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Recall from the first lecture

The acousto-gravitational system of equations (equation (11) in the first lecture)

∂2
t (ρ0u) + 2Ω× ∂t(ρ0u) = ∇[c2 (∇ · (ρ0u)− s̃ · u)]− (∇ · (ρ0u))g′0 − ρ0∇S(ρ0u). (1)

The equation comes together with the free-surface boundary condition

[∇ · u]|∂M = 0.

So far we have assumed the planet to be artificially truncated so that c2 > 0.

In this lecture we let the sound speed c go zero at ∂M . We will see that to the leading order
the equation becomes a wave equation for a Riemannian metric which is singular at ∂M .
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Extracting the Laplacian

neglecting the Corriolis term and the lower-order terms the acousto-gravitational system
becomes

∂2
t (ρ0u) = ∇[c2(∇ · (ρ0u)− s̃ · u)] = ∇[c2Tu]

we use the generalized Helmholtz decomposition (Lemma 2 in the first lecture) to write
u = T ∗(ρ0φ) + u2 with φ ∈ H1(M) and u2 ∈ Ker(T ); the equation becomes

∂2
t (T

∗(ρ0φ)) + ∂2
t u2 = ρ−1

0 ∇[c2TT ∗(ρ0φ)].

setting u2 = 0 and replacing ∇ with T ∗ to obtain

∂2
t (T

∗(ρ0φ)) = ρ−1
0 T ∗[c2TT ∗(ρ0φ)]

For a moment assume ρ0 to be constant. Then ignoring the lower order terms, we pull T ∗

out of the equation to get

∂2
t (ρ0φ) = c2ρ−1

0 TT ∗(ρ0φ) = c2∆︸︷︷︸
∆c

(ρ0φ) + l.o.t.
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Riemannian setting

The Laplacian ∆c is really the Laplace-Beltrami operator of the Riemannian metric c−2Idn×n.

Consider a bounded smooth domain Ω ⊆ Rn. We use coordinates (x, y) in a neighborhood of
the boundary where ∂Ω = {x = 0} and y = (y1, . . . , yn−1) are coordinates on ∂Ω.

Generalized setting: Replace the conformal sound speed by an anisotropic one, represented as
a Riemannian metric g. The vanishing of the sounds speed forces the metric to be of the form

g =
ḡ

xα
=

dx2 + hij(x, y)dy
idyj

xα

where α ∈ (0, 2) and ḡ is a Riemannian metric that is smooth up to and including ∂Ω and
h(x, · ) is a family of Riemannian metrics on ∂Ω.

The geometry of g is called gas giant geometry.
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Degenerate Laplacian

The Laplace-Beltrami operator of the gas giant metric g(x, y) is

∆gu =
∑
i,j

1√
det(g)

∂i

(√
det(g)g−1

ij ∂ju
)
.

To derive a more manageable formula for ∆g we use the fact that det(g) = x−αn det(ḡ).
Then, using the fact that ḡ00 = 1 and ḡ0i = 0 for i ̸= 0, we obtain

∆gu =
∑
i,j

xα
n
2√

det(ḡ)
∂i

(
xα(1−

n
2
)
√
det(ḡ)ḡ−1

ij ∂ju
)

=
xα

n
2√

det(ḡ)

∂x (xα(1−n
2
)
√
det(ḡ)∂xu

)
+
∑
i,j

∂yi

(
xα(1−

n
2
)
√

det(ḡ)ḡ−1
ij ∂yj

)
= xα∆ḡu+ α

(
1− n

2

)
xα−1∂xu.
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Uniformly degenerate partial differential operators

The Laplace-Beltrami operator is degenerate at {x = 0}, but the degeneracy is uniform in the
basic vector fields x∂x and x∂yk . In particular, after multiplying with the power x2−α we get

x2−α∆g = (x∂x)
2u+ det(ḡ)−1/2[(x∂x) det(ḡ)

1/2][(x∂x)u]

+ det(ḡ)−1/2
∑
i,j

(x∂yi)
(
det(ḡ)1/2ḡ−1

ij (x∂yj )u
)
.

