

Li-Yau and Harnack estimates for nonlocal diffusion problems

Rico Zacher

Institute of Applied Analysis
Ulm University, Germany

partly joint work with
S. Kräss, A. Spener and F. Weber

1. Introduction: Classical Li-Yau and CD inequality

The classical Li-Yau inequality

Suppose $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ solves $\partial_t u - \Delta u = 0$. Then

$$-\Delta(\log u) \leq \frac{d}{2t} \quad \text{in } (0, \infty) \times \mathbb{R}^d. \quad (1)$$

Since $\partial_t(\log u) - \Delta(\log u) = |\nabla(\log u)|^2$, this is equivalent to

$$\partial_t(\log u) \geq |\nabla(\log u)|^2 - \frac{d}{2t} \quad \text{in } (0, \infty) \times \mathbb{R}^d. \quad (2)$$

- This extends to complete d -dimensional Riemannian manifolds M with $Ric(M) \geq 0$ (Li, Yau, Acta Math. 1986).

The classical Li-Yau inequality

Suppose $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ solves $\partial_t u - \Delta u = 0$. Then

$$-\Delta(\log u) \leq \frac{d}{2t} \quad \text{in } (0, \infty) \times \mathbb{R}^d. \quad (1)$$

Since $\partial_t(\log u) - \Delta(\log u) = |\nabla(\log u)|^2$, this is equivalent to

$$\partial_t(\log u) \geq |\nabla(\log u)|^2 - \frac{d}{2t} \quad \text{in } (0, \infty) \times \mathbb{R}^d. \quad (2)$$

- This extends to complete d -dimensional Riemannian manifolds M with $Ric(M) \geq 0$ (Li, Yau, Acta Math. 1986).
- (2) is sharp, one has equality for $u(t, x) = (4\pi t)^{-d/2} \exp\left(\frac{-|x|^2}{4t}\right)$.
- Integration of (2) over a path connecting (t_1, x_1) and (t_2, x_2) with $0 < t_1 < t_2$ gives the sharp Harnack estimate

$$u(t_1, x_1) \leq u(t_2, x_2) \left(\frac{t_2}{t_1}\right)^{d/2} \exp\left(\frac{|x_1 - x_2|^2}{4(t_2 - t_1)}\right).$$

How can we prove Li-Yau? Basic idea: $v := \log u$ solves

$$\partial_t v - \Delta v = |\nabla v|^2, \quad (3)$$

by the chain rule $\Delta H(u) = H'(u)\Delta u + H''(u)|\nabla u|^2$ with $H = \log$.
So we need $-\Delta v \leq \frac{d}{2t}$.

How can we prove Li-Yau? Basic idea: $v := \log u$ solves

$$\partial_t v - \Delta v = |\nabla v|^2, \quad (3)$$

by the chain rule $\Delta H(u) = H'(u)\Delta u + H''(u)|\nabla u|^2$ with $H = \log$.
 So we need $-\Delta v \leq \frac{d}{2t}$. Apply Δ to (3) and use Bochner's identity.

$$\begin{aligned} \partial_t \Delta v - \Delta(\Delta v) &= \Delta(|\nabla v|^2) \\ &= 2\nabla v \cdot \nabla \Delta v + 2|\nabla^2 v|_{HS}^2 \quad \left(+ 2Ric(\nabla v, \nabla v) \right). \end{aligned}$$

Now, $|\nabla^2 v|_{HS}^2 \geq \frac{1}{d} (\Delta v)^2$ (a CD-inequality), and thus

$$\partial_t \Delta v - \Delta(\Delta v) \geq 2\nabla v \cdot \nabla \Delta v + \frac{2}{d} (\Delta v)^2$$

$\omega(t) := -\frac{d}{2t}$ solves $\partial_t \omega = \frac{2}{d} \omega^2$. Comparison arg. $\hookrightarrow \Delta v \geq \omega$

Γ-calculus by Bakry and Émery

Let L be the generator of a Markov semigroup.

$$\Gamma(f, g) = \frac{1}{2}(L(fg) - fLg - gLf), \text{ (carré du champ)}$$

$$\Gamma_2(f, g) = \frac{1}{2}(L\Gamma(f, g) - \Gamma(f, Lg) - \Gamma(g, Lf)), \text{ (iterated carré du champ)}$$

$$\Gamma(f) = \Gamma(f, f), \quad \Gamma_2(f) = \Gamma_2(f, f).$$

Γ-calculus by Bakry and Émery

Let L be the generator of a Markov semigroup.

$$\Gamma(f, g) = \frac{1}{2}(L(fg) - fLg - gLf), \text{ (carré du champ)}$$

$$\Gamma_2(f, g) = \frac{1}{2}(L\Gamma(f, g) - \Gamma(f, Lg) - \Gamma(g, Lf)), \text{ (iterated carré du champ)}$$

$$\Gamma(f) = \Gamma(f, f), \quad \Gamma_2(f) = \Gamma_2(f, f).$$

L satisfies the curvature-dimension inequality $CD(\kappa, d)$ with $\kappa \in \mathbb{R}$ and $d \in [1, \infty]$ if (μ is a fixed invariant and reversible measure)

$$\Gamma_2(f) \geq \kappa\Gamma(f) + \frac{1}{d}(Lf)^2, \quad \mu - a.e.$$

$L = \Delta$ on \mathbb{R}^d : $\Gamma(f, g) = \nabla f \cdot \nabla g$, $\Gamma_2(f) = |\nabla^2 f|_{HS}^2 \Rightarrow CD(0, d)$

Suppose that L is a diffusion generator, i.e. for all $H \in C^2$ and suitable f the chain rule $LH(f) = H'(f)Lf + H''(f)\Gamma(f)$ holds.

Suppose that L is a diffusion generator, i.e. for all $H \in C^2$ and suitable f the chain rule $LH(f) = H'(f)Lf + H''(f)\Gamma(f)$ holds.

- $CD(0, d)$, $d < \infty$, f pos. $\Rightarrow -L(\log e^{Lt}f) \leq \frac{d}{2t}$, $t > 0$ (Li-Yau)

Suppose that L is a diffusion generator, i.e. for all $H \in C^2$ and suitable f the chain rule $LH(f) = H'(f)Lf + H''(f)\Gamma(f)$ holds.

- $CD(0, d)$, $d < \infty$, f pos. $\Rightarrow -L(\log e^{Lt}f) \leq \frac{d}{2t}$, $t > 0$ (Li-Yau)
- $CD(\kappa, \infty)$, $\kappa > 0 \Rightarrow$ log-Sobolev and Poincaré inequality
(\Rightarrow exp. decay of entropy and variance, hypercontractivity,...)

See the monograph by Bakry, Gentil, Ledoux, *Analysis and geometry of Markov diffusion operators* (2014)

2. Nonlocal operators: examples and difficulties

Consider Markov generators of the form (X a metric space)

$$Lf(x) = \int_X (f(y) - f(x)) k(x, dy).$$

Key feature: difference structure under integral.

