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Riesz projectors and acoustic mode decomposition

@ expanding u in acoustic modes: eigenfunctions of L1 corresponding to discrete
eigenvalues (by Proposition 1)

@ spectral theory on Krein spaces (Langer et al. [2008], Azizov and lokhidov [1981]) and
Proposition 1 lead to resolution of the identity for Li; using its eigenfunctions
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Riesz projectors and acoustic mode decomposition

expanding u in acoustic modes: eigenfunctions of L1 corresponding to discrete
eigenvalues (by Proposition 1)

spectral theory on Krein spaces (Langer et al. [2008], Azizov and lokhidov [1981]) and
Proposition 1 lead to resolution of the identity for Li; using its eigenfunctions

however, these eigenfunctions are not modes for the operator L; suppose A € pa, which is
outside of the essential spectrum of L (Proposition 2); using the Schur decomposition
(30), we have that

if and only if
Si(Nu=0, Ly (N\)La(MNu=—v
thus, eigenvalues of L outside the essential spectrum and their corresponding modes
actually correspond to eigenfunctions of S, and contain a component in Ker(7')
to develop a true expansion for L away from the essential spectrum we should use the
eigenfunctions of S;
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Riesz projectors and acoustic mode decomposition

@ assume secular stability: y(a2) = 0 and Aé/Q is well defined on D(Az), with a nontrivial
Ker(A%?) coinciding with Ker(As)

@ we let
0 iA)?
By = , D(Bs) = D(As2) x D(A 34
>= 42 _apg (B2) = D(A2) x D(A2) (34)
@ it is immediate that iB> is self adjoint on H x H, equipped with the original inner
product:

<32 (Z) , (;‘:)) = (1AY 20, ) g+ (1AY *u— 2R, o)y = — ((Z) B (Z;)) (35)

@ we introduce (noting the minus sign)

XA iAy? ~

S o Fret
L(\) = B, AId-(iA%Q _A_2RQ> and R(\) = L()\) (36)
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Riesz projectors and acoustic mode decomposition

e from an analysis of geostrophic modes , 0 ¢ p(L), so for A € p(L) we can invert
the previous equation to obtain

N - (—Al(ld ~AyPR()AY?) —iAéﬂR(A)) (37)

_ -1 _
R =LA = —iR(N)AL? “AR()\)

M.V. de Hoop Spectral analysis I October 2025 4/31



Riesz projectors and acoustic mode decomposition

e from an analysis of geostrophic modes , 0 ¢ p(L), so for A € p(L) we can invert
the previous equation to obtain

N - (—Al(ld ~AyPR()AY?) —iAéﬂR(A)) (37)

_ -1 _
R =LA = —iR(N)AL? “AR()\)

@ on the other hand, if A € p(L) we have an inverse

~  [Riu(\) Rix(N)
B = <§12(/\) Em@)) (39

@ the resolvents are related; if A # 0, R(\) = —A‘légg()\)

@ the presence of geostrophic modes also imply that 0 ¢ p(Z) and so we see that

p(L) = p(L); hence, the spectra are the same
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Riesz projectors and acoustic mode decomposition

@ suppose A € ggisc(L) = gdisc(i); a corresponding eigenfunction (u,v) € H x H satisfies
iAé/zv = \u, 1A§/2u —2Rqu = Mv

@ restricting to acoustic modes, v = 0 is not possible since A # 0 (A = 0 is an eigenvalue
but does not correspond with an acoustic mode)
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Riesz projectors and acoustic mode decomposition

@ suppose A € ggisc(L) = gdisc(i); a corresponding eigenfunction (u,v) € H x H satisfies
iAé/zv = \u, 1A§/2u —2Rqu = Mv

@ restricting to acoustic modes, v = 0 is not possible since A # 0 (A = 0 is an eigenvalue
but does not correspond with an acoustic mode)
@ we combine these formulae:

LAv=0, u=A\"id}? (39)
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Riesz projectors and acoustic mode decomposition

@ suppose A € ggisc(L) = gdisc(i); a corresponding eigenfunction (u,v) € H x H satisfies
iAé/zv = \u, 1A§/2u —2Rqu = Mv

@ restricting to acoustic modes, v = 0 is not possible since A # 0 (A = 0 is an eigenvalue
but does not correspond with an acoustic mode)
@ we combine these formulae:

LAv=0, u=A\"id}? (39)

@ we introduce Riesz projectors onto the space of acoustic modes, which are the spectrum
of Si: let A € 0(S1) and T') be a contour surrounding A and no other part of o(B>); then
consider the standard formula for the projection onto the eigenspace of A

~ 1 ~

Py =— R(w) d
A 21 T (W) v
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Riesz projectors and acoustic mode decomposition

o we further let m, be projection onto the v component and define Py = 771,]5)\%
(37),

* . H
*, using

A
Py=—— R d
A 211 I (W) @

@ we can now use these projectors to define the projection onto (part of) the acoustic part
of the spectrum, which is
E = Z P,

A€c(S1)

@ we conclude that the projection onto the eigenspace of A for L gives a corresponding
projection, by taking the v component as in (39), onto the space Ker(L(\)) of an
acoustic mode

@ this projection E shows it is possible to express the acoustic part of the wavefield as a
sum of normal modes (apart from acoustic eigenvalues embedded in )
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Riesz projectors and acoustic mode decomposition

@ using the above mentioned Riesz projectors, we obtain a partial spectral decomposition of
Raa(N):