In general, a 0-differential operator P of order m is of the form

P =
∑

i+|β|≤m

ai,β(x, y)(x∂x)
i(x∂yβ )

β (2)

where ai,β(x, y) are smooth functions. Clearly x2−α∆g is a 0-differential operator of order 2.
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A brief introduction to 0-calculus

A more detailed exposition on the basics of 0-calculus can be found in [Maz91].

The indicial operator of the 0-differential operator P in (2) is

I(P ) =
∑
i≤m

ai,0(0, y)(x∂x)
i.

In particular, for the Laplacian L = x2−α∆g,

I(L) = (x∂x)
2 − α

(n
2
− 1

)
(x∂x).

We will use the indicial operator I(L) momentarily to compute an invariant called indicial
roots (the indicial operator fails to be invertible).

Associated to a 0-differential operator P is its 0-principal symbol 0σm(P ), which is obtained
by replacing x∂x and x∂yk with ξ and ηk in the local presentation of the operator.
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A brief introduction to 0-calculus

In symbols, the 0-principal symbol is

P =
∑

i+β≤m

ai,β(x, y)(x∂x)
i(x∂yβ )

β ⇒ 0σm(P ) =
∑

i+β=m

ai,β(x, y)ξ
iηβ.

An operator is 0-elliptic, if its principal symbol is non-vanishing when (ξ, η) ̸= (0, 0).

Recalling that ḡij = hij when i, j ̸= 0, the 0-principal symbol of the Laplacian L is

0σ2(L) = ξ2 +
∑
i,j ̸=0

h−1
ij (x, y)ηiηj = ξ2 + |η|2h .

Hence L is 0-elliptic. As such, the calculus of 0-pseudodifferential operators offers analogues
of all the familiar constructions in pseudodifferential theory.

There is an elliptic parametrix construction for L, and the various properties of the parametrix
G for L obtained through this construction lead to sharp mapping and regularity properties.
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A brief introduction to 0-calculus

in slightly more detail, parametrices of 0-differential operators are 0-pseudodifferential
operators, which are usually defined on the level of their Schwartz kernels

the Schwartz kernel of a 0-pseudodifferential operator has conormal singularities on the
diagonal and are smooth elsewhere, the same as classical pseudodifferential operators

The difference is what happens at the boundary of the domain, which classical theory
does not account for

roughly speaking, the Schwartz kernel of a 0-pseudodifferential operator has
polyhomogeneous conormal behavior at the boundary hypersurfaces ∂Ω× Ω, Ω× ∂Ω and
the front face

the part here that is rough is that the natural space for the Schwartz kernel is a 0-double
tangent space obtained blowing up the boundary diagonal diag(∂Ω× ∂Ω) in Ω× Ω

polyhomogeneity means that there are expansions into asymptotic sums of terms
xz(log x)kaz,k(y) when {x = 0} defines a boundary hypersurface
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A brief introduction to 0-calculus

Ω× ∂Ω Ω× ∂Ω

∂Ω× Ω ∂Ω× Ω

ff
β

Figure 1: An example of a blow-up: Here Ω = [0,∞) and on the left we have blown up the boundary
diagonal in Ω× Ω, i.e., the origin. This corresponds to introduction of polar coordinates β around
(0, 0). Pseudodifferential operator in the 0-calculus have polyhomogeneous asymptotics at Ω× ∂Ω,
∂Ω× Ω and the front face ff.

M.V. de Hoop Spectral analysis III October 2025 10 / 23



Self-adjointness

Consider the densely defined unbounded operator

∆g : L
2(Ω, dVg) −→ L2(Ω, dVg). (3)

This is symmetric on the core domain C∞
0 (Ω) of smooth functions compactly supported in the

interior.

Before studying the spectrum of ∆g we need to determine whether ∆g has a unique self-adjoint
extension, or if boundary conditions need to be imposed to obtain a self-adjoint realization.