Consider Markov generators of the form (X a metric space)

$$Lf(x) = \int_X (f(y) - f(x)) k(x, dy).$$

Key feature: difference structure under integral. Examples:

- Fractional Laplacian: $X = \mathbb{R}^d$, $\beta \in (0, 2)$,

$$Lf(x) = -(-\Delta)^{\frac{\beta}{2}} f(x) = c_{\beta, d} \text{ p.v. } \int_{\mathbb{R}^d} \frac{f(y) - f(x)}{|x - y|^{d+\beta}} dy.$$

Consider Markov generators of the form (X a metric space)

$$Lf(x) = \int_X (f(y) - f(x)) k(x, dy).$$

Key feature: difference structure under integral. Examples:

- Fractional Laplacian: $X = \mathbb{R}^d$, $\beta \in (0, 2)$,

$$Lf(x) = -(-\Delta)^{\frac{\beta}{2}} f(x) = c_{\beta, d} \text{ p.v. } \int_{\mathbb{R}^d} \frac{f(y) - f(x)}{|x - y|^{d+\beta}} dy.$$

- Generators of Markov chains (generalised Laplacians on a graph):

X is a finite or countable set,

$$Lf(x) = \sum_{y \in X} k(x, y) (f(y) - f(x)).$$

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for $L = -(-\Delta)^{\frac{\beta}{2}}$ addressed in a survey by Garofalo, *Fractional thoughts...* (2019), as a key open problem)

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for $L = -(-\Delta)^{\frac{\beta}{2}}$ addressed in a survey by Garofalo, *Fractional thoughts...* (2019), as a key open problem)

Difficulties:

- The chain rule fails for L .

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for $L = -(-\Delta)^{\frac{\beta}{2}}$ addressed in a survey by Garofalo, *Fractional thoughts...* (2019), as a key open problem)

Difficulties:

- The chain rule fails for L .
- What is the right form of the Li-Yau inequality?

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for $L = -(-\Delta)^{\frac{\beta}{2}}$ addressed in a survey by Garofalo, *Fractional thoughts...* (2019), as a key open problem)

Difficulties:

- The chain rule fails for L .
- What is the right form of the Li-Yau inequality?
- $CD(0, d)$ is not strong enough. New CD-conditions required.

Consider positive solutions u of

$$\partial_t u - Lu = 0, \quad t > 0.$$

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for $L = -(-\Delta)^{\frac{\beta}{2}}$ addressed in a survey by Garofalo, *Fractional thoughts...* (2019), as a key open problem)

Difficulties:

- The chain rule fails for L .
- What is the right form of the Li-Yau inequality?
- $CD(0, d)$ is not strong enough. New CD-conditions required.
- To obtain Harnack, we have to argue with a "nonlocal gradient".

Positive results on finite and locally finite graphs

- Bauer, Horn, Lin, Lippner, Mangoubi, Yau: Li-Yau inequality on graphs. *J. Diff. Geom.*, 2015:
square root approach, $CDE(\kappa, d)$ and $CDE'(\kappa, d)$, Li-Yau (with $\frac{C}{t}$) and Harnack on finite and infinite graphs
- Münch: Li-Yau inequality on finite graphs via non-linear curvature dimension condition. *J. Math. Pures Appl.*, 2018:
 Γ^ψ -calculus for concave ψ , $CD_\psi(\kappa, d)$, $\psi = \sqrt{\cdot}$ covers some of the previous results, $\psi = \log$ gives log. Li-Yau, Harnack; finite graphs
- Dier, Kassmann, Z.: Discrete versions of the Li-Yau gradient estimate. *Ann. Sc. Norm. Super. Pisa Cl. Sci.* (5), 2021:
log. Li-Yau and Harnack based on $CD(F; 0)$, F a CD-function, more general relaxation functions, improved estimates, some even sharp
On [discrete curvature](#): Erbar, Maas (ARMA 2012), Mielke (Calc. Var. PDE 2013); different approach based on optimal transport

CD-functions

Crucial idea: Replace $(\dots)^2$ in $CD(0, d)$ by a more general function.

Definition

A continuous function $F : [0, \infty) \rightarrow [0, \infty)$ is called **CD-function**, if $F(0) = 0$, $F(x)/x$ is strictly increasing on $(0, \infty)$, and $1/F$ is integrable at ∞ . (Example: $F(x) = \nu x^2$ with $\nu > 0$.)

Lemma

Let $F : [0, \infty) \rightarrow [0, \infty)$ be a CD-function. Then there is a unique strictly positive solution φ of the ODE

$$\dot{\varphi}(t) + F(\varphi(t)) = 0, \quad t > 0,$$

which has $(0, \infty)$ as its maximal interval of existence. This function φ is strictly decreasing and log-convex, and it satisfies $\varphi(0+) = \infty$ and $\varphi(\infty) = 0$. Call φ the **relaxation function** associated with F .

Equation for $\log u$

Observation in Dier, Kassmann, Z. (2021): Consider Markov chain setting, i.e.

$$Lf(x) = \sum_{y \in X} k(x, y)(f(y) - f(x)).$$

Suppose u is positive and $\partial_t u - Lu = 0$ in $(0, \infty) \times X$. Then

$v := \log u$ solves

$$\partial_t v - Lv = \Psi_{\Upsilon}(v) \quad \text{in } (0, \infty) \times X.$$

$$\Psi_H(f)(x) := \sum_{y \in X} k(x, y)H(f(y) - f(x)), \quad \Upsilon(z) = e^z - 1 - z$$

classical case: $\partial_t v - \Delta v = |\nabla v|^2 = \Gamma(v)$,

here $\Gamma(f)(x) = \frac{1}{2} \sum_{y \in X} k(x, y)(f(y) - f(x))^2$

3. The CD_γ condition

Markov chain setting, X finite or countable,

$$Lf(x) = \sum_{y \in X} k(x, y)(f(y) - f(x)),$$

where $k(x, y) \geq 0$ for $x \neq y$, and $\sum_{y \in X} k(x, y) = 0$ for all $x \in X$.

Question: Is there a natural analogue to $CD(\kappa, d)$ with corresponding implications? (Li-Yau, functional inequalities,...)

Markov chain setting, X finite or countable,

$$Lf(x) = \sum_{y \in X} k(x, y)(f(y) - f(x)),$$

where $k(x, y) \geq 0$ for $x \neq y$, and $\sum_{y \in X} k(x, y) = 0$ for all $x \in X$.

Question: Is there a natural analogue to $CD(\kappa, d)$ with corresponding implications? (Li-Yau, functional inequalities,...)

Recall: $CD(\kappa, d)$ means $\Gamma_2(f) \geq \kappa \Gamma(f) + \frac{1}{d} (Lf)^2$.

Markov chain setting, X finite or countable,

$$Lf(x) = \sum_{y \in X} k(x, y)(f(y) - f(x)),$$

where $k(x, y) \geq 0$ for $x \neq y$, and $\sum_{y \in X} k(x, y) = 0$ for all $x \in X$.

Question: Is there a natural analogue to $CD(\kappa, d)$ with corresponding implications? (Li-Yau, functional inequalities,...)

Recall: $CD(\kappa, d)$ means $\Gamma_2(f) \geq \kappa \Gamma(f) + \frac{1}{d} (Lf)^2$.

We have to identify suitable replacements for all three terms.