EQQ ()\) ‘acoustic = Z

weo(St) (w B )\>

o this induces a corresponding partial spectral decomposition of R(\) from (37):

P,
A —w)

> =

R(/\) ’acoustic -
wea(S1)

(commonly used in computations)
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Inertia-gravity modes and essential spectrum

essential spectrum of L

o because Li;'(\) is compact and the L;;()\) are bounded from Proposition 1, using
Proposition 2 we have that

Oess (L) = Uess(LQQ)

@ using the formula for Loy given in Remark 2 and Lemma 4, this further reduces to
Uess(L) = Oess (772 (F()‘) + N2§6Q(I)T) 77;) (40)
e thus, referring to (14), we are led to consider the spectrum of

M(X) = mo(AN21d +2X\Rq + N2ghgi5 )3« Ker(T) — Ker(T)
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Inertia-gravity modes and essential spectrum

e solutions u € Ker(T') of
OFu + 2Q x dyu + =0

are modes of M, referred to as inertia-gravity modes

o restoring force of inertial modes is the Coriolis force: 22 x 0;(pou)

@ restoring force of gravity modes is the : (V- pou)gh = N2g496t pou
M.V. de Hoop Spectral analysis I October 2025
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Inertia-gravity modes and essential spectrum

° Pg = op(m2) defined by (22), which is the projection onto the space orthogonal to ¢
o for Q € R? let )¢ be the component of €2 in the direction £ given by
_ &0

Q
ST

Definition 2

For z € M and £ € R?\ {0}, let opt(x, &) be the set of A € C such that

C3sn— A2P§n + 2AP§(Q X Pgn) + N2(g), - Pgn)ngg (42)

has rank less than two (note that two is the largest possible rank due to Pé).

M.V. de Hoop Spectral analysis I October 2025 10/31



Characterization of o, (z, &)

If X € op(z,€), then A =0 or

A= ii\/4§z§ + N2|PLghJ2. (43)
if \ satisfies (43), then
1 .
N = =i (42 + NP - N2(5h ) (46)
quadratic form in &
eigenvalues of the matrix corresponding to this quadratic form: N? and
1
Pr =35 <4Q|2 +N?+ \/(NQ +4|Q[2)% — 16(Q2 - gg)2N2> (47)
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Range of possible \?, varying &

—1 times the interval between the min/max of these eigenvalues:

e if N2 >0, then this range will be A2 € —[5_, 3,] which leads to A\ € +i[\/B_, /5]
e if N2 <0, then the range of possible values is \> € —[N?2, 3,], which gives

A€ [-V/(=N?), V(=N Ui[—/Bs, /B4]
T

Let 5+ be given by (47). Then

U opt(x,€) = U < [—\/maX(O, —N2), y/max(0, —NQ)} Ui [\/max(o,ﬂ_), \/B:} >

£eR3\{0} +e{-1,1}
(48)

Furthermore, this set contains v/ —N?2.
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Set (48) for x € M fixed dashed region: boundary

ey AW
N -I1 B+ -1 B+
H BCE
+ [PV e p—
® > v } { > v
+ 1PV
4 B
1 s 1 s

(n is the inward normal of OM)
(a) N2 >0 (b) N2 <0
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The essential spectrum

For x € OM, let n(x) denote the inward pointing unit normal vector. The essential spectrum
Oess(L) is given by

Gess(L) = U [— /max(0, —N?), /max(0, —N?)] U+ [\/m , \/E}

zeM, £e{-1,1}

U( U ilPla [—\/maX(O,NQ),\/maX(O,NQ)]>. (49)

x€EOM

Proof:

Part 1 (D):
° Part1(2) e Part 3 (Lemma 7):
e Part 2 (Q):
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Elements of the proof: interior
@ suppose that A € C is contained in o, (z9,&p) such that ¢ € M; thus, there exists
nonzero n orthogonal to &y such that

N Peyn + 2APe (9 x Peyn) + N?(Pgydo - Peyn) PeoGo = 0

@ then, for any € > 0, choose a neighborhood U C M™t of zo such that at all z € U
|)‘2P§077 + 2)‘P§o (Q X Pﬁon) + N2(P§0g0 : Pgon)P§0§o| <€

o let ¢ € C°(U) be such that [|¢]|12(,0 q2) = 1 and consider

u(z) = no(a)e"®

as t — 0o, u converges to zero weakly
@ using the fact that &; is orthogonal to

ma(u)(z) = p(z)e™n + O G)

Weyl sequence (even though such a sequence is normalized, its mass can move around
the Hilbert space so that it doesn't overlap with any fixed finite part)
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Elements of the proof: boundary

@ introduce a certain system of PDEs, then show that this system satisfies the Lopatinskii
conditions Agmon et al. [1964] if and only if A is in the complement of the right side of
(49)

@ when the Lopatinskii conditions are satisfied, the system is a Fredholm operator which
implies M (\) is also Fredholm; therefore, in this case A € o¢ss(L)°

o the Lopatinskii conditions fail if either the system is not elliptic in the interior, or at the
boundary
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Special cases of (48); upper bound on essential spectrum

if for some value of = we have Q- go = 0, then from (47) we have
B+ = min(0,4|Q|* + N?), max(0,4|Q* + N?)

