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1. Introduction: Classical Li-Yau and CD inequality

The classical Li-Yau inequality
Suppose u: [0,00) x RY — (0, 00) solves d;u — Au = 0. Then

d
— A(log u) < > in (0,00) x RY. (1)
Since 0;(log u) — A(log u) = |V (log u)|?, this is equivalent to

d:(log u) > |V(log u)|* — n (0,00) x RY. (2)

2t

e This extends to complete d-dimensional Riemannian manifolds M
with Ric(M) > 0 (Li, Yau, Acta Math. 1986).
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1. Introduction: Classical Li-Yau and CD inequality

The classical Li-Yau inequality
Suppose u: [0,00) x RY — (0, 00) solves d;u — Au = 0. Then

d
— A(log u) < > in (0,00) x RY. (1)
Since 0;(log u) — A(log u) = |V (log u)|?, this is equivalent to

d:(log u) > |V(log u)|* — n (0,00) x RY. (2)

2t
e This extends to complete d-dimensional Riemannian manifolds M
with Ric(M) > 0 (Li, Yau, Acta Math. 1986).

e (2) is sharp, one has equality for u(t,x) = (4nt)=9/? exp (- x? ).
e Integration of (2) over a path connecting (t1,x;) and (tz,xz)
with 0 < t; < t» gives the sharp Harnack estimate

u(ty, x1) < u(tg,Xg)( )d/2 exp <X1_X2|2)

4(t2 — tl)
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Ll. Introduction: Classical Li-Yau and CD inequality

How can we prove Li-Yau? Basic idea: v := log u solves
Orv — Av = |Vv[?, (3)

by the chain rule AH(u) = H'(u)Au + H"(u)|Vu|? with H = log.
So we need —Av < %.



Li-Yau and Harnack estimates for nonlocal diffusion problems

1. Introduction: Classical Li-Yau and CD inequality

How can we prove Li-Yau? Basic idea: v := log u solves
Orv — Av = |Vv[?, (3)

by the chain rule AH(u) = H'(u)Au + H"(u)|Vu|? with H = log.
So we need —Av < %. Apply A to (3) and use Bochner's identity.

OeAv — A(Av) = A(|Vv]?)
= 2Vv VAV + 2|V2v ] ( + 2Ric(Vv, vv)).

Now, |V2v|?,s > L (Av)? (a CD-inequality), and thus

O:Av — A(Av) > 2Vv - VAv + % (Av)?

w(t) := —£ solves dyw = 2w?. Comparison arg. < Av > w
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Ll. Introduction: Classical Li-Yau and CD inequality

[-calculus by Bakry and Emery

Let L be the generator of a Markov semigroup.

[(f,g) = = (L(fg) — flg — gLf), (carré du champ)

=N~

5 (LT(f,g) —T(f,Lg) — (g, Lf)), (iterated carré du champ)
F(f)="T(f,f), Taf)=Taf,f).
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1. Introduction: Classical Li-Yau and CD inequality

[-calculus by Bakry and Emery

Let L be the generator of a Markov semigroup.

1
rf,g)= E(L(fg) —flg — gLf), (carré du champ)

Ma(f,g) %(Ll’(f,g) —I(f,Lg) — (g, Lf))7 (iterated carré du champ)
F(f)="T(f,f), Taf)=Taf,f).

L satisfies the curvature-dimension inequality CD(k, d) with k € R
and d € [1,00] if (i is a fixed invariant and reversible measure)

Mo(F) > KI(F) + %(Lf)Q, L—ae.

L= AonRY [(f,g)=Vf Vg, Ia(f) = |V3f3s. = CD(0,d)
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Suppose that L is a diffusion generator, i.e. for all H € C? and
suitable f the chain rule LH(f) = H'(f)Lf + H"(f)['(f) holds.
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Ll. Introduction: Classical Li-Yau and CD inequality

Suppose that L is a diffusion generator, i.e. for all H € C? and
suitable f the chain rule LH(f) = H'(f)Lf + H"(f)['(f) holds.

e CD(0,d), d < oo, f pos. = —L(logettf) < & t> 0 (Li-Yau)

— 2t
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1. Introduction: Classical Li-Yau and CD inequality

Suppose that L is a diffusion generator, i.e. for all H € C? and
suitable f the chain rule LH(f) = H'(f)Lf + H"(f)['(f) holds.

e CD(0,d), d < oo, f pos. = —L(logettf) < &, t >0 (Li-Yau)
e CD(k,00), k > 0 = log-Sobolev and Poincaré inequality

(= exp. decay of entropy and variance, hypercontractivity,...)

See the monograph by Bakry, Gentil, Ledoux, Analysis and
geometry of Markov diffusion operators (2014)
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L2. Nonlocal operators: examples and difficulties

Consider Markov generators of the form (X a metric space)

LF(x) = /X (F(y) — F(x)) k(x, dy).