In the **diffusion setting**(chain rule!) with invariant and reversible probability measure μ :

$$\mathcal{H}(P_t f) = \int_X P_t f \log(P_t f) d\mu, \quad (\text{entropy})$$

$$\frac{d}{dt} \mathcal{H}(P_t f) = - \int_X P_t f \Gamma(\log(P_t f)) d\mu, \quad (\text{neg. Fisher information})$$

$$\frac{d^2}{dt^2} \mathcal{H}(P_t f) = 2 \int_X P_t f \Gamma_2(\log(P_t f)) d\mu.$$

In the **diffusion setting** (chain rule!) with invariant and reversible probability measure μ :

$$\mathcal{H}(P_t f) = \int_X P_t f \log(P_t f) d\mu, \quad (\text{entropy})$$

$$\frac{d}{dt} \mathcal{H}(P_t f) = - \int_X P_t f \Gamma(\log(P_t f)) d\mu, \quad (\text{neg. Fisher information})$$

$$\frac{d^2}{dt^2} \mathcal{H}(P_t f) = 2 \int_X P_t f \Gamma_2(\log(P_t f)) d\mu.$$

In the **discrete setting**: (see Weber, Z. JFA, 2021; Weber Electron. J. Probab., 2021)

$$\frac{d}{dt} \mathcal{H}(P_t f) = - \int_X P_t f \Psi_\gamma(\log(P_t f)) d\mu,$$

$$\frac{d^2}{dt^2} \mathcal{H}(P_t f) = 2 \int_X P_t f \Psi_{2,\gamma}(\log(P_t f)) d\mu.$$

Here

$$\Psi_{2,\gamma}(f) = \frac{1}{2} (L\Psi_\gamma(f) - B\gamma'(f, Lf)),$$

where $(\gamma'(z) = e^z - 1)$

$$B\gamma'(f, g)(x) = \sum_{y \in X} k(x, y) \gamma'(f(y) - f(x)) (g(y) - g(x)).$$

Here

$$\Psi_{2,\gamma}(f) = \frac{1}{2} (L\Psi_\gamma(f) - B_{\gamma'}(f, Lf)),$$

where ($\gamma'(z) = e^z - 1$)

$$B_{\gamma'}(f, g)(x) = \sum_{y \in X} k(x, y) \gamma'(f(y) - f(x)) (g(y) - g(x)).$$

Definition

L satisfies $CD_\gamma(\kappa, F)$ with $\kappa \in \mathbb{R}$ and CD-function F if for all (suitable) $f : X \rightarrow \mathbb{R}$ (and with $F_0 := F\chi_{[0,\infty)}$)

$$\Psi_{2,\gamma}(f) \geq \kappa \Psi_\gamma(f) + F_0(-Lf) \quad \text{on } X.$$

L satisfies $CD_\gamma(\kappa, d)$ with $\kappa \in \mathbb{R}$ and $d \in [1, \infty]$ if

$$\Psi_{2,\gamma}(f) \geq \kappa \Psi_\gamma(f) + \frac{1}{d} (Lf)^2 \quad \text{on } X.$$

Important properties (see Weber, Z. in JFA, 2021):

- $CD_\gamma(\kappa, \infty)$ with $\kappa > 0$ implies the modified log-Sobolev inequality (MLSI) with constant κ (\Rightarrow exp. decay of entropy)

MLSI(α) with $\alpha > 0$: $\mathcal{H}(f) \leq \frac{1}{2\alpha} \mathcal{I}(f)$ for all $f \in \mathcal{P}(X)$,

where (with $d\mu = \pi d\#$)

$$\mathcal{P}(X) = \{\rho : X \rightarrow [0, \infty) \text{ s.t. } \int_X \rho \, d\mu = \sum_{x \in X} \rho(x) \pi(x) = 1\},$$
$$\mathcal{H}(f) = \int_X f \log f \, d\mu = \sum_{x \in X} f(x) \log(f(x)) \pi(x),$$

Important properties (see Weber, Z. in JFA, 2021):

- $CD_\gamma(\kappa, \infty)$ with $\kappa > 0$ implies the modified log-Sobolev inequality (MLSI) with constant κ (\Rightarrow exp. decay of entropy)

MLSI(α) with $\alpha > 0$: $\mathcal{H}(f) \leq \frac{1}{2\alpha} \mathcal{I}(f)$ for all $f \in \mathcal{P}(X)$,

where (with $d\mu = \pi d\#$)

$$\mathcal{P}(X) = \{\rho : X \rightarrow [0, \infty) \text{ s.t. } \int_X \rho \, d\mu = \sum_{x \in X} \rho(x) \pi(x) = 1\},$$

$$\mathcal{H}(f) = \int_X f \log f \, d\mu = \sum_{x \in X} f(x) \log(f(x)) \pi(x),$$

and (using detailed balance, i.e. $\pi(x)k(x, y) = \pi(y)k(y, x)$)

$$\begin{aligned} \mathcal{I}(f) &= \int_X f \Psi_\gamma(\log f) \, d\mu \\ &= \sum_{x \in X} f(x) \sum_{y \in X} k(x, y) \gamma(\log f(y) - \log f(x)) \pi(x) \\ &= \frac{1}{2} \sum_{x, y \in X} k(x, y) (f(y) - f(x)) (\log f(y) - \log f(x)) \pi(x). \end{aligned}$$

- $CD_\gamma(\kappa, \infty)$ is characterised by the gradient bound

$$\Psi_\gamma(P_t f) \leq e^{-2\kappa t} P_t(\Psi_\gamma(f)), \quad t > 0.$$

- $CD_\gamma(\kappa, \infty)$ is characterised by the gradient bound

$$\Psi_\gamma(P_t f) \leq e^{-2\kappa t} P_t(\Psi_\gamma(f)), \quad t > 0.$$

- curvature bounds are preserved under tensorization

L_i : generator of a Markov chain on X_i , $i = 1, 2$; $L := L_1 \oplus L_2$ generates a chain on $X_1 \times X_2$.

If L_i satisfies $CD_\gamma(\kappa_i, \infty)$ with $\kappa_i \in \mathbb{R}$, $i = 1, 2$, then L satisfies $CD_\gamma(\kappa, \infty)$ with $\kappa = \min\{\kappa_1, \kappa_2\}$.

- $CD_\gamma(\kappa, \infty)$ is characterised by the gradient bound

$$\Psi_\gamma(P_t f) \leq e^{-2\kappa t} P_t(\Psi_\gamma(f)), \quad t > 0.$$

- curvature bounds are preserved under tensorization

L_i : generator of a Markov chain on X_i , $i = 1, 2$; $L := L_1 \oplus L_2$ generates a chain on $X_1 \times X_2$.

If L_i satisfies $CD_\gamma(\kappa_i, \infty)$ with $\kappa_i \in \mathbb{R}$, $i = 1, 2$, then L satisfies $CD_\gamma(\kappa, \infty)$ with $\kappa = \min\{\kappa_1, \kappa_2\}$.

- CD_γ is compatible with the diffusion setting; there is a natural notion of $\Gamma \oplus \Psi_\gamma$ and $(\Gamma \oplus \Psi_\gamma)_2$, tensorization principle for hybrid processes

Further remarks:

- $L\Psi_{\gamma'}(f) = 2\Psi_{2,\gamma}(f) + B_{\exp}(f, Lf)$ with $B_{\exp}(f, Lf) \geq 0$ in the situation of the CD condition from [DKZ]
- direct link between $CD_\gamma(\kappa, \infty)$ and entropic curvature bound not known; $CD_\gamma(\kappa, d)$ is equivalent to Münch's $CD\psi(d, \kappa)$ with $\psi = \log$ (not obvious!); $CD_\gamma(\kappa, \infty)$ is closely linked to Monmarché's generalised Γ -calculus (2019)
- $CD_\gamma(\kappa, d) \Rightarrow CD(\kappa, d)$.

