρ0zu ∈ D(T ) and

T (∇× (ρ0wu) + ρ0zu) = ϵO(t) +O(1).

by the construction of π2 described just above Lemma 3, we have

π2(∇× (ρ0wu) + ρ0zu) = ∇× (ρ0wu) + ρ0zu + ϵO(t) +O(1)

with the H norm

we set u = π2(∇× (ρ0wu) + ρ0zu) ∈ Ker(T )

using the last and second to last lines in (62) and the fact that most components of U
are zero, we obtain

M(λ)u = ϵO(t) +O(1)
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back Lemma 7 Proof

to construct a Weyl sequence, we need to normalize u, and so we consider
∥∇ × (ρ0wu) + ρ0zu∥H
in the case U8,− is not a generalized eigenvector, using (69) we see

∇× (ρ0wu) + ρ0zu = tet(x
3α−+ix̃·ξ̃)

(
−α−

|ξ̃|
b8,− + ia8,−

)
|ξ̃|n⊥

+ tet(−x3|ξ̃|+ix̃·ξ̃)ib8,−|ξ̃|n⊥ +O(1)

since, from the calculation constructing U8,−, we know that a8,− and b8,− cannot
simultaneously vanish, from this last formula we see that

∥u∥H = ∥∇ × (ρ0wu) + ρ0zu∥H + ϵO(t) +O(t) ≈ O(t)

(by this notation, we mean that ∥u∥H is bounded below by Ct as t→ ∞ for some
constant C > 0)
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back Lemma 7 Proof

a similar calculation beginning with (70) proves the same result when U8,− is a
generalized eigenvector

therefore
M(λ)

u

∥u∥H
= ϵO(1) +O(t−1)

and so by choosing t sufficiently large we can obtain a sequence vϵ = u/∥u∥H ∈ Ker(T )
with H-norm equal to one and such that M(λ)vϵ → 0 as ϵ→ 0

because of the oscillatory nature of (68), it is also clear that vϵ converges weakly to zero,
meaning it is a Weyl sequence and so λ ∈ σess(M)

this completes the proof
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back Terrestrial weak form

we consider the weak form of (1), which can be formulated in the setting of E ↪→ H ↪→ E′ on
(0, T ) for T > 0 as follows:

u is a weak solution of (1) if u ∈ C0([0, T ];E), u̇ ∈ C0([0, T ];H) and

∀v ∈ E :
d

dt
(∂tu, v)H + (2RΩ∂tu, v)H + a2(u, v) = 0 in D′(0, T )

(12)
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back Terrestrial weak form

a2
(
u, v
)
:=

ˆ
ΩS

(
(ΛT 0

: ∇u) : ∇v + σN∇u : ∇vT − σN (∇ · u)(∇ · v)
)
dV

+

ˆ
ΩS

(
−S

{
(g′0 · u)(v · ∇ρ0)

}
+S

{
− (∇σN + ρ0g′0) · u(∇ · v)

}
+S

{
(∇σN − ρ0g′0) · ∇u · v

})
dV

+

ˆ
ΩF

( p0γ

(ρ0)2

(
∇ · (ρ0u)− s̃ · u

)(
∇ · (ρ0v)− s̃ · v

)
− s̃ · g′0

(g′0 · u)(v · g′0)
∥g′0∥2

)
dV −

ˆ
ΣFS

S
{
(v · ν)

(
u+ · [ρ0]+−g′0

)}
dΣ

− 1

4πG

ˆ
R3

∇S(u) · ∇S(v) dV +

ˆ
∂M

S{ρ0(u · g′0)v · ν} dΣ

(13)
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back Terrestrial weak form

S denotes symmetrisation in u and v,

s̃ = ∇ρ0 + g′0(ρ
0)2

p0γ
,

σN is a regular scalar function which is equal to −p0 in ΩF and 0 outside of a small
neighborhood of ΩF

± indicates limits from either side of the interface where the “+” side is chosen in the
same direction as the unit normal vector ν to the interface

along ΣFS , ν is chosen to point from the fluid region to the solid region so that u+ is the
limit from the solid region, which is well defined since u ∈ C0([0, T ];E)
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back Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

there exists c > 0 so that for all 2-tensors ηij

c|ηij + ηji|2 ≤ (Ξijkl − p0δikδjl)ηklηij (14)

in the solid region ΩS

Ξijkl ∈ L∞(M)

ρ0 is piece-wise W 1,∞ with discontinuities only on the boundary ΣFS and is bounded
away from zero

p0 ∈ L∞(M) with p0 bounded away from zero, and ∇p0 ∈ L∞(U) for U a neighborhood
of ΣFS

g′0 ∈ LM (X̃) with ∥g′0∥ bounded away from zero

γ ∈ L∞(ΩF ) with γ bounded away from zero
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back Terrestrial weak form; coercivity

with these assumptions a2 is bounded on E and for ∥τ0∥L∞(X̃) sufficiently small, σN such that

∥σN∥L∞(ΩS) ≤ ∥τ0∥L∞(X̃), and ∥∇σN∥L∞(ΩS) ≤ ∥∇p0∥L∞(U)

there exist α, β > 0 such that

a2(u, u) ≥ α∥u∥2E − β∥u∥2H , ∀u ∈ E (15)
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