Key feature: difference structure under integral.
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L2, Nonlocal operators: examples and difficulties

Consider Markov generators of the form (X a metric space)

Lf(x) = /X (f(y) — f(x)) k(x, dy).

Key feature: difference structure under integral. Examples:

e Fractional Laplacian: X =RY, 3 € (0,2),
: fy) = )

Lf(x)=—(—A)2f(x) = cgq p'v'/Rdb(—y\d"'ﬁ ly
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L2, Nonlocal operators: examples and difficulties

Consider Markov generators of the form (X a metric space)

LF(x) = /X (F(y) — F(x)) k(x, dy).

Key feature: difference structure under integral. Examples:

e Fractional Laplacian: X =RY, 3 € (0,2),

B
2

LF(x) = =(=A)2f(x) = ¢z P-V-/Rdwdy'

e Generators of Markov chains (generalised Laplacians on a graph):
X is a finite or countable set,

kay — f(x ))

yeX
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Does the Li-Yau estimate imply a parabolic Harnack inequality?
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L2, Nonlocal operators: examples and difficulties

Consider positive solutions u of

Oiu—Lu=0, t>0.
Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for L=—(— A)g addressed in a survey by Garofalo, Fractional
thoughts... (2019), as a key open problem)

Difficulties:

e The chain rule fails for L.

e What is the right form of the Li-Yau inequality?

e CD(0,d) is not strong enough. New CD-conditions required.

e To obtain Harnack, we have to argue with a "nonlocal gradient".
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L2, Nonlocal operators: examples and difficulties

Positive results on finite and locally finite graphs

e Bauer, Horn, Lin, Lippner, Mangoubi, Yau: Li-Yau inequality on
graphs. J. Diff. Geom., 2015:

square root approach, CDE(k, d) and CDE’(k, d), Li-Yau (with %) and
Harnack on finite and infinite graphs

e Miinch: Li-Yau inequality on finite graphs via non-linear curvature
dimension condition. J. Math. Pures Appl., 2018:

-calculus for concave v, CDy(k,d), ¢ = |/ covers some of the
previous results, 1) = log gives log. Li-Yau, Harnack; finite graphs

e Dier, Kassmann, Z.: Discrete versions of the Li-Yau gradient estimate.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2021:

log. Li-Yau and Harnack based on CD(F;0), F a CD-function, more
general relaxation functions, improved estimates, some even sharp

On discrete curvature: Erbar, Maas (ARMA 2012), Mielke (Calc. Var.
PDE 2013); different approach based on optimal transport
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L2, Nonlocal operators: examples and difficulties

CD-functions
Crucial idea: Replace (...)% in CD(0, d) by a more general function.

Definition

A continuous function F : [0,00) — [0, 00) is called CD-function, if
F(0) =0, F(x)/x is strictly increasing on (0,00), and 1/F is
integrable at co. (Example: F(x) = vx? with v > 0.)

Lemma
Let F : [0,00) — [0,00) be a CD-function. Then there is a unique
strictly positive solution ¢ of the ODE

p(t) + F(p(t)) =0, t>0,

which has (0, 00) as its maximal interval of existence. This function
¢ is strictly decreasing and log-convex, and it satisfies ©(0+) = oo
and p(o0) = 0. Call ¢ the relaxation function associated with F.
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L2, Nonlocal operators: examples and difficulties

Equation for log u

Observation in Dier, Kassmann, Z. (2021): Consider Markov chain
setting, i.e.

LF(x) =Y k(x,y)(F(y) = F(x)).

yeX
Suppose u is positive and Oy — Lu = 0 in (0,00) x X. Then

v := log u solves
Ov — Lv =V (v) in (0,00) x X.
V() (x) =2 ex k(x,y)H(f(y) — f(x)), T(z) =e* —1—z

classical case: 0;v — Av = |[Vv|? =T(v),

here T(F)(x) = 1 3, cx k(x, ) (F(y) — (x))?
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L-3. The CDy condition

Markov chain setting, X finite or countable,

LF(x) =Y k(x,y)(F(y) = f(x)),

yeX

where k(x,y) >0 for x # y, and > x k(x,y) =0 for all x € X.

Question: Is there a natural analogue to CD(k, d) with
corresponding implications? (Li-Yau, functional inequalities,...)
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L-3. The CDy condition

Markov chain setting, X finite or countable,

LF(x) =Y k(x,y)(F(y) = f(x)),

yeX

where k(x,y) >0 for x # y, and > x k(x,y) =0 for all x € X.

Question: Is there a natural analogue to CD(k, d) with
corresponding implications? (Li-Yau, functional inequalities,...)

Recall: CD(k, d) means I'o(f) > &l'(f) + L(Lf)%.