Examples:

- unweighted complete graph K_n : $CD_\gamma(\sqrt{2n}, \infty)$ holds for all $n \geq 2$; this is optimal for $n = 2$ since $CD(2, \infty)$ is optimal;
 $CD(1 + \frac{n}{2}, \infty)$ is optimal for $n \geq 2$

Examples:

- unweighted complete graph K_n : $CD_\gamma(\sqrt{2n}, \infty)$ holds for all $n \geq 2$; this is optimal for $n = 2$ since $CD(2, \infty)$ is optimal;
 $CD(1 + \frac{n}{2}, \infty)$ is optimal for $n \geq 2$
- n -dimensional hypercube: $CD_\gamma(2, \infty)$ holds for all $n \in \mathbb{N}$ and is optimal (since $CD(2, \infty)$ is optimal for all $n \in \mathbb{N}$); easy proof by induction and tensorization and the result for K_2

Examples:

- unweighted complete graph K_n : $CD_\gamma(\sqrt{2n}, \infty)$ holds for all $n \geq 2$; this is optimal for $n = 2$ since $CD(2, \infty)$ is optimal;
 $CD(1 + \frac{n}{2}, \infty)$ is optimal for $n \geq 2$
- n -dimensional hypercube: $CD_\gamma(2, \infty)$ holds for all $n \in \mathbb{N}$ and is optimal (since $CD(2, \infty)$ is optimal for all $n \in \mathbb{N}$); easy proof by induction and tensorization and the result for K_2
- unweighted 3-star: $CD_\gamma(0, \infty)$ fails at center point, but there holds $CD_\gamma(\kappa, \infty)$ with some $\kappa \in (-\infty, 0)$

4. Long-range jump operators

Consider nonlocal operators on the lattice \mathbb{Z} of the form

$$Lf(x) = \sum_{j \in \mathbb{Z}} k(j)(f(x+j) - f(x)), \quad x \in \mathbb{Z}, \quad (4)$$

with a kernel $k : \mathbb{Z} \rightarrow [0, \infty)$ satisfying $0 < \sum_{j \in \mathbb{Z}} k(j) < \infty$, $k(-j) = k(j)$ for all $j \in \mathbb{N}$, and $k(0) = 0$.

Important example: (linked to frac. descr. Laplacian for $\beta \in (0, 2)$)

$$k_\beta(j) = \frac{c}{|j|^{1+\beta}}, \quad j \in \mathbb{Z} \setminus \{0\}, \quad \text{with } c, \beta > 0.$$

Consider nonlocal operators on the lattice \mathbb{Z} of the form

$$Lf(x) = \sum_{j \in \mathbb{Z}} k(j)(f(x+j) - f(x)), \quad x \in \mathbb{Z}, \quad (4)$$

with a kernel $k : \mathbb{Z} \rightarrow [0, \infty)$ satisfying $0 < \sum_{j \in \mathbb{Z}} k(j) < \infty$, $k(-j) = k(j)$ for all $j \in \mathbb{N}$, and $k(0) = 0$.

Important example: (linked to frac. discr. Laplacian for $\beta \in (0, 2)$)

$$k_\beta(j) = \frac{c}{|j|^{1+\beta}}, \quad j \in \mathbb{Z} \setminus \{0\}, \quad \text{with } c, \beta > 0.$$

Theorem: (Spener, Weber, Z., Calc. Var. PDE 2019)

- k non-incr. on \mathbb{N} , $\sum_{j \in \mathbb{N}} k(j)j^2 < \infty \Rightarrow \exists d < \infty : CD(0, d) \text{ holds.}$
- $k = k_\beta$, $\beta > 2 \Rightarrow CD(0, d) \text{ holds for some } d < \infty.$
- $k = k_\beta$, $\beta < 2 \Rightarrow CD(0, d) \text{ fails for all } d < \infty.$

More flexibility by $CD\gamma(0, F)$

What about $\Psi_{2,\gamma}(f) \geq F_0(-Lf)$? Note that

$$\Psi_{2,\gamma}(f)(x) = \frac{1}{2} \sum_{j,l \in \mathbb{Z}} k(j)k(l) e^{f(x+l) - f(x)} \Upsilon(f(x+j+l) - f(x+j) - f(x+l) + f(x)),$$

where $\Upsilon(z) = e^z - 1 - z$.

More flexibility by $CD\gamma(0, F)$

What about $\Psi_{2,\gamma}(f) \geq F_0(-Lf)$? Note that

$$\Psi_{2,\gamma}(f)(x) = \frac{1}{2} \sum_{j,l \in \mathbb{Z}} k(j)k(l) e^{f(x+l) - f(x)} \Upsilon(f(x+j+l) - f(x+j) - f(x+l) + f(x)),$$

where $\Upsilon(z) = e^z - 1 - z$.

Theorem: (Spener, Weber, Z., DCDS 2024)

- $\sum_{j \in \mathbb{N}} k(j)^{1-\delta} < \infty, \delta \in (0, 1) \Rightarrow \Psi_{2,\gamma}(f) \geq c|Lf|^\gamma, \gamma = \frac{1+\delta}{\delta}$.

More flexibility by $CD\gamma(0, F)$

What about $\Psi_{2,\gamma}(f) \geq F_0(-Lf)$? Note that

$$\Psi_{2,\gamma}(f)(x) = \frac{1}{2} \sum_{j,l \in \mathbb{Z}} k(j)k(l) e^{f(x+l) - f(x)} \Upsilon(f(x+j+l) - f(x+j) - f(x+l) + f(x)),$$

where $\Upsilon(z) = e^z - 1 - z$.

Theorem: (Spener, Weber, Z., DCDS 2024)

- $\sum_{j \in \mathbb{N}} k(j)^{1-\delta} < \infty$, $\delta \in (0, 1) \Rightarrow \Psi_{2,\gamma}(f) \geq c|Lf|^\gamma$, $\gamma = \frac{1+\delta}{\delta}$.
- $k = k_\beta$, $\beta \in (0, \infty)$ $\Rightarrow CD\gamma(0, F)$ holds with some CD-function F , which grows exponentially at ∞ and satisfies $F(x) \sim cx^\gamma$ as $x \rightarrow 0$ where $\gamma = 2$ for $\beta > 2$ and ($\beta_* = \frac{1+\sqrt{5}}{2}$)

$$\gamma = \frac{1+2\beta}{\beta} \text{ for } \beta \in (0, \beta_*], \quad \gamma = \frac{\beta - \varepsilon}{\beta - \varepsilon - 1} \text{ for } \beta \in (\beta_*, 2].$$

Theorem: (Spener, Weber, Z., DCDS 2024)

Let $\beta \in (0, \infty)$ and L_β the operator associated with k_β . Any bdd. function $u : [0, \infty) \times \mathbb{Z} \rightarrow (0, \infty)$ that is C^1 in time and solves $\partial_t u = L_\beta u$ on $(0, \infty) \times \mathbb{Z}$ satisfies the Li-Yau estimate

$$-L_\beta \log u(t, x) \leq \varphi(t), \quad (t, x) \in (0, \infty) \times \mathbb{Z},$$

where φ is the relax. function corresp. to F from above.