also, for general points 3, < 4|Q|? + N?; therefore, considering (49), we see that the part of
0ess(L) along the imaginary axis must be contained in

i[9 + max(0, N2,), (/41012 + max(0, NZ,)|

on the other hand, directly from (49) we see that the part of o.ss(L) along the real axis must

be contained in
[—\/max((), N2, \/max N2, }
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Full spectrum bound

Proposition 3 (Dyson and Schutz)

The spectrum o (L) satisfies

o
o(L) CiIRU{A € C : |Im(N)| < |Q[};

@ while Ay is bounded below by y(Asz), A € o(L) and X\ ¢ iR,

])\|2 < max(0, —y(Az)).
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Overview

an illustration of the spectrum o (L) after

A Rogister and Valette [2009]
@ dark cross: must contain the essential
A=y 1 \/4|Q‘2 max(0, Nop) spectrum ocss(L) (but may be larger)
Q| v/max(0, —Ni) o full spectrum o (L) is contained in the

. Q/ max(0, —y(As)) union of the imaginary axis and region
| \‘/ . surrounded by the dashed curve
1 7

@ crosses on the imaginary axis: eigenvalues,
o ’ which could also occur within the dashed
-9 curve
S @ red crosses: outside of the essential

spectrum, part of o(S1) which is (part of)
the acoustic component of the spectrum
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Encore: Hamiltonian

recall

~ £0
§=Vpo— 6796

and the dynamic pressure
P =~V - (pou) — 5 - u]

or
P =—po [V utgh-u
using that
_ 595 N?
S-u= g( ‘u) = ﬁ(gf) “(pou))
90| |9

as Vpo and g, must be parallel, we obtain

2 N2
P=—c"|V-(pou) — 5(90 - (pow))
’90’
M.V. de Hoop Spectral analysis I October 2025
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Hamiltonian

while introducing the particle velocity, v = d;u, equations (10) and
V20 = —47GV - (pou)
are equivalent to the system

op+ V- (pv) = 0,

9 (pov) +2Q x (pov) = —VP + pgy — poV P,
2 N2
WP = ¢ |9+ 5590 (pov))
|90
supplemented with (%)
M.V. de Hoop Spectral analysis I October 2025
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Hamiltonian

equivalent to the system in linearized hydrodynamics

p+V - (pov) = 0, (86)
I(pov) + 22 x (pov) = =V P + pgj — po VP, (87)
P +v-VPy = 0yp+v-Vpo) (88)

as VPy = —pogy (in the Cowling approximation, one drops the term —poV®') if u € ker(T')
then P =0 and

pgo = —(V - (pow))gy = —(3 - u)gy = —N?35(do - pou). (89)
then, (84) is seen to be equivalent to
O +2Q x v+ N2Go(gh-u) =0, Tu=

which is closely related to (41)
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Hamiltonian Poincaré operator

upon first introducing
p=N(gu) (90)

this equation can be written as the system

v . . . 200 x Ng[l) o
(at—l—A)(p,)—O WIthA_(—NQéT 0 , Tv=0 (91)

in Colin de Verdiere and Vidal [2024], this system is formed by expressing v in an orthogonal
basis where one of the basis vectors is §(; including the projectors

w0 )=(7), 2

@+m<§>20me:@M5 (93)

the system takes the form
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Inertia gravity modes: Practice

w/Qqyn = 0.889 W/Qqyn = 0.892 w/Qqyn = 0.896 W/Qqyn = 0.902

107!
1072

[Dewberry et al 2021]

r2po[§|?

[Prat et al 2022]
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Model of terrestrial planets

bounded M C R3, smooth boundary OM
M divided into two regions:

e Qp (fluid outer core), annulus
e Qg (solid), two components — inner core (“ball") and mantle (annulus)

Yrs = 0N interface between the fluid and solid regions; two smooth “spheres’

u = u(t,z) € R? is displacement (as before)
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Model of terrestrial planets

equation of motion for the oscillations of a rotating elastic and self-gravitating planet:

P°[0%u + 2 Q x ] + pPu- V(20 + ¥°) + p°VS(u) — V- (AT : Vu) = 0 (1)

Ui (z) = —1 (QQ$2 — (- :1:)2) (centrifugal force) (2)
AP = 47Gp° (reference gravitational potential) (3)
AS(u) = =47V - (p"u) (perturbation of the gravitational potential)

boundary conditions on OM: ,
v- (AT - Vu)|oar =0
interface conditions at X rg:

v (AT V)t = -V u]t) — pP"Wult; [u-v]t =0on Spg
e V*. = surface divergence
o W = Weingarten operator on the interface
o [|* = jump across Y g in the direction of the unit normal vector v
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Model of terrestrial planets

o=~V (@+ 1)
0
modified stiffness tensor: AiTjkl = Ejjk + 1}%53‘1 (4)

TO = initial static stress

Eijki € L*°(X) = stiffness tensor of linearization of the constitutive function
initial hydrostatic stress: p? = —%TO

e 6 o o

deviatoric part of the static stress in the solid region: 70 = T° + p°Id
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Model of terrestrial planets

o=~V (@+ 1)
0
modified stiffness tensor: AiTjkl = Ejjk + 1}%53‘1 (4)

TO = initial static stress

Eijki € L*°(X) = stiffness tensor of linearization of the constitutive function

e o o

initial hydrostatic stress: p? = —%TO
o deviatoric part of the static stress in the solid region: 70 = 79 4 p°Id
in the fluid region Qr, we have