We have to identify suitable replacements for all three terms.
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L-3. The CDy condition

In the diffusion setting(chain rule!) with invariant and reversible
probability measure p:

H(Pef) :/ P:f log(P:f) dp, (entropy)
X

%H(Ptf) = —/ P.fT (log(P:f)) du, (neg. Fisher information)
X
d2
—SH(Pf) = 2/ P:fT>(log(Pef)) dp.
dt %
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L-3. The CDy condition

In the diffusion setting(chain rule!) with invariant and reversible
probability measure p:

H(Pef) :/ P:f log(P:f) dp, (entropy)
X

%H(Ptf) = —/ P.fT (log(P:f)) du, (neg. Fisher information)
X
d2
—SH(Pf) = 2/ P:fT>(log(Pef)) dp.
dt %

In the discrete setting: (see Weber, Z. JFA, 2021; Weber Electron.
J. Probab., 2021)

d
t X

d2
CIH(P) _2/XPtfw2,T(|og(Ptf)) dp.
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L3, The CDv condition

Here
V) p(f) =
where (T'(z) = e — 1)

Br/(f,8)(x) = Y k(x,y)T'(f(y) — £(x)) (g(y) — &(x))-

yeX

(LW (f) — By/(f, Lf)),

I\.)Il—l



Li-Yau and Harnack estimates for nonlocal diffusion problems
L-3. The CDy condition

Here
Uy (f) =
where (T/(z) = e — 1)

Br(f,g)(x) = Y k(x,y)T'(f(y) = () (g(y) — &(x)).

yeX

(LW~ (f) — By«(f, Lf)),

N =

Definition
L satisfies CD~y(k, F) with x € R and CD-function F if for all
(suitable) f : X — R (and with Fo := Fx[o,«c))

‘Uz;r(f) > /{WT(f-) + Fo(—Lf) on X.

L satisfies CDv(k,d) with kK € R and d € [1, 0] if

1
Vo v (f) > kW (f) + g(Lf)z on X.
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L-3. The CDy condition

Important properties (see Weber, Z. in JFA, 2021):

e CDv(k,00) with k£ > 0 implies the modified log-Sobolev
inequality (MLSI) with constant x (= exp. decay of entropy)
MLSI(a) with o > 0:  H(f) < 5=Z(f) for all f € P(X),

where (with dp = md#)

P(X)={p: X = [0,00) s.t. [y pdp =3, cx p(x)m(x) = 1},
H(F) = [y Flog f i = 3sex F(x) log(F(x)) 7(x),
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L-3. The CDy condition

Important properties (see Weber, Z. in JFA, 2021):

e CDv(k,00) with k£ > 0 implies the modified log-Sobolev
inequality (MLSI) with constant x (= exp. decay of entropy)

MLSI(a) with o > 0:  H(f) < 5=Z(f) for all f € P(X),
where (with dp = md#)

7’( ) {p: X = [0,00)st. [y pdu=3 cxp(x)m(x) =1},
= Jx flogfdu =37 cx f(x)log(f(x)) m(x),

and (using detailed balance, i.e. m(x)k(x,y) = 7(y)k(y, x))
7(F) = /X FU (log F) dps

=D ()Y k(x,y)T (log f(y) — log f(x))m(x)

xEX yeX

= Z k(x,y)(f(y) — f(x)) (log f(y) — log f(x))m(x).
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L3, The CDv condition

e CDy(k,00) is characterised by the gradient bound

Wy (Pf) < e 2P, (W (f)), t>0.
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L-3. The CDy condition

e CDy(k,0) is characterised by the gradient bound
Wy (P:f) < e_2mPt(‘~|-’T(f)), t>0.

e curvature bounds are preserved under tensorization

L;: generator of a Markov chainon X;, i=1,2; L:=L; & L,
generates a chain on Xy x X5.

If L; satisfies CDy(kj,0) with k; € R, i = 1,2, then L satisfies
CDv(k,00) with K = min{k1, k2 }.
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L-3. The CDy condition

e CDy(k,0) is characterised by the gradient bound
Wy (P:f) < e_2mPt(‘~|-’T(f)>, t>0.

e curvature bounds are preserved under tensorization

L;: generator of a Markov chainon X;, i=1,2; L:=L; & L,
generates a chain on Xy x X5.