$(\varphi(t) \sim -c \log t \text{ as } t \rightarrow 0 \text{ and } \varphi(t) \sim ct^{-\frac{1}{\gamma-1}} \text{ as } t \rightarrow \infty)$

Moreover, we have the Harnack inequality

$$u(t_1, x_1) \leq u(t_2, x_2) \exp \left(\int_{t_1}^{t_2} \varphi(t) \, dt + \frac{2|x_1 - x_2|^{\min\{1+\beta, 2\}}}{t_2 - t_1} \right),$$

for $0 \leq t_1 < t_2$, $x_1, x_2 \in \mathbb{Z}$. ($t_1 = 0$ possible, φ is integrable at 0!)

Theorem: (Spener, Weber, Z., DCDS 2024)

Let $\beta \in (0, \infty)$ and L_β the operator associated with k_β . Any bdd. function $u : [0, \infty) \times \mathbb{Z} \rightarrow (0, \infty)$ that is C^1 in time and solves $\partial_t u = L_\beta u$ on $(0, \infty) \times \mathbb{Z}$ satisfies the Li-Yau estimate

$$-L_\beta \log u(t, x) \leq \varphi(t), \quad (t, x) \in (0, \infty) \times \mathbb{Z},$$

where φ is the relax. function corresp. to F from above.

$(\varphi(t) \sim -c \log t \text{ as } t \rightarrow 0 \text{ and } \varphi(t) \sim ct^{-\frac{1}{\gamma-1}} \text{ as } t \rightarrow \infty)$

Moreover, we have the Harnack inequality

$$u(t_1, x_1) \leq u(t_2, x_2) \exp \left(\int_{t_1}^{t_2} \varphi(t) \, dt + \frac{2|x_1 - x_2|^{\min\{1+\beta, 2\}}}{t_2 - t_1} \right),$$

for $0 \leq t_1 < t_2$, $x_1, x_2 \in \mathbb{Z}$. ($t_1 = 0$ possible, φ is integrable at 0!)

Remark: Same result for frac. discrete Laplacian $-(-\Delta)^{\frac{\beta}{2}}$ & heat kernel estimates

The fractional Laplacian has infinite dimension

Let $\beta \in (0, 2)$ and consider for $x \in \mathbb{R}^d$

$$Lu(x) = -(-\Delta)^{\frac{\beta}{2}} u(x) = c_{\beta,d} \int_{\mathbb{R}^d} \frac{u(x+h) - 2u(x) + u(x-h)}{|h|^{d+\beta}} dh.$$

$$\Gamma(u)(x) = c_{\beta,d} \int_{\mathbb{R}^d} \frac{(u(x+h) - u(x))^2}{|h|^{d+\beta}} dh,$$

$$\Gamma_2(u)(x) = c_{\beta,d}^2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{[u(x+h+\sigma) - u(x+h) - u(x+\sigma) + u(x)]^2}{|h|^{d+\beta} |\sigma|^{d+\beta}} dh d\sigma.$$

The fractional Laplacian has infinite dimension

Let $\beta \in (0, 2)$ and consider for $x \in \mathbb{R}^d$

$$Lu(x) = -(-\Delta)^{\frac{\beta}{2}} u(x) = c_{\beta, d} \int_{\mathbb{R}^d} \frac{u(x+h) - 2u(x) + u(x-h)}{|h|^{d+\beta}} dh.$$

$$\Gamma(u)(x) = c_{\beta, d} \int_{\mathbb{R}^d} \frac{(u(x+h) - u(x))^2}{|h|^{d+\beta}} dh,$$

$$\Gamma_2(u)(x) = c_{\beta, d}^2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{[u(x+h+\sigma) - u(x+h) - u(x+\sigma) + u(x)]^2}{|h|^{d+\beta} |\sigma|^{d+\beta}} dh d\sigma.$$

Theorem: (Spener, Weber, Z., Comm. PDE 2020)

For any $R > 0$, $\kappa \in \mathbb{R}$ and $N \in (0, \infty)$ there is a $u \in C_c^\infty(\mathbb{R}^d)$ s.t.

$$0 < \Gamma_2(u)(x) < \kappa \Gamma(u)(x) + \frac{1}{N} (L(u)(x))^2, \quad \forall x \in B(0, R).$$

The fractional Laplacian has infinite dimension

Let $\beta \in (0, 2)$ and consider for $x \in \mathbb{R}^d$

$$Lu(x) = -(-\Delta)^{\frac{\beta}{2}} u(x) = c_{\beta, d} \int_{\mathbb{R}^d} \frac{u(x+h) - 2u(x) + u(x-h)}{|h|^{d+\beta}} dh.$$

$$\Gamma(u)(x) = c_{\beta, d} \int_{\mathbb{R}^d} \frac{(u(x+h) - u(x))^2}{|h|^{d+\beta}} dh,$$

$$\Gamma_2(u)(x) = c_{\beta, d}^2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{[u(x+h+\sigma) - u(x+h) - u(x+\sigma) + u(x)]^2}{|h|^{d+\beta} |\sigma|^{d+\beta}} dh d\sigma.$$

Theorem: (Spener, Weber, Z., Comm. PDE 2020)

For any $R > 0$, $\kappa \in \mathbb{R}$ and $N \in (0, \infty)$ there is a $u \in C_c^\infty(\mathbb{R}^d)$ s.t.

$$0 < \Gamma_2(u)(x) < \kappa \Gamma(u)(x) + \frac{1}{N} (L(u)(x))^2, \quad \forall x \in B(0, R).$$

- (i) negative answer to a question by Garofalo (2019)
- (ii) $CD\Gamma(0, d)$ must fail as well, but scaling suggests $\varphi(t) \leq \frac{c}{t}$;
thus only little hope w.r.t. the CD approach! Other CD-conditions?

5. Reduction to the heat kernel

Reduction to the heat kernel for the heat equation

Lemma: Let $Pf(x) = \int_{\mathbb{R}^d} H(x, y)f(y) dy$, for sufficiently regular, positive functions H and f . Then

$$\int_{\mathbb{R}^d} |\nabla_x \log H(x, y)|^2 H(x, y)f(y) dy \geq |\nabla \log Pf(x)|^2 Pf(x). \quad (5)$$

Proof: By Hölder's inequality we have

$$\begin{aligned} (\partial_{x_i} Pf(x))^2 &= \left(\int_{\mathbb{R}^d} \partial_{x_i} H(x, y)f(y) dy \right)^2 \\ &\leq \int_{\mathbb{R}^d} \frac{(\partial_{x_i} H(x, y))^2}{H(x, y)} f(y) dy \int_{\mathbb{R}^d} H(x, y)f(y) dy, \end{aligned}$$

which directly leads to (5) by summing up and employing the chain rule for the gradient ($\nabla(\log g) = \frac{\nabla g}{g}$).