V(AT Vu) = V(Y - u) + V(o) - gh — (V- (0"u))gf
using this formula, we see that (1) is equivalent to

PP[07u+2 Q x O] = V(kV - u) + V(p"u) - gy — (V- (0°u))gh + Vg - p'u — p"VS(u)
= V(K ) + V(o gh) — (V- (2*u)gh — PV S(w).
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Function spaces and well-posedness

H(Div,Q, L*(09)) = {u € L*(Q) : V-u € L*(Q), u|yq-v € L*(00)}; (5)
(u, V) H(Div,0,12(00)) = (W V) r2(Q) (V- 4, V- v)12(q) (6)
+ (ulgq - v vlag V) L2(a0)
furthermore
Hy(Div, Q) = {u € H(Div,Q) : ulyg, - v =0} (7)
and
Ho(Div0,Q) = {u € H(Div,Q) : V-u=0, uly, -v=0} (8)

we can modify (1) to a weak form with domain given by the next definition
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Function spaces and well-posedness

Definition 3
We let

U|QS € Hl(Qs)
E=QueL*(M,p° dz): { ulo, € H(Div, Qp, L*(9QF))
[u-v]T =0 along Yrs

(u,v)E = (U|QSaU\QS)H1(QS) + (u’QF’U‘QF)H(DiV,QF,LQ(aQF)) :

we observe that

e E equipped with the inner product (-,)g is a Hilbert space
e the injective inclusion of E into H = L?(M, p° d z) is continuous
e Eisdensein H=L*(M,p° dx)

as a result, we have the setting of a Hilbert triple

E— H<E
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Terrestrial planet geometry

xS

oX = oxSuoaxF

oxF

sFS _ xCMB | 5ICB | s FS
x=05uafuxuax

Above: Conceptual geometry of a terrestrial planet

Right: Topography and crust-mantle interface
of Mars using MOLA and gravity data

Q
sk )

(b) Crust-mantle interface
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Selected normal modes of Mars

[ I = o
- - [ (=
(@) 151 (ay) 154
i L e
i [ [
(by) VS(u) of 151 (by) VS(u) of 152 (b3) VS(u) of 153 (bg) VS(u) of 154 (bs) VS(u) of 155 (bg) VS(u) of 156
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Remark 2: No compact inverse

If we additionally assume that g, and Vp are parallel, which is a requirement for
well-posedness of the system (1), and use the Brunt-Viisild frequency N2 (see (9)), the proof
of Proposition 1 implies the following formulae

Lia(A) = m1 (F(N) + N2g036" + VSpo) w5, Laa(N) = m2 (F(A) + N?goa6" + VSpo) 73,
Lo1(A) = ma (F(X) + N?3od0” + VSpo) 77
(26)

where ,

A/ 90
9o = .
gl

From these formulae and Lemma 4, Laa(A) cannot have a compact inverse. Thus by taking
u € Ker(T) we see that L(\)~! cannot be compact as observed earlier.
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Remark 4: Geostrophic modes

For completeness of the characterization, we briefly present how the geostropic modes (see
[Dahlen and Tromp, 1999, Section 4.1.6]) appear in the analysis. Fluid motions which travel
along the level surfaces of py and preserve the density are generalized eigenfunctions of L, or
geostrophic modes, corresponding to A = 0. They are necessarily solutions to the problem

s-u =0,
V- (pou) =0, (31)
A\ u|aM = 0.
Note that if u € H satisfies (31), then u € Hy = Ker(T). If ¢ € H'(M) is such that
Ve (Vx3)=0 (32)
and we define u by
u = py Vi x 3, (33)
then u satisfies the first and the second equations of (31) as

V- (Vex35)=5-(VxVp)—Vp-(Vx3).
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Remark 4: Geostrophic modes

Since we have also
V- (pg 'V x3) = (Ve x3)-Vpy ',

the boundary condition in (31) is equivalent to
(Vo x §) - Vpo_l‘aM =0.

Assuming that g, Vo and n are parallel on M, which is required for well-posedness of the
system, this boundary condition is automatically satisfied.

The geostrophic modes form a infinite-dimensional subspace of Hs. This is consistent with the
fact that the essential spectrum of L corresponds with the Hy component (i.e. L(0) fails to
be Fredholm because of an infinite dimensional kernel contained in Hy).
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Proof of Lemma 5

o first, assume that ng{) # 0 and set
n=a Pgy+b&x P (44)
where a and b are constants, not both equal to zero, to be determined; calculation shows
Pe-(Q x Pg-(€ x Perigp)) = Pe- (2 x (€ x P gp))
= —[¢[Q% P gf

and
0

Pe(Q = Pedo) = 1

& x P
o if A € op(x,€) then for some a and b

Q
(A% — 2A[€]Qeb + NﬂPjgoPa) Peio + (AQb + 2A|;|a> Ex Pigp=0
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Proof of Lemma 5

setting the two coefficients equal to zero, we see that either A\=0 and a =0 or
A = —40F — N?|Pg- ol (45)

which completes the proof in this case

when ngg = 0, we choose arbitrary w orthogonal to ¢ and start with
n=aw+b&xw

instead of (44); a similar calculation gives A = 0 or (45) in this case, and so the lemma is
proven []
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Proof of Theorem 1 (Part 1)

we begin by proving the inclusion,

Oess(L) D U [—\/maX(O, —N2), /max(0, —NQ)] U +i [\/maX(O, B-), \/E}

zeM, te{-1,1}

= U opt(2,€) (51)