If L; satisfies CDy(kj,0) with k; € R, i = 1,2, then L satisfies
CDv(k,00) with K = min{k1, k2 }.

e CD~ is compatible with the diffusion setting; there is a natural
notion of I @ W+ and (I @ W)y, tensorization principle for hybrid
processes
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L-3. The CDy condition

Further remarks:

o [Wy/(f) =2Ws v (f) + Bexp(f, Lf) with Begp(f, Lf) > 0 in the
situation of the CD condition from [DKZ]

e direct link between CD~(k,00) and entropic curvature bound not
known; CD~(k,d) is equivalent to Miinch's CD(d, k) with

1 = log (not obvious!); CDy(k,0) is closely linked to
Monmarché's generalised I-calculus (2019)

e CDy(k,d) = CD(k,d).
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L3, The CDv condition

Examples:

e unweighted complete graph K,,: CDv(+/2n,o0) holds for all
n > 2; this is optimal for n = 2 since CD(2, ) is optimal;
CD(1 + 5, 00) is optimal for n > 2
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L-3. The CDy condition

Examples:

e unweighted complete graph K,,: CDv(+/2n,o0) holds for all
n > 2; this is optimal for n = 2 since CD(2, c0) is optimal;
CD(1 + 5, 00) is optimal for n > 2

e n-dimensional hypercube: CDy(2,00) holds for all n € N and is
optimal (since CD(2, o) is optimal for all n € N); easy proof by
induction and tensorization and the result for K3
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L-3. The CDy condition

Examples:

e unweighted complete graph K,,: CDv(+/2n,o0) holds for all
n > 2; this is optimal for n = 2 since CD(2, c0) is optimal;
CD(1 + 5, 00) is optimal for n > 2

e n-dimensional hypercube: CDy(2,00) holds for all n € N and is
optimal (since CD(2, o) is optimal for all n € N); easy proof by
induction and tensorization and the result for K3

e unweighted 3-star: CD~ (0, 00) fails at center point, but there
holds CD~(k, c0) with some k € (—o0,0)
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4. Long-range jump operators
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g Long-range jump operators

Consider nonlocal operators on the lattice Z of the form

=) k() (f(x+)) - f(x)), x€Z, (4)

JEZ

with a kernel k : Z — [0, c0) satisfying 0 < >, k(j) < o0,
k(—j) = k(j) for all j € N, and k(0) = 0.

Important example: (linked to frac. discr. Laplacian for 5 € (0,2))

. c . .
kﬁ(j) = W, S Z\{O}, with C, B > 0.
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g Long-range jump operators

Consider nonlocal operators on the lattice Z of the form
=) k() (f(x+)) - f(x)), x€Z, (4)
JEZ

with a kernel k : Z — [0, c0) satisfying 0 < >, k(j) < o0,
k(—j) = k(j) for all j € N, and k(0) = 0.

Important example: (linked to frac. discr. Laplacian for 5 € (0,2))
. c . .
k[B(]): W, J EZ\{O}, with C, B>O

Theorem: (Spener, Weber, Z., Calc. Var. PDE 2019)

e k non-incr. on N, } i k(j)j? < oo = 3d < oo : CD(0, d) holds.
e k=kg, f>2= CD(0,d) holds for some d < .

o k=ks B <2= CD(0,d) fails for all d < co.
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|—4. Long-range jump operators

More flexibility by CD+(0, F)
What about W, () > Fo(—Lf)? Note that
Vo r(F)(x) = % D kGO (F (e j-1) = £ (x4)) — F (1) +£(x)),
J,I€Z

where T(z) = e —1—z.
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LA. Long-range jump operators

More flexibility by CD+(0, F)
What about W, () > Fo(—Lf)? Note that
Vo (F)0) = 5 S KK T (F (et 1)~ F (xebf) —F et )+ (),
J,I€L
where T(z) = e —1—z.
Theorem: (Spener, Weber, Z., DCDS 2024)
k(j)}° < 00, 6 € (0,1) = Wy (f) > c|LF[?, v = 12,

® 2. jeN
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g Long-range jump operators

More flexibility by CDv(0, F)
What about W, () > Fo(—Lf)? Note that
V2 r(f)(x) = % D k() k(1 IO (F(xtjit 1) = F(x)) — F(x+1)+F(x)),
JHEZ
where T(z) = e —1—z.
Theorem: (Spener, Weber, Z., DCDS 2024)
o Yjen k()0 <00, 6 € (0,1) = Wy p(f) > c|LF]7, v = 12,

e k= kg, f € (0,00) = CDy(0, F) holds with some CD-function
F, which grows exponentially at co and satisfies F(x) ~ cx7 as
x — 0 where v =2 for > 2 and (ﬁ*:%)

B—e¢
— fi 2]
p— or B € (Bs,2]

1428
I

forﬂ € (076*]a Y=
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g Long-range jump operators

Theorem: (Spener, Weber, Z., DCDS 2024)

Let 5 € (0,00) and Lg the operator associated with kg. Any bdd.
function v : [0,00) x Z — (0,00) that is C! in time and solves
Oru = Lgu on (0,00) X Z satisfies the Li-Yau estimate

—Lglogu(t,x) < ¢(t), (t,x)e€(0,00) x Z,

where ¢ is the relax. function corresp. to F from above.