For the heat kernel $H(t, x, y) = (4\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{4t}}$ we have

$$-\Delta_x (\log H(t, x, y)) = \frac{d}{2t} =: \varphi(t). \quad (6)$$

For any positive solution u of the heat equation,

$$\partial_t u - u \Delta (\log u) = u |\nabla (\log u)|^2.$$

In particular,

$$\partial_t H(t, x, y) + H(t, x, y) \varphi(t) = H(t, x, y) |\nabla_x (\log H(t, x, y))|^2$$

Consider a positive solution $u(t, x) = \int_{\mathbb{R}^d} H(t, x, y) u_0(y) dy$ of the heat equation (Widder's type theorem!). Then

$$\begin{aligned}
 \partial_t u(t, x) + \varphi(t) u(t, x) &= \int_{\mathbb{R}^d} (\partial_t H(t, x, y) + \varphi(t) H(t, x, y)) u_0(y) dy \\
 &= \int_{\mathbb{R}^d} (|\nabla_x(\log H(t, x, y))|^2 H(t, x, y)) u_0(y) dy \\
 &\geq |\nabla(\log u(t, x))|^2 u(t, x) \quad (\text{by the Lemma}) \\
 &= \partial_t u(t, x) - u(t, x) \Delta(\log u(t, x)).
 \end{aligned}$$

Hence

$$-\Delta(\log u(t, x)) \leq \varphi(t) = \frac{d}{2t}.$$

Note that we only need $-\Delta_x(\log H(t, x, y)) \leq \varphi(t)$.

Conclusion: Li-Yau for heat kernel implies Li-Yau for pos. solutions.

Reduction to the heat kernel for the fractional heat equation

Question: Is there a similar argument for the fractional heat equation (FHE)?

Let u be a positive solution of the FHE. Then

$$\partial_t(\log u) + (-\Delta)^{\frac{\beta}{2}}(\log u) = \Psi_\Gamma(\log u),$$

where

$$\Psi_\Gamma(v)(x) = c_{\beta,d} \int_{\mathbb{R}^d} \frac{\Gamma(v(y) - v(x))}{|x - y|^{d+\beta}} dy$$

with $\Gamma(z) = e^z - 1 - z$. Equivalently,

$$\partial_t u + u(-\Delta)^{\frac{\beta}{2}}(\log u) = u \Psi_\Gamma(\log u).$$

Recall the key inequality from the local case

$$\int_{\mathbb{R}^d} |\nabla_x \log H(x, y)|^2 H(x, y) f(y) dy \geq |\nabla \log Pf(x)|^2 Pf(x),$$

where $Pf(x) = \int_{\mathbb{R}^d} H(x, y) f(y) dy$ and H and f are sufficiently regular, positive functions.

Recall the key inequality from the local case

$$\int_{\mathbb{R}^d} |\nabla_x \log H(x, y)|^2 H(x, y) f(y) dy \geq |\nabla \log Pf(x)|^2 Pf(x),$$

where $Pf(x) = \int_{\mathbb{R}^d} H(x, y) f(y) dy$ and H and f are sufficiently regular, positive functions.

Key lemma: (Weber, Z. in Math. Ann. 2023) Let P, H, f be as before. Then

$$\int_{\mathbb{R}^d} \Psi_\Upsilon(\log H(\cdot, y))(x) H(x, y) f(y) dy \geq \Psi_\Upsilon(\log Pf)(x) Pf(x).$$

Proof: Use the convexity of $r \mapsto \Upsilon(\log r) = r - \log r - 1$.

Remark: The lemma extends to more general nonlocal operators.

Positive (strong) solutions u of the FHE can be expressed as

$$u(t, x) = \int_{\mathbb{R}^d} G^{(\beta)}(t, x - y) u_0(y) dy, \quad (7)$$

where $G^{(\beta)}$ is the fund. sol. of the FHE, see Barrios, Peral, Soria, Valdinoci, ARMA (2014).

Set $H(t, x, y) = G^{(\beta)}(t, x - y)$. Using the lemma we can argue as before to see the implication

$$(-\Delta)^{\frac{\beta}{2}}(\log G^{(\beta)})(t, x) \leq \varphi(t) \Rightarrow (-\Delta)^{\frac{\beta}{2}}(\log u)(t, x) \leq \varphi(t).$$

Question: For which function φ do we have

$$(-\Delta)^{\frac{\beta}{2}}(\log G^{(\beta)})(t, x) \leq \varphi(t) \quad ?$$

Lemma: For all $\beta \in (0, 2)$, $t > 0$, and $x \in \mathbb{R}^d$, we have

$$(-\Delta)^{\frac{\beta}{2}}(\log G^{(\beta)})(t, x) \leq \frac{C_{LY}(\beta, d)}{t},$$

where the finite constant $C_{LY}(\beta, d) > 0$ is given by

$$C_{LY}(\beta, d) = \frac{c_{\beta, d}}{2} \sup_{y \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{\log \left(\frac{\Phi_\beta(y)^2}{\Phi_\beta(y+\sigma)\Phi_\beta(y-\sigma)} \right)}{|\sigma|^{d+\beta}} d\sigma,$$

with $\Phi_\beta(y) = G^{(\beta)}(1, y)$, $y \in \mathbb{R}^d$.

Note that $G^{(\beta)}(t, x) = t^{-\frac{d}{\beta}} \Phi_\beta(xt^{-\frac{1}{\beta}})$. $C_{LY}(1, d) = \frac{d(d+1)}{2B\left(\frac{d+1}{2}, \frac{1}{2}\right)}$.

$C_{LY}(\beta, d)$ is the smallest constant among all $C > 0$ satisfying

$$(-\Delta)^{\frac{\beta}{2}}(\log G^{(\beta)})(t, x) \leq \frac{C}{t}, \quad t > 0, x \in \mathbb{R}^d.$$

Theorem: (Weber, Z., Math. Ann. 2023))

Let $\beta \in (0, 2)$ and $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ a strong solution of

$$\partial_t u + (-\Delta)^{\frac{\beta}{2}} u = 0 \quad \text{in } (0, \infty) \times \mathbb{R}^d.$$

Then for all $(t, x) \in (0, \infty) \times \mathbb{R}^d$, we have the Li-Yau inequality

$$(-\Delta)^{\frac{\beta}{2}} (\log u)(t, x) \leq \frac{C_{LY}(\beta, d)}{t} \quad (8)$$

and, equivalently, the differential Harnack inequality

$$\partial_t (\log u)(t, x) \geq \Psi_T (\log u)(t, x) - \frac{C_{LY}(\beta, d)}{t}. \quad (9)$$

Theorem: (Weber, Z., Math. Ann. 2023))

Let $\beta \in (0, 2)$ and $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ a strong solution of

$$\partial_t u + (-\Delta)^{\frac{\beta}{2}} u = 0 \quad \text{in } (0, \infty) \times \mathbb{R}^d.$$

Then for all $(t, x) \in (0, \infty) \times \mathbb{R}^d$, we have the Li-Yau inequality

$$(-\Delta)^{\frac{\beta}{2}} (\log u)(t, x) \leq \frac{C_{LY}(\beta, d)}{t} \quad (8)$$

and, equivalently, the differential Harnack inequality

$$\partial_t (\log u)(t, x) \geq \Psi_T (\log u)(t, x) - \frac{C_{LY}(\beta, d)}{t}. \quad (9)$$

Remark: different form of differential Harnack inequality with a

$|\nabla \log u|^2$ term by Ghosh, Kassmann, unpublished (2020/2021)

Theorem: (Weber, Z., Math. Ann. 2023))

Let $\beta \in (0, 2)$ and $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ a strong solution of

$$\partial_t u + (-\Delta)^{\frac{\beta}{2}} u = 0 \quad \text{in } (0, \infty) \times \mathbb{R}^d.$$

Then for all $(t, x) \in (0, \infty) \times \mathbb{R}^d$, we have the Li-Yau inequality

$$(-\Delta)^{\frac{\beta}{2}} (\log u)(t, x) \leq \frac{C_{LY}(\beta, d)}{t} \quad (8)$$

and, equivalently, the differential Harnack inequality

$$\partial_t (\log u)(t, x) \geq \Psi_T (\log u)(t, x) - \frac{C_{LY}(\beta, d)}{t}. \quad (9)$$

Remark: different form of differential Harnack inequality with a

$|\nabla \log u|^2$ term by Ghosh, Kassmann, unpublished (2020/2021)

Question: Can we derive a Harnack inequality from (9)?