(z,£)e M xR3\{0}

@ suppose that A € C is contained in oy (z0,&p) such that ¢ € Mint
@ there exists nonzero 7 orthogonal to &y such that

)‘2P§077 + QAPS(Q X P&on) + NZ(P&)QE) ) Pfon)Piogé) =0 (52)
e for any € > 0, choose a neighbourhood U C M of x( such that at all x € U
|>‘2P§077 + 2)‘P§0 (@ x Pﬁon) + N2(P§0g6 ’ Pﬁon)Pﬁog& <€
o let ¢ € C2°(U) be such that [|¢]|12(,0 qz) = 1 and consider
u(a) = ne(x)e"
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Proof of Theorem 1 (Part 1)

considering the Fourier transform, we can see that as t — oo, u converges to zero weakly
@ since my is a pseudodifferential operator with principal symbol given by (22), using the
fact that & is orthogonal to 7, we have

ma(u)(x) = ¢(2)e"™n + O <1>

for ¢ sufficiently large ||m2(u)||£2(po az)3 > C > 0 where C'is a constant independent of ¢;
since 7y is continuous 7o (u) converges weakly to zero as t — oo

let ( )
o lU
v=———"— € Ker(T),
72 (w) || a
then 1
Mo = s ma(A 1d +20Ra + N?gogil )mou
|72 (w)||

and the operator on the right side is a pseudodifferential operator with principal symbol
given by the map (42)
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Proof of Theorem 1 (Part 1)

thus

1

MO = el

. ) . 1
<A2P£o77+2>\Pso(Q><Pson)+N2(Psogé'Pgon)Pso%)¢(x)em 40 (t>

and so by taking ¢ sufficiently large

< 2
< —€
72 (u) |

since € > 0 was arbitrary we see that M (\)v converges to zero strongly and so v defines a
Weyl sequence; therefore A € 0¢ss(M) = 0ess(L), and this proves oy (0, &) C Tess(L)
for xg € M™

since the essential spectrum is closed and (43) is a continuous function of = once =+ is
chosen, for zg € M we can take a limit from M to show oyt (w0, &) C ess(L); this
completes the proof of (51)

IM (Aol L2(pg da)
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Proof of Theorem 1 (Part 2)

To complete the proof, we will introduce a certain system of PDEs which satisfies the
Lopatinskii conditions if and only if X is in the complement of the right side of (49).
o Lopatinskii satisfied = system is a Fredholm operator = M () is Fredholm, A € o¢gs(L)¢
@ the Lopatinskii conditions fail if the system is not elliptic in the interior or at the
@ interior ellipticity: equivalent to

C

A€ U opt(x,§) (53)

(z,£)eM xR3\{0}

we have already shown that failure of this condition leads to existence of a Weyl sequence

@ assuming interior ellipticity, we will show : equivalent to
&
A€ < U i| P gl [—\/maX(O,NQ),\/maX(O,NQ)})
x€OM

we will show that failure of this condition also leads to existence of a Weyl sequence
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Proof of Theorem 1 (Part 2)

Let us begin now deriving the PDE system:
e for any v € H, consider the decomposition given by Lemma 2:

v=w+T"p

where w € Ker(T) and ¢ € H' (M)
@ decompose w according the standard Helmholtz decomposition as

w =V X (powy) + Vo,
where o, € H'(M) and the vector potential pow, is in the space
Heuio(M) ={u € L*(pg dz) : V xu € L*(po dz), n X uloar = 0},

while also satisfying
V- (pva) =0

@ given that M is a "ball”, a unique such decomposition exists (see [Alberti et al., 2019,
Section 3])
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Proof of Theorem 1 (Part 2)

@ set pozy, = Vi, which must then satisfy V x (pgz,) =0
e w € Ker(T) is equivalent to

g POy
V'(Pozv)+;g'VX(Powv)+ 620'21):0, n'zv|8M:0

@ suppose that u € Ker(7T') satisfies M(A\)u = f
@ as described above for v, there will be w, and z, such that

u=V X (powy) + pozu

where V x (pozy) =0
V- (powu) =0
g/ /
V‘(pozu)—i-c—g‘Vx (powu)—i-T‘zu:O
n - zulon =0
n X Wylopr =0
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Proof of Theorem 1 (Part 2)

e the same equations (55)—(59) will hold for w, and z, constructed above for arbitrary v:
let V(\) = A2L + 2ARq, + N2g,¢T and

v=V(Nu
so that f = mav; (55)-(59) become
V x (p()wv) + pozy + T 0y = V(/\)(V X (Powu) + p()zu) (60)
f =V x (powy) + pozy (61)

@ to make the system elliptic, we will extend it with several potentials ¥, 1, and @; setting
these equal to zero, we find that the following system is satisfied:
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Proof of Theorem 1 (Part 2)

GV xpy Vepot 2B 0 0 0 0 0 0\ [w 0
0 V X po Yoo 0 0 0 0 0 Zu 0

V- o 0 0 0 0 0 0 0 . 0

0 0 0 %.Vxp Vepo+2% 0o 0 o0 |[|w]|_]|0

0 0 0 0 V X po Voo O 0 Zu 0

0 0 0 V- po 0 0 0 0 (2 0
VIOV xpo V(Ao 0 —Vxpo —pol 0 -1 0 ||® 0
0 0 0 v X po pol 0 0 -T¢) \¢ f