1
(p(t) ~ —clogtast — 0and @(t) ~ ct 71 as t — o)
Moreover, we have the Harnack inequality

2 Dlxy — xo|Min{l+5,2}
u(ty, ) < “(t27X2)eXP</ o(t) de 4 2=l )
t th—1t1

for 0 <ty < tp, x1,x2 € Z. (t; = 0 possible, ¢ is integrable at 0!)
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g Long-range jump operators

Theorem: (Spener, Weber, Z., DCDS 2024)

Let 5 € (0,00) and Lg the operator associated with kg. Any bdd.
function v : [0,00) x Z — (0,00) that is C! in time and solves
Oru = Lgu on (0,00) X Z satisfies the Li-Yau estimate

—Lglogu(t,x) < ¢(t), (t,x)e€(0,00) x Z,

where ¢ is the relax. function corresp. to F from above.

1
(p(t) ~ —clogtast — 0and @(t) ~ ct 71 as t — o)
Moreover, we have the Harnack inequality

2 Dlxy — xo|Min{l+5,2}
u(ty, ) < “(t27X2)eXP</ o(t) de 4 2=l )
t th—1t1

for 0 <ty < tp, x1,x2 € Z. (t; = 0 possible, ¢ is integrable at 0!)

. : 8
Remark: Same result for frac. discrete Laplacian —(—A)2 & heat
kernel estimates
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LA. Long-range jump operators

The fractional Laplacian has infinite dimension
Let 3 € (0,2) and consider for x € RY

Lu(x) = —(=D)2 u(x) = g4 /Rd u(x+h) - ﬁ,TSiEaJF u(x—h)
"0 = csa [ EEDZE

[u(x+h+0)—u(x+h)—u(x+o)+u(x)]?
|h|d+5|a|d+5

Ma(u)(x) = B g /R oh dor

dJRd
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g Long-range jump operators

The fractional Laplacian has infinite dimension
Let 3 € (0,2) and consider for x € R

8 u(x +h) —2u(x) +u(x—h
L) = ~(-2)2u(x) = cpg [ HEFDZELITA D g,
u(x — u(x))?
r(U)(X)ZCg,d/Rd( ( +‘:|L+B () dh,
u(x+h+0o)—u(x+h)—u(x+0o)+u(x)]?
Fz(u)(x)—cg,d/Rd Rd[ beth o) |h’(d:3’3|d+é R L))

Theorem: (Spener, Weber, Z., Comm. PDE 2020)
Forany R >0, ks € R and N € (0,00) there is a u € C°(RY) s.t.

0 < Ma(u)(x) < wF(u)(x) + % (L(u)(x))®, V¥x € B(0,R).
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g Long-range jump operators

The fractional Laplacian has infinite dimension
Let 3 € (0,2) and consider for x € R

Lu(x) = —(~A)2u(x) = g4 /Rd u(x +h) = yzhlylgﬁ;r u(x —h)
u(x — u(x))?
r(U)(X)ZCg,d/Rd( ( +‘:|L+B () dh,
u(x+h+0)—u(x+h)—u(x+o)+u(x)]?
Fz(U)(X)—cg,d/Rd Rd[ beth o) ’h’(d:3’3|d+é R L))

Theorem: (Spener, Weber, Z., Comm. PDE 2020)
Forany R >0, ks € R and N € (0,00) there is a u € C°(RY) s.t.
1
0 < Ma(u)(x) < K (u)(x) + 3 (L(u)(x))*,  ¥x € B(O,R).
(i) negative answer to a question by Garofalo (2019)
(i) CDy(0,d) must fail as well, but scaling suggests o(t) < ¢;
thus only little hope w.r.t. the CD approach! Other CD-conditions?
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5. Reduction to the heat kernel

Reduction to the heat kernel for the heat equation

Lemma: Let Pf(x) = [p4 H( (y) dy, for sufficiently regular,
positive functlons H and f. Then

/ |V log H(x, y)|*H(x, y)f(y) dy > |V log Pf(x)|*Pf(x). (5)
Rd
Proof: By Hélder’s inequality we have

(0., PF(x) / B Hx, y)F(y) dy)’

(8 H(x, )
< /Rd Wf(y) dy /Rd H(x, y)f(y)dy,

which directly leads to (5) by summing up and employing the chain
rule for the gradient (V(log g) = Vg)
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5. Reduction to the heat kernel

d _ Ix—y|?
2

For the heat kernel H(t,x,y) = (4nt)"2e~ 4 we have

— A(log H(t, x,y)) = 2% =: o(t).

For any positive solution u of the heat equation,
dru — ul\(log u) = u|V(log u)|?.
In particular,

OeH(t,x,y) + H(t, x,y)p(t) = H(t, x, y)|Vx(log H(t, x, y))

2
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5. Reduction to the heat kernel

Consider a positive solution u(t,x) = [ps H(t,x,y)uo(y) dy of the
heat equation (Widder's type theorem‘) Then

(e, ) + (e, ) = [ (0cH(tx.y) + oAt)H(Ex.3) ()

- /Rd (IVx(log H(t,x, y))I?H(t, x,y))uo(y) dy

> |V(log u(t, x))|?u(t, x) (by the Lemma)
= Oru(t,x) — u(t,x)A(log u(t, x)).