Li-Yau implies Harnack for the fractional heat equation

Turns out to be much more involved than in the classical case and in the discrete setting!

Theorem : (Weber, Z. in Math. Ann., 2023)

Let $\beta \in (0, 2)$ and $u : (0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ be sufficiently smooth. Then the differential Harnack inequality

$$\partial_t(\log u)(t, x) \geq \Psi_Y(\log u)(t, x) - \frac{C_{LY}(\beta, d)}{t}, \quad (t, x) \in (0, \infty) \times \mathbb{R}^d,$$

implies that there exists a constant $C = C(\beta, d) > 0$ s.t. for all $0 < t_1 < t_2 < \infty$ and $x_1, x_2 \in \mathbb{R}^d$ there holds

$$u(t_1, x_1) \leq u(t_2, x_2) \left(\frac{t_2}{t_1} \right)^{C_{LY}} \exp \left(C \left[1 + \frac{|x_1 - x_2|^{\beta+d}}{(t_2 - t_1)^{1+\frac{d}{\beta}}} \right] \right).$$

Some known results on the parabolic Harnack inequality for the space fractional heat equation:

- Bass, Levin, Trans. Amer. Math. Soc. (2002); Chen, Kumagai, Stochastic Process. Appl. (2003): local solutions, probabilistic methods
- Chang-Lara, D'avila, J. Differential Equations (2016): local solutions in a rough non-var. setting, purely analytic proof
- Kassmann, Weidner, arxiv (2024): local solutions in rough variational setting
- Bonforte, Sire, Vázquez, Nonlinear Anal. (2017): global solutions, estimates based on fundamental solution, Harnack inequalities of forward/backward/elliptic type

Improved differential Harnack inequality

The fundamental solution $G^{(\beta)}$, $\beta \in (0, 2)$, satisfies

$$t|\partial_t G^{(\beta)}(t, x)| \leq c_{\beta, d} G^{(\beta)}(t, x), \quad t > 0, x \in \mathbb{R}^d, \quad (10)$$

see Vázquez, de Pablo, Quirós, Rodriguez (JEMS 2017).

Bonforte, Sire, Vázquez (2017) also use (10) and show in addition $t\partial_t G^{(\beta)} \geq -\frac{d}{\beta} G^{(\beta)}$. By means of (10) we can show

Theorem: (Weber, Z., in prep.)

For any strong sol. $u : [0, \infty) \times \mathbb{R}^d \rightarrow (0, \infty)$ of FHE ($\beta \in (0, 2)$)

$$|\partial_t(\log u)| + \Psi_\Gamma(\log u) \leq \frac{\tilde{C}(\beta, d)}{t} \text{ in } (0, \infty) \times \mathbb{R}^d. \quad (11)$$

(11) yields Harnack inequalities of forward/backward/elliptic type.

6. Hybrid problems: approach based on CD-conditions

Consider the reaction-diffusion system ($i = 1, \dots, m$)

$$\partial_t u_i(t, x) - \Delta u_i(t, x) = \sum_{j=1}^m k(i, j)(u_j(t, x) - u_i(t, x)), \quad t > 0, \quad x \in \mathbb{R}^n, \quad (12)$$

where k is as in the Markov chain setting. Simplest example:

$$\begin{cases} \partial_t u_1(t, x) - \Delta u_1(t, x) = u_2(t, x) - u_1(t, x), \\ \partial_t u_2(t, x) - \Delta u_2(t, x) = u_1(t, x) - u_2(t, x). \end{cases}$$

special structure of RHS in (12) \Rightarrow cooperative parabolic system,
 Harnack estimates known (Földes, Poláčik in DCDS, 2009)

Question: Can we derive differential Harnack inequalities?

Idea: Consider the index $i \in \{1, \dots, m\}$ as additional spatial variable, define $u(t, x, i) := u_i(t, x)$. Write the system as

$$\partial_t u - \Delta u - L_d u = 0, \quad \text{in } (0, \infty) \times \mathbb{R}^n \times \{1, \dots, m\},$$

where L_d acts in i , $L_d f(i) = \sum_{j=1}^m k(i, j)(f(j) - f(i))$.

Idea: Consider the index $i \in \{1, \dots, m\}$ as additional spatial variable, define $u(t, x, i) := u_i(t, x)$. Write the system as

$$\partial_t u - \Delta u - L_d u = 0, \quad \text{in } (0, \infty) \times \mathbb{R}^n \times \{1, \dots, m\},$$

where L_d acts in i , $L_d f(i) = \sum_{j=1}^m k(i, j)(f(j) - f(i))$.

More generally, consider an operator sum of Markov generators $L_c \oplus L_d$ on $X \times Y$ where:

L_c acts w.r.t. the **continuous** variable $x \in X$ (with diffusion property),

L_d acts w.r.t. the **discrete** variable $y \in Y$.

Hybrid CD-condition?

Def.: $L_c \oplus L_d$ satisfies $CD_{hyb}(\kappa, d)$ for some $\kappa \in \mathbb{R}$ and $d \in [1, \infty]$
 if for all suitable $f : X \times Y \rightarrow \mathbb{R}$

$$(\Gamma \oplus \Psi_\Gamma)_2(f) \geq \kappa(\Gamma \oplus \Psi_\Gamma)(f) + \frac{1}{d}((L_c \oplus L_d)f)^2.$$

Here

$$\begin{aligned} (\Gamma \oplus \Psi_\Gamma)_2(f) := & \frac{1}{2} \left((L_c \oplus L_d)(\Gamma \oplus \Psi_\Gamma)(f) \right. \\ & \left. - 2\Gamma(f, (L_c \oplus L_d)(f)) - B_{\Gamma'}(f, (L_c \oplus L_d)(f)) \right) \end{aligned}$$

Def.: $L_c \oplus L_d$ satisfies $CD_{hyb}(\kappa, d)$ for some $\kappa \in \mathbb{R}$ and $d \in [1, \infty]$
 if for all suitable $f : X \times Y \rightarrow \mathbb{R}$

$$(\Gamma \oplus \Psi_\Gamma)_2(f) \geq \kappa(\Gamma \oplus \Psi_\Gamma)(f) + \frac{1}{d}((L_c \oplus L_d)f)^2.$$

Here

$$\begin{aligned} (\Gamma \oplus \Psi_\Gamma)_2(f) := & \frac{1}{2} \left((L_c \oplus L_d)(\Gamma \oplus \Psi_\Gamma)(f) \right. \\ & \left. - 2\Gamma(f, (L_c \oplus L_d)(f)) - B_{\Gamma'}(f, (L_c \oplus L_d)(f)) \right) \end{aligned}$$

Tensorization principle: (Kräss, Z. on arxiv, 2023)

If L_c satisfies $CD(\kappa_1, d_1)$ and L_d satisfies $CD_\Gamma(\kappa_2, d_2)$, then
 $L_c \oplus L_d$ satisfies $CD_{hyb}(\kappa, d)$ with $\kappa = \min\{\kappa_1, \kappa_2\}$, $d = d_1 + d_2$.