This is where we need to compute the indicial roots of ∆g. The pair of indicial roots, γ±, are
the values of γ so that I(x2−α∆g)x

γ = 0 (the indicial operator fails to be invertible). These
are the exponents which yield approximate solutions in the sense that

∆gx
γ = O(xγ−1+α)

rather than the expected rate O(xγ−2+α), i.e., there is leading order cancellation.
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Self-adjointness and indicial roots

To calculate the indicial roots, we compute

∆gx
γ = (γ(γ − 1)− α(n/2− 1)γ)xγ−2+α +O(xγ−1+α),

and hence γ must satisfy γ2 − (α(n/2− 1) + 1)γ = 0, or

γ± = 0, α(n/2− 1) + 1

=
1

2
(α(n/2− 1) + 1)± 1

2
(α(n/2− 1) + 1).

This last expression is included to emphasize the symmetry of γ± around their average, which
is useful below.
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Self-adjointness and indicial roots

Next, observe that a function xγ lies in L2(dVg) near x = 0 if and only if

γ >
1

2
(nα/2− 1).

We call this threshold the “L2 cutoff weight”. Recall dVg = x−αn
2 dxdVh.

It is most natural to let ∆g act on the Sobolev spaces adapted to the 0-vector fields:

Hk
0 (Ω, dVg) = {u : V1 . . . Vℓu ∈ L2(dVg) ℓ ≤ k, each Vi ∈ V0(Ω)},

and their weighted version xµHk
0 = {u = xµv : v ∈ Hk

0 }.
Here the space of 0-vector fields V0(Ω) is simply the set of smooth linear combinations of the
derivatives x∂x and x∂yj .
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Self-adjointness and indicial roots

It is clear from this definition that

∆g : x
µH2

0 −→ xµ−2+αL2

is bounded for every µ. In particular, ∆gu ∈ L2 if u ∈ xµH2
0 where µ ≥ 2− α.

Since C∞
0 (Ω) is dense in x2−αH2

0 , it is clear that the minimal domain, i.e., the minimal closed
extension from the core domain, of (3) is contained in x2−αH2

0 .

Using the parametrix for ∆g alluded to above, it can be proved that this is an equality:

Dmin(∆g) = x2−αH2
0 (Ω, dVg).

On the other hand, we also define the maximal domain Dmax(∆g) = {u ∈ L2 : ∆gu ∈ L2}.
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Self-adjointness and indicial roots

Proposition 1 (Self-adjointness)

The operator ∆g is essentially self-adjoint on L2, i.e.,

Dmin(∆g) = Dmax(∆g)

if and only if α > 2/n.

The value α = 2/n is precisely the critical value where the Riemannian volume of M becomes
infinite: Volg(Ω) < ∞ iff α < 2/n.
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Proof of Proposition 1

the key issue is whether either of the indicial roots γ± lie in the critical weight interval

µ− :=
1

2
(nα/2− 1) ≤ µ ≤ 1

2
(nα/2− 1) + 2− α =: µ+

the relevance of whether the indicial roots are included in the critical weight interval is
that, using the parametrix carefully, one can deduce that if γ± do not lie in this critical
weight interval, then u ∈ L2 and ∆gu ∈ L2 imply that u ∈ x2−αH2

0 = Dmin

notice that the midpoint of this critical interval is

1

2
(nα/2− 1) + 1− 1

2
α =

1

2
(α(n/2− 1) + 1)

which is precisely the same as the midpoint of the gap between the two indicial roots.
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Proof of Proposition 1

the width of this weight interval is 2− α, whereas γ+ − γ− = α(n/2− 1) + 1. We claim
that

γ− < µ− < µ+ < γ+

precisely when α > 2/n, which is verified by noting that α(n/2− 1) + 1 > 2− α precisely
then

however, when α ≤ 2/n, then we can only deduce that

u(x, y) ∼
∑

aj(y)x
γ−+j +

∑
bj(y)x

γ++j (4)

this asymptotic expansion has some complicating features, such as that if a0 ̸≡ 0, then
the coefficients aj , bj may only have finite regularity (and will have negative Sobolev
regularity for large j)

conversely, there exists a solution of ∆gu = 0 where u has an expansion of this type with
any prescribed smooth leading coefficient a0(y); in any case, the upshot is that the
maximal domain is far bigger than the minimal domain in this case
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The spectrum is discrete

Proposition 2 (Discrete spectrum)

Let D be a domain of self-adjointness for ∆g. Then (∆g,D) is a Fredholm operator on L2

with discrete spectrum.