Hence J
~A(log u(t,x)) < () = 5.

Note that we only need —A, (log H(t,x,y)) < o(t).

Conclusion: Li-Yau for heat kernel implies Li-Yau for pos. solutions.
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5. Reduction to the heat kernel

Reduction to the heat kernel for the fractional heat equation

Question: Is there a similar argument for the fractional heat
equation (FHE)?

Let u be a positive solution of the FHE. Then

N[

Ot(log u) + (—A)z(log u) = V- (logu),

where
T(v —v(x
Vr(v)(x) = cga /Rd (|X(}:)y|d+(ﬁ ) dy

with T(z) = e* — 1 — z. Equivalently,

B
2

Oru+ u(—A)2(logu) = uV-r(log u).
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5. Reduction to the heat kernel

Recall the key inequality from the local case
/ |V log H(x,y)|"H(x, y)f(y) dy > |V log Pf(x)|*Pf(x
Rd

where Pf(x) = [pqs H(x,y)f(y) dy and H and f are sufficiently
regular, p05|t|ve functions.
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5. Reduction to the heat kernel

Recall the key inequality from the local case
/ |V log H(x,y)|"H(x, y)f(y) dy > |V log Pf(x)|*Pf(x
Rd

where Pf(x) = [pqs H(x,y)f(y) dy and H and f are sufficiently
regular, p05|t|ve functions.

Key lemma: (Weber, Z. in Math. Ann. 2023) Let P, H, f be as
before. Then

/Rd W (log H(-, y))(x)H(x, y)f(y) dy > W (log Pf)(x)Pf(x).

Proof: Use the convexity of r — T(logr) =r —logr —1.

Remark: The lemma extends to more general nonlocal operators.
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5. Reduction to the heat kernel

Positive (strong) solutions u of the FHE can be expressed as

ultx) = [ GO(ex = y)uoly) . (7

where G(8) is the fund. sol. of the FHE, see Barrios, Peral, Soria,
Valdinoci, ARMA (2014).

Set H(t,x,y) = G¥)(t,x — y). Using the lemma we can argue as
before to see the implication

B
2

N[

(—2)2 (log 6 (t,x) < (t) = (~A)2 (log u)(t, x) < (2).

Question: For which function ¢ do we have

B
2

(—2)2(log GW)(t,x) < o(t) 7
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5. Reduction to the heat kernel

Lemma: For all 8 € (0,2), t >0, and x € RY, we have

2 (log G®))(t, x) < Cuy (B, d)

(-2) t

)

where the finite constant Cpy(5,d) > 0 is given by

2
|og ( ‘Dﬁ(}/) )
CB,d Pg(y+0)Ps(y—o)
CLY(57 d) = - sup / dO',
2 yE]Rd Rd ’U|d+ﬂ

with ®5(y) = GO)(1,y), y € RY.

Note that G(ﬁ)(t,x) = tf%cbﬁ(xt*%)_ Cy(1,d) = %_
22

Cry(5,d) is the smallest constant among all C > 0 satisfying

(—A)2(log GP)(t,x) < % t>0,xeR.
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5. Reduction to the heat kernel

Theorem: (Weber, Z., Math. Ann. 2023))
Let 3 € (0,2) and u: [0,00) x R? — (0,00) a strong solution of

B
2

O+ (—A)2u=0 in (0,00) x RE.

Then for all (t,x) € (0,00) x R?, we have the Li-Yau inequality

(—8)%(ogu)(t,x) < LD ©

and, equivalently, the differential Harnack inequality

CLY(Bad).

Ot(log u)(t, x) > W~ (log u)(t, x) — .

(9)
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5. Reduction to the heat kernel
Theorem: (Weber, Z., Math. Ann. 2023))
Let 3 € (0,2) and u: [0,00) x R? — (0,00) a strong solution of

Oeu + (—A)3

u=0 1in(0,00) x RY.
Then for all (t,x) € (0,00) x R?, we have the Li-Yau inequality

( _ A) CLY(B» d)

t
and, equivalently, the differential Harnack inequality

Cry (B, d)
==

(log u)(t, x) < (8)

Ot(log u)(t, x) > W (log u)(t, x) —

(9)

Remark: different form of differential Harnack inequality with a

|V log u|? term by Ghosh, Kassmann, unpublished (2020/2021)
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5. Reduction to the heat kernel

Theorem: (Weber, Z., Math. Ann. 2023))
Let 3 € (0,2) and u: [0,00) x R? — (0,00) a strong solution of

Oeu + (—A)3

u=0 1in(0,00) x RY.
Then for all (t,x) € (0,00) x R?, we have the Li-Yau inequality

( _ A) CLY(B» d)

t
and, equivalently, the differential Harnack inequality

Cry (B, d)
==

(log u)(t, x) < (8)

Ot(log u)(t, x) > W~ (log u)(t, x) — 9)

Remark: different form of differential Harnack inequality with a
|V log u|? term by Ghosh, Kassmann, unpublished (2020/2021)

Question: Can we derive a Harnack inequality from (9)?
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5. Reduction to the heat kernel

Li-Yau implies Harnack for the fractional heat equation

Turns out to be much more involved than in the classical case and
in the discrete setting!