—~
()]
N

~

n X Wyloar = n X wylop =0, n-2ulom =1 2olom = Yulomr = Yolonr =0
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Proof of Theorem 1 (Part 2)

@ in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when X is
in the complement of the right side of (49)
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Proof of Theorem 1 (Part 2)

@ in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when X is
in the complement of the right side of (49)
o therefore, for such A and by when acting on H'(M)!® the corresponding operator is

Fredholm
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Proof of Theorem 1 (Part 2)

@ in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when X is
in the complement of the right side of (49)

o therefore, for such A and by when acting on H'(M)!® the corresponding operator is
Fredholm

e considering that whenever M (A\)u = f we have (62), we therefore conclude that M ()) is
also Fredholm in this case
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Proof of Theorem 1 (Part 2)

in Lemma 7, we show that the system (62) satisfies the Lopatinskii conditions when A is
in the complement of the right side of (49)

therefore, for such A and by when acting on H'(M)!® the corresponding operator is
Fredholm

considering that whenever M (A)u = f we have (62), we therefore conclude that M ()) is
also Fredholm in this case

thus these A € 0¢s5(M)¢ = 0s5(L)¢ which shows the right inclusion for (49)
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Proof of Theorem 1 (Part 3)

key technical step in the proof of Theorem 1:

Suppose that A is in the complement of the right side of (49). Then the system (62) satisfies
the Lopatinskii conditions. Furthermore, suppose

Cc

A€ ( U ilPagol [—\/max(O,N2),\/maX(O,NQ)]> N U ope(,6) | . (63)

x€OM (z,£)eM xR3\{0}

Then \ € 0ess(M).
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Lemma 7 Proof

o let the operator on the left side of (62) be labeled 777())
@ we collect the relevant operators for the boundary conditions in one large matrix

nx 0 0 0 0 000
o »n7 0 0 0 000
0O 0 1 0 0 000
B =
B 0 0 0 nx 0 00 O (64)
0 0 0 0 »T 000
0O 0 0 0O 0 100
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Lemma 7 Proof

@ the principal symbol of 171(\) is

Bew 0 0 0 000
C2
0 Ex €0 0 000
¢ 0 0 0 0 000
'+

MON(.. €) = i 0 0 0 %ex ¢80 0 0 65
ap(M(N)(-,€) = ipo 0 0 0 S0 ix £0 0 (65)

0 00 ¢ 0 000

VINEx 0 0 —=€&x 0 0 ¢ 0

0 0 0 & 0 00 ¢

o this is invertible if V() is invertible when projected onto the space orthogonal to &:
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Lemma 7 Proof

we define
Vere, (\) = PEVNPE, Vee, (M) = PV(N) P

where P is the projection onto the span of £ and Pg} the projection onto the space orthogonal
to &
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Lemma 7 Proof

we define
VfJ.fJ_ ()‘) = P§J_V<)‘)P§J_’ VéEJ_ ()‘) = Pév(/\)PgL
where P is the projection onto the span of £ and Pj the projection onto the space orthogonal
to &
e condition (53) is equivalent to invertibility of 175()\) = Ve e, (A) + P¢ at all points
(z,€) € M x (R*\ {0})
we will sometimes suppress the dependence on \ to ease the notation
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Lemma 7 Proof

@ when it exists, the inverse of o,(1711())) is given by

0 0 €0 0 0 —§><‘7§71 —&ExV, !

€ —x 00 0 0 €GPV el ply!

0 & 00 0 0 0 0
ap(m(x))(.,g)—lz—% oo n e X )

WP lo 0 0 ¢ —ex 0 0 —C P

0 0 00 € o0 0 0_

0 0 00 0 0 &=V, )Vi! —€TVee, Vi'PH

0O 0 00 0 0 0 g
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Lemma 7 Proof

o Lopatinskii condition in boundary normal coordinates (z,2%) where we freeze all
coefficients at the central point where the Euclidean metric is the identity and write n for
the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system
op(M) (., € +nD3)U =0, BU =1 (67)

for any non-zero real Ee R? orthogonal to n and n € C8
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Lemma 7 Proof

o Lopatinskii condition in boundary normal coordinates (z,2%) where we freeze all
coefficients at the central point where the Euclidean metric is the identity and write n for
the inward pointing unit normal vector (WLOG the central point is the origin):

there is a unique non-zero bounded solution of the system
op(M) (., € +nD3)U =0, BU =1 (67)

for any non-zero real Ee R? orthogonal to n and n € C8

e assuming A € o, ((Z,23),n)¢, the ODE (67) is equivalent to

% = —a,(m) (., %)_1 oy (M), E) U

K

and checking the condition amounts to analyzing the eigenvalues and eigenvectors of the
matrix K on the right side of this equation
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Lemma 7 Proof

@ because of (66), when the ellipticity condition is satisfied at the boundary K cannot have
any eigenvalues with zero real part
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Lemma 7 Proof

@ because of (66), when the ellipticity condition is satisfied at the boundary K cannot have
any eigenvalues with zero real part

@ considerable calculation shows that the eigenvalues of K are i|g| each with algebraic
multiplicity 7 and

e = il€] (0 Van, Vi '€ +£T17;1vmn

:F\/n Vnn fTV lvnﬂzn) (fV 5) T(Va Vmuv 1Vnﬂt) )/2

with multiplicity 1, or possibly i]§| with multiplicity 8 if ax = i\§|
(provided (53) holds, ax must have non-zero real part by the ellipticity condition)
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Lemma 7 Proof