Back to the sum $\mathcal{L} = \Delta \oplus \mathcal{L}_d$ on $\mathbb{R}^n \times Y$, $Y = \{1, \dots, m\}$.

Assume: Y connected and $k(y_1, y_2) > 0 \Leftrightarrow k(y_2, y_1) > 0$.

k_0 is minimum of all pos. k values.

Theorem: (Kräss, Z. on arxiv, 2023)

Let $u : [0, \infty) \times \mathbb{R}^n \times Y \rightarrow (0, \infty)$ be sufficiently smooth and $\partial_t u - \mathcal{L}u = 0$ on $(0, \infty) \times \mathbb{R}^n \times Y$. Assume \mathcal{L} satisfies $CD_{hyb}(0, d)$ for some $d \in [1, \infty)$. Then $v = \log u$ satisfies

$$-\mathcal{L}v = (|\nabla v|^2 + \Psi_\Gamma(v)) - \partial_t v \leq \frac{d}{2t} \quad \text{on } (0, \infty) \times \mathbb{R}^n \times Y.$$

Moreover, for $x_1, x_2 \in \mathbb{R}^n$, $y_1, y_2 \in Y$ and $0 < t_1 < t_2 < \infty$,

$$u(t_1, x_1, y_1) \leq u(t_2, x_2, y_2) \left(\frac{t_2}{t_1} \right)^{\frac{d}{2}} \exp \left(\frac{|x_2 - x_1|^2}{4(t_2 - t_1)} + 2 \frac{\text{dist}(y_1, y_2)^2}{k_0(t_2 - t_1)} \right).$$

Back to the sum $\mathcal{L} = \Delta \oplus \mathcal{L}_d$ on $\mathbb{R}^n \times Y$, $Y = \{1, \dots, m\}$.

Assume: Y connected and $k(y_1, y_2) > 0 \Leftrightarrow k(y_2, y_1) > 0$.

k_0 is minimum of all pos. k values.

Theorem: (Kräss, Z. on arxiv, 2023)

Let $u : [0, \infty) \times \mathbb{R}^n \times Y \rightarrow (0, \infty)$ be sufficiently smooth and $\partial_t u - \mathcal{L}u = 0$ on $(0, \infty) \times \mathbb{R}^n \times Y$. Assume \mathcal{L} satisfies $CD_{hyb}(0, d)$ for some $d \in [1, \infty)$. Then $v = \log u$ satisfies

$$-\mathcal{L}v = (|\nabla v|^2 + \Psi_\Gamma(v)) - \partial_t v \leq \frac{d}{2t} \quad \text{on } (0, \infty) \times \mathbb{R}^n \times Y.$$

Moreover, for $x_1, x_2 \in \mathbb{R}^n$, $y_1, y_2 \in Y$ and $0 < t_1 < t_2 < \infty$,

$$u(t_1, x_1, y_1) \leq u(t_2, x_2, y_2) \left(\frac{t_2}{t_1} \right)^{\frac{d}{2}} \exp \left(\frac{|x_2 - x_1|^2}{4(t_2 - t_1)} + 2 \frac{\text{dist}(y_1, y_2)^2}{k_0(t_2 - t_1)} \right).$$

Remark: There is also a version for local (w.r.t. x) solutions.

Illustration: Consider the simple RD-system

$$\begin{cases} \partial_t u_1(t, x) - \Delta u_1(t, x) = u_2(t, x) - u_1(t, x), \\ \partial_t u_2(t, x) - \Delta u_2(t, x) = u_1(t, x) - u_2(t, x). \end{cases}$$

Here, Y is the two-point graph, L_d satisfies $CD_\gamma(0, d_2)$ with $d_2 \approx 1,258$. Δ satisfies $CD(0, n)$. By tensorization, $\mathcal{L} = \Delta \oplus L_d$ satisfies $CD_{hyb}(0, d)$ with $d = n + d_2$.

Illustration: Consider the simple RD-system

$$\begin{cases} \partial_t u_1(t, x) - \Delta u_1(t, x) = u_2(t, x) - u_1(t, x), \\ \partial_t u_2(t, x) - \Delta u_2(t, x) = u_1(t, x) - u_2(t, x). \end{cases}$$

Here, Y is the two-point graph, L_d satisfies $CD_{\gamma}(0, d_2)$ with $d_2 \approx 1,258$. Δ satisfies $CD(0, n)$. By tensorization, $\mathcal{L} = \Delta \oplus L_d$ satisfies $CD_{hyb}(0, d)$ with $d = n + d_2$. We obtain that for $0 < t_1 < t_2 < \infty$, $x_1, x_2 \in \mathbb{R}^n$, and $i, j \in \{1, 2\}$,

$$u_i(t_1, x_1) \leq u_j(t_2, x_2) \left(\frac{t_2}{t_1} \right)^{\frac{n+d_2}{2}} \exp \left(\frac{|x_2 - x_1|^2}{4(t_2 - t_1)} + \frac{2|j - i|^2}{t_2 - t_1} \right).$$

Illustration: Consider the simple RD-system

$$\begin{cases} \partial_t u_1(t, x) - \Delta u_1(t, x) = u_2(t, x) - u_1(t, x), \\ \partial_t u_2(t, x) - \Delta u_2(t, x) = u_1(t, x) - u_2(t, x). \end{cases}$$

Here, Y is the two-point graph, L_d satisfies $CD_Y(0, d_2)$ with $d_2 \approx 1,258$. Δ satisfies $CD(0, n)$. By tensorization, $\mathcal{L} = \Delta \oplus L_d$ satisfies $CD_{hyb}(0, d)$ with $d = n + d_2$. We obtain that for $0 < t_1 < t_2 < \infty$, $x_1, x_2 \in \mathbb{R}^n$, and $i, j \in \{1, 2\}$,

$$u_i(t_1, x_1) \leq u_j(t_2, x_2) \left(\frac{t_2}{t_1} \right)^{\frac{n+d_2}{2}} \exp \left(\frac{|x_2 - x_1|^2}{4(t_2 - t_1)} + \frac{2|j - i|^2}{t_2 - t_1} \right).$$

Remark: Open problem: different diffusion coefficients; then tensorization fails, since the operators in the sum do not commute

THANK YOU FOR YOUR ATTENTION!

References

- ▶ A. Spener, F. Weber, R. Zacher: Curvature-dimension inequalities for non-local operators in the discrete setting. *Calc. Var. Part. Diff. Equ.* **58** (2019), Paper No. 171.
- ▶ A. Spener, F. Weber, R. Zacher: The fractional Laplacian has infinite dimension. *Comm. Partial Differential Equations* **45** (2020), 57–75.
- ▶ F. Weber, R. Zacher: The entropy method under curvature-dimension conditions in the spirit of Bakry-Émery in the discrete setting of Markov chains. *J. Funct. Anal.* 281 (2021), no. 5, Paper No. 109061.
- ▶ F. Weber, R. Zacher: Li-Yau inequalities for general non-local diffusion equations via reduction to the heat kernel. *Math. Ann.* **385** (2023), 393–419.
- ▶ S. Kräss, F. Weber, R. Zacher: Li-Yau and Harnack inequalities via curvature-dimension conditions for discrete long-range jump operators including the fractional discrete Laplacian. *Discrete Contin. Dyn. Syst.* **44** (2024), 1982–2028.