Theorem : (Weber, Z. in Math. Ann., 2023)
Let 3 € (0,2) and u: (0,00) x R — (0,00) be sufficiently
smooth. Then the differential Harnack inequality

Cry (B, d)
t b

Ot(log u)(t, x) > W (log u)(t, x)— (t,x) € (0,00)xRY,

implies that there exists a constant C = C(3,d) > 0 s.t. for all
0<ty <th<ooand xi,x € R there holds

o\ C _ B+d
u(ty, x1) < U(tg,Xz)(i) v exp (C 1+ (X1X2)|1+d]) .
th — ty B
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5. Reduction to the heat kernel

Some known results on the parabolic Harnack inequality for the
space fractional heat equation:

e Bass, Levin, Trans. Amer. Math. Soc. (2002); Chen, Kumagai,
Stochastic Process. Appl. (2003): local solutions, probabilistic
methods

e Chang-Lara, D’avila, J. Differential Equations (2016): local
solutions in a rough non-var. setting, purely analytic proof

e Kassmann, Weidner, arxiv (2024): local solutions in rough
variational setting

e Bonforte, Sire, Vazquez, Nonlinear Anal. (2017): global
solutions, estimates based on fundamental solution, Harnack
inequalities of forward/backward/elliptic type
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5. Reduction to the heat kernel

Improved differential Harnack inequality
The fundamental solution G(#), 3 e (0,2), satisfies
t}0:GP)(t, x)| < c5aGP)(t,x), t>0,xeRI,  (10)

see Vazquez, de Pablo, Quirés, Rodriguez (JEMS 2017).
Bonforte, Sire, Vazquez (2017) also use (10) and show in addition
t0,GA) > —%G(ﬁ). By means of (10) we can show

Theorem: (Weber, Z., in prep.)
For any strong sol. u: [0,00) x RY — (0, 00) of FHE (3 € (0,2))

|0t (log u)| + Wy (log u) < C(ﬁt’d) in (0,00) x RY. (11)

(11) yields Harnack inequalities of forward /backward/elliptic type.



e
Li-Yau and Harnack estimates for nonlocal diffusion problems

|—6. Hybrid problems: approach based on CD-conditions

6. Hybrid problems: approach based on
CD-conditions
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L6. Hybrid problems: approach based on CD-conditions

Consider the reaction-diffusion system (i =1,..., m)
m
8tu,‘(t,X)—Au,'(t,X) = Z k(i,j)(Uj(t,X)—u;(t,X)), t> 07 X € Rna
j=1

(12)
where k is as in the Markov chain setting. Simplest example:

{ Orun (t, x) — Aup(t,x) = wa(t, x) — w1 (t, x),
Orn(t, x) — Aup(t,x) = ur(t, x) — ua(t, x).

special structure of RHS in (12) = cooperative parabolic system,
Harnack estimates known (Féldes, Polatik in DCDS, 2009)

Question: Can we derive differential Harnack inequalities?
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L6. Hybrid problems: approach based on CD-conditions

Idea: Consider the index i € {1,..., m} as additional spatial
variable, define u(t, x, i) := uj(t, x). Write the system as

Oru— Au— Lqu=0, in(0,00) xR" x {1,..., m},

where Ly acts in i, Laf (i) = Y74 k(i,J)(F(7) — (7).
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L6. Hybrid problems: approach based on CD-conditions

Idea: Consider the index i € {1,..., m} as additional spatial
variable, define u(t, x, i) := uj(t, x). Write the system as

Oru— Au— Lqu=0, in(0,00) xR" x {1,..., m},

where Ly acts in i, Laf(i) = Y7 k(i,/)(f() — (7).

More generally, consider an operator sum of Markov generators
Le® Ly on X x Y where:

L. acts w.r.t. the continuous variable x € X (with diffusion
property),

Ly acts w.r.t. the discrete variable y € Y.