@ we introduce the notation

Uy +

é = = nyg = é Xn
€]
@ eigenvectors for j:|g\ are

n =+ i 0 0 0 0 0

0 n =+ i€ ny 0 0 0

0 0 +i 0 0 0

B 0 B 0 o | n+i B 0 _]0
= 0 , U+ = 0 , Uz + = uE Uyt = 0 , Us,+ = ntié | Us,+ = ny
0 0 0 0 0 +17

0 0 0 0 0 0

0 0 0 0 0 0
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Lemma 7 Proof

. and there are either eigenvectors or generalized eigenvectors for i]a of the form

o O O

ny
U7 :I: pu— b ~
az+n + by +&

0
+i
Fi

for some constants a7 4, b7+ € C
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Lemma 7 Proof

. finally, either eigenvectors for a4 or generalized eigenvectors for :|:|£| are given by

2(§7V, 1 )n . + ag an + by +€
cg+n + dg +&
0

0
Us+ = 0
0

(n™ Voan, f/_lf fof_anlnn)

/(0T Vi, Vi '€= €7V Vi an)? — A(ETV 0T (Vi — Vin, Vi Vo)
0

for some constants ag +, bg +, cg +, dg+ € C
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Lemma 7 Proof

o for the Lopatinskii condition we must restrict to the generalized eigenspace corresponding
to eigenvalues with negative real part. Thus, existence of a unique bounded solution of
(67) is equivalent to a unique solution (ci, ..., cs) € C® of the system

8
B Z CjUj,,
j=1

e using (64) and the equations for U; _ above we see that this linear system will have a
unique solution if and only if €7V ~1¢ £ 0; calculations show
1

7-1_ p
Vi = )\4—}—)\2(]\72\}”— ‘2_}_492)

2pl 2| pla 1
()\ Pl — 202 Ry + NP6 2P Pl

PL>

and so, since 5 is orthogonal to n,

)‘2+N2’PL9 | gTPPL )
X4+ XN2(N2|PLgl|> +4Q2)

V=
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Lemma 7 Proof

o therefore, for \ satisfying the interior ellipticity condition (53), the Lopatinskii condition
fails if and only if R R
N = = NPy gol*€" Pipygr€
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Lemma 7 Proof

o therefore, for \ satisfying the interior ellipticity condition (53), the Lopatinskii condition
fails if and only if

A= —N2|P;‘Q6|2§:TP(JED#%)§A

o if |[PLgh| # 0, then éTPéug,)é takes all values in [0, 1] while if |[P;-g)| = 0 then the right
n J0
side of this equation is always equal zero
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Lemma 7 Proof

o therefore, for \ satisfying the interior ellipticity condition (53), the Lopatinskii condition
fails if and only if R R
N = = NPy gol*€" Pipygr€

o if |[PLgh| # 0, then éTPéug,)é takes all values in [0, 1] while if |[P;-g)| = 0 then the right
n J0
side of this equation is always equal zero

@ therefore, we see that the range of possible values of A satisfying this equation is

[P gol[=vV=N?, V=N
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Lemma 7 Proof

therefore, for A satisfying the interior ellipticity condition (53), the Lopatinskii condition
fails if and only if R R
N = = NPy gol*€" Pipygr€

if |[Pgh| # 0, then éTPéug,)é takes all values in [0, 1] while if |[P;-g)| = 0 then the right
n J0
side of this equation is always equal zero

therefore, we see that the range of possible values of A satisfying this equation is
BLgh |- V= N2, V=)

if N2 < 0, this is already contained in the interior part of the essential spectrum given by
the first line of (49)

if N2 > 0, this interval will not be contained in the interior part of the essential spectrum
and is given, for a single x € OM, by the second line in (49) (see Figure 1(a))
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Lemma 7 Proof

it remains to show that given (63), \ € o.ss(M); we will do this by showing the existence
of a Weyl sequence

by the calculations above, we see that when the Lopatinskii condition fails, for some E
orthogonal to n if we set ( = Ug _ —ibg Uy — —idg _Us —, then we have

BC=0
since ( is composed of eigenvectors for eigenvalues with negative real part, there will be a

corresponding non-zero bounded solution U of the ODE in (67) with Ug(g, 23 =0)=

given € > 0, let us choose a neighborhood (2 of x sufficiently small so that all coefficients
of operator 111 vary by at most ¢ within the neighborhood, and let ¢ € C2°(Q)

then we set L
U(x) = d(x)e™ U(E, ta®) (68)

which is in H'(M)16
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Lemma 7 Proof
@ with this choice of U we have
MU = M|y_oU + €O(2)
= it¢(x)op(1M) =0 (€ + nD3)U + O(t) + O(1)
=€O(t) +O(1) as t — oo with norm H1(M)1¢

@ now let w, and 2, be the corresponding components of U. Since fTVn_lé =0, in the
case when a_ # —|¢| these are explicitly given by

Wy = et(z?’a_—f—if'g) (a&_n 4 bg,_é) _ Z’b& e t(—a3|€]|+iz-€) ( Z{)

- . (69)
2y = (@’ a—+iz-e) (cg,—n +dg _§) —idg e H—a?[€]+iT-) (n z{)