When α < 2/n, there are many possible self-adjoint extensions. The one we use, is the
Dirichlet extension, corresponds to the choice of domain DDir consisting of those u ∈ L2 such
that ∆gu ∈ L2 and where the leading coefficient a0(y) in expansion (4) vanishes.

Other self-adjoint extensions correspond to other types of conditions on the pair of leading
coefficient (a0(y), b0(y)) in (4). Some of the other standard ones are the Neumann extension,
where b0(y) ≡ 0, and the family of Robin extensions, corresponding to conditions of the form
A(y)a0(y) +B(y)b0(y) ≡ 0, where A,B are given smooth functions.
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Proof of proposition 2

The first step is to show that this operator is Fredholm. This follows from the existence
of its parametrix.

The parametrix G of ∆g is a 0-pseudodifferential operator of order −2 which maps L2

onto D (possibly modulo compact errors), and which satisfies

G ◦∆g = Id−R1, and ∆g ◦G = Id−R2,

where R1 and R2 are compact operators on L2 and on D (with its graph topology)
respectively.

As noted earlier, the construction of this parametrix is one of the standard consequences
of 0-ellipticity; details are given in [Maz91]. When α < 2/n, a slightly more intricate
construction is needed which incorporates the choice of boundary conditions; this appears
in [MV14].
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Proof of proposition 2

The key point here is that the operator G is constructed as an element of the
0-pseudodifferential calculus:

The Schwartz kernel is well-understood, as a distribution on Ω× Ω.
It has asymptotic expansions at the boundary faces of the product, and equally explicit
expansion near the corner of Ω2 (which is ∂Ω× ∂Ω).

The upshot, however, is that it then follows by general properties of such
pseudodifferential operators proved in [Maz91] that G is bounded on L2. Of course, as a
pseudoinverse to ∆g, its range must lie in D.

Since G is a 0-pseudodifferential operator of order −2, it is clear that the elements in
G(L2) have two derivatives in L2, at least in the interior of Ω.

Slightly more is true: for any f ∈ L2 and any two vector fields V1, V2 ∈ V0(Ω), we must
have that V1V2(Gf) ∈ xεL2 for some fixed ε > 0 which is independent of f .
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Proof of proposition 2

This is summarized by saying that G : L2 → xεH2
0 , where the range is a weighted

0-Sobolev space.

We may then invoke the L2 version of the Arzelà–Ascoli theorem, which may be used to
prove that xεH2

0 ↪→ L2 is a compact embedding.

This shows that the domain of ∆g is compactly contained within L2, and hence that
(∆g,D) has discrete spectrum.

A few more words about this parametrix construction, particularly when α > 2/n. Write
∆g = xα/2−1Lxα/2−1; as noted earlier, L is an elliptic 0-operator. The singular factor has
been distributed on opposite sides of L to preserve symmetry.

Let G be a parametrix for L as constructed in [Maz91]. Thus

Id− LG = R′
1 and Id−GL = R′

2
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Proof of proposition 2

The error terms R′
1, R

′
2 are operators with smooth kernels on the interior of Ω× Ω, and

which admit classical expansions at all boundary faces of a certain resolution (or blow-up)
of this product, with coefficients in these expansion smooth functions on the
corresponding boundary faces.

We then write G = x1−α/2Gx1−α/2, so that ∆g ◦G = Id− xα/2−1R1x
α/2−1 = I −R1,

G ◦∆g = Id− xα/2−1R′
2x

α/2−1 = Id−R2.

These remainder terms are much better, inasmuch as they have smooth Schwartz kernels
which have polyhomogeneous expansions at the two boundary hypersurfaces of Ω2,
without need for the resolution (or blow-up) process.

If ∆gu = f ∈ L2, then applying G, we get that u = R1u+Gf = R1u+x1−α/2Gx1−α/2f .

The first term is polyhomogeneous on Ω, and decays at a fixed rate strictly greater than
the L2 cutoff. When α > 2/n, the range of G lies in x2−αH2

0 .

This range is identified with the domain of self-adjointness D (again, when α > 2/n),
hence, as described above, D ⊂ L2 is indeed compact.
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