Hybrid CD-condition?
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LG. Hybrid problems: approach based on CD-conditions

Def.: Lo @ Lq satisfies CDpyp(r, d) for some x € R and d € [1, 0]
if for all suitable f : X x Y = R

(M Wr), (F) = k(T & Wr)(f) + 5 ((L @ Lg)f).
Here

(F& ), (1) = 5 ((Le® L) (T & W) ()

2T (£, (Le © La)(F)) — B (£, (Le ® La)(F)) )
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L6. Hybrid problems: approach based on CD-conditions

Def.: Lo @ Lq satisfies CDpyp(r, d) for some x € R and d € [1, 0]
if for all suitable f : X x Y = R

(& W)y (7) 2 £(T & V) (F) + 5 (L La)F)™
Here
(T @ W), (1) 1= 5 ((Le @ La) (T & W) ()
— 2 (F, (Le ® Lo)(F)) = Bri(F, (Le © La)(F)) )
Tensorization principle: (Krédss, Z. on arxiv, 2023)

If L. satisfies CD(k1,d1) and Ly satisfies CDvy(k2, d2), then
L. & Ly satisfies CDhyb(H, d) with k = min{/ﬂ, HQ}, d=d; + d>.
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L6. Hybrid problems: approach based on CD-conditions

Back tothesum L=A® Lgon R"x Y, Y ={1,...,m}.
Assume: Y connected and k(y1,y2) > 0 < k(y2,y1) > 0.
ko is minimum of all pos. k values.

Theorem: (Krass, Z. on arxiv, 2023)

Let v:[0,00) x R" X Y — (0,00) be sufficiently smooth and
Oru— Lu=0o0n (0,00) x R" x Y. Assume L satisfies CDpy,(0, d)
for some d € [1,00). Then v = log u satisfies

Ly = (I9VP + W (v)) ~ By < o on (0,00) X R x V.

Moreover, for x1,x0 € R", 1,y € Y and 0 < t; < th < 00,

d

N
u(ty, xi, y1) < U(tz,Xz,}Q)(é) ? eXP(

‘XQ —X1|2 2dist(y1,y2)2>
dta—t1)  ko(t2—t1) /)
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L6. Hybrid problems: approach based on CD-conditions

Back tothesum L=A® Lgon R"x Y, Y ={1,...,m}.
Assume: Y connected and k(y1,y2) > 0 < k(y2,y1) > 0.
ko is minimum of all pos. k values.

Theorem: (Krass, Z. on arxiv, 2023)

Let v:[0,00) x R" X Y — (0,00) be sufficiently smooth and
Oru— Lu=0o0n (0,00) x R" x Y. Assume L satisfies CDpy,(0, d)
for some d € [1,00). Then v = log u satisfies

Ly = (I9VP + W (v)) ~ By < o on (0,00) X R x V.

Moreover, for x1,x0 € R", 1,y € Y and 0 < t; < th < 00,

‘XQ —X1|2 2dist(y1,y2)2>

to g
u(tr, xa, y) < U(tz,Xz,}Q)(E) " exp (4(t2 “ 1) ko(tz — t1)

Remark: There is also a version for local (w.r.t. x) solutions.
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L6. Hybrid problems: approach based on CD-conditions

[llustration: Consider the simple RD-system

{ Orun (t, x) — Aup(t,x) = wa(t, x) — ur(t, x),
Orun(t, x) — Awp(t,x) = w1 (t, x) — wa(t, x).

Here, Y is the two-point graph, Ly satisfies CD~ (0, d») with
d» ~ 1,258. A satisfies CD(0, n). By tensorization, L =A@ Ly
satisfies CDpyp(0, d) with d = n+ d>.
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L6. Hybrid problems: approach based on CD-conditions

[llustration: Consider the simple RD-system

{ Orun (t, x) — Aup(t,x) = wa(t, x) — ur(t, x),
Orun(t, x) — Awp(t,x) = w1 (t, x) — wa(t, x).

Here, Y is the two-point graph, Ly satisfies CD~ (0, d») with

d» ~ 1,258. A satisfies CD(0, n). By tensorization, L =A@ Ly
satisfies CDpyp(0, d) with d = n+ d». We obtain that for
0<ti<th<oo xi,x €R" and i,j € {1,2},

ty, rto ‘Xz — X1|2 2‘_/ - i|2
(1) < ()5 0 )
it 1) < u 2’Xz)(h) PUle-n) " &-u
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L6. Hybrid problems: approach based on CD-conditions

[llustration: Consider the simple RD-system

{ Orun (t, x) — Aup(t,x) = wa(t, x) — ur(t, x),
Orun(t, x) — Awp(t,x) = w1 (t, x) — wa(t, x).

Here, Y is the two-point graph, Ly satisfies CD~ (0, d») with

d» ~ 1,258. A satisfies CD(0, n). By tensorization, L =A@ Ly
satisfies CDpyp(0, d) with d = n+ d». We obtain that for
0<ti<th<oo xi,x €R" and i,j € {1,2},

ty, rto ‘Xz — X1|2 2‘_/ — i|2
(60) < itz )(2) 5 oxp )
i) < w2 Xz)(h) ~ 4(t2*1‘1)Jr th— 1t

Remark: Open problem: different diffusion coefficients; then

tensorization fails, since the operators in the sum do not commute
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