@ in the case that a_ = —|§~| and Ug _ is a generalized eigenvector, these are replaced by
Wy, = et(—z3|§|+z‘§.§)(a&_ — ibg,_)n + tadet= 2 [€l+i7¢) (n —i€), (70)

0 = T EREO (0 g yn 1 BT (i)
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Lemma 7 Proof

considering the first component of (62), we have V X (pow,,) + pozy € D(T) and
T(V x (powu) + pozu) = €O(t) + O(1).
by the construction of 7o described just above Lemma 3, we have
m2(V X (powy) + pozu) =V X (powu) + pozu + €O(t) + O(1)

with the H norm
we set u = ma(V X (powy) + pozu) € Ker(T)

using the last and second to last lines in (62) and the fact that most components of U
are zero, we obtain
M(MN)u = eO(t) + O(1)
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Lemma 7 Proof

to construct a Weyl sequence, we need to normalize u, and so we consider
|V x (powy) + pozullu
in the case Usg _ is not a generalized eigenvector, using (69) we see

~ o_ ~
V x (powy) + pozu = tetl@a—+iTe) <_§|b&_ + m&—) €n.

+ et O 5 |E]ny + O(1)

since, from the calculation constructing Us _, we know that ag _ and bg _ cannot
simultaneously vanish, from this last formula we see that

ullg = [V x (powu) + pozullir + €O(t) + O(t) = O(t)

(by this notation, we mean that ||u||z is bounded below by Ct as t — oo for some
constant C' > 0)
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Lemma 7 Proof

@ a similar calculation beginning with (70) proves the same result when Usg _ is a
generalized eigenvector

o therefore

u
[l

M(A)

and so by choosing ¢ sufficiently large we can obtain a sequence ve = u/||u||g € Ker(T)
with H-norm equal to one and such that M(A)v. — 0 ase— 0

=eO(1) +O@t™

@ because of the oscillatory nature of (68), it is also clear that v, converges weakly to zero,
meaning it is a Weyl sequence and so A\ € g¢s5(M)

this completes the proof [J
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Terrestrial weak form

we consider the weak form of (1), which can be formulated in the setting of E < H < FE’ on
(0, T) for T' > 0 as follows:

u is a weak solution of (1) if u € C°([0,T); E),u € €°([0,T); H) and

d 12
YveE: a(ﬁtu,v)H + (2RO, v) g + az(u,v) = 0 in D'(0,7) 12)

M.V. de Hoop Spectral analysis I October 2025 32/36



Terrestrial weak form

az (u, v) ::/QS <(AT0 L V) 1 VT + onVau: Vil — on(V - u)(V -@)) dv
[ (-89} + S~ (on + ) -u(v -9)
+&{(Von — p°g}) - Vu~§}> %
+/QF <(Z?’;Y2 (V- ("w) =5 u) (V- (') = 5-7)

_ §_g6(90-u)(v'g())> dV — /EFSG{(U. ,,><U+ . [po]jg()) }dg

(13)

96112

——— [ VS(u)-VS@)dV +/ S{p(u-gh)v-v}dx
4G R3 oM
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Terrestrial weak form

G denotes symmetrisation in v and v,

/¢ 0\2
VpoJrgo(p) ’

3=
Oy

o is a regular scalar function which is equal to —p° in Q and 0 outside of a small
neighborhood of QF

+ indicates limits from either side of the interface where the “+" side is chosen in the
same direction as the unit normal vector v to the interface

along g, v is chosen to point from the fluid region to the solid region so that u. is the
limit from the solid region, which is well defined since u € C°([0,7]; E)
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Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

@ there exists ¢ > 0 so that for all 2-tensors 7;;
c[nij +n5il* < Eiju — p05ik5jl)77kzﬁij (14)

in the solid region Qg
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Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.
@ there exists ¢ > 0 so that for all 2-tensors 7;;
c|nij +n5il® < (Zijur — p05ik5jl)77kzﬁij (14)
in the solid region Qg
) Ez]kl c LOO(M)
o p¥ is piece-wise W1 with discontinuities only on the boundary X g and is bounded
away from zero
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Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

@ there exists ¢ > 0 so that for all 2-tensors 7;;
c[nij +n5il* < Eiju — p05ik5jl)77kzﬁij (14)

in the solid region Qg

) Ez]kl c LOO(M)

o p¥ is piece-wise W1 with discontinuities only on the boundary X g and is bounded
away from zero

o p? € L>°(M) with p° bounded away from zero, and Vp° € L>(U) for U a neighborhood
of ©F9

o gy € LM(X) with ||| bounded away from zero
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Terrestrial weak form

For the weak form to be well-posed we make the following assumptions.

@ there exists ¢ > 0 so that for all 2-tensors 7;;
c[nij +n5il* < Eiju — p05ik5jl)77kzﬁij (14)

in the solid region Qg

) Ez]kl c LOO(M)

o p¥ is piece-wise W1 with discontinuities only on the boundary X g and is bounded
away from zero

o p? € L>°(M) with p° bounded away from zero, and Vp° € L>(U) for U a neighborhood
of ©F9

o gy € LM(X) with ||| bounded away from zero
v € L>®(QF) with v bounded away from zero
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Terrestrial weak form; coercivity
with these assumptions as is bounded on E and for HTOHLOO(X) sufficiently small, o such that

lon oo (@sy < 70l o), and [[Von|pe sy < IVP°l Lo (1)
there exist «, 8 > 0 such that

az(u,u) > allulf = Blluly, Yue E (15)
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