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1. Introduction: Classical Li-Yau and CD inequality

The classical Li-Yau inequality
Suppose u : [0,∞)× Rd → (0,∞) solves ∂tu −∆u = 0. Then

−∆(log u) ≤ d

2t
in (0,∞)× Rd . (1)

Since ∂t(log u)−∆(log u) = |∇(log u)|2, this is equivalent to

∂t(log u) ≥ |∇(log u)|2 − d

2t
in (0,∞)× Rd . (2)

• This extends to complete d-dimensional Riemannian manifolds M
with Ric(M) ≥ 0 (Li, Yau, Acta Math. 1986).

• (2) is sharp, one has equality for u(t, x) = (4πt)−d/2 exp
(−|x |2

4t

)
.

• Integration of (2) over a path connecting (t1, x1) and (t2, x2)
with 0 < t1 < t2 gives the sharp Harnack estimate

u(t1, x1) ≤ u(t2, x2)
( t2
t1

)d/2
exp

( |x1 − x2|2

4(t2 − t1)

)
.
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1. Introduction: Classical Li-Yau and CD inequality

How can we prove Li-Yau? Basic idea: v := log u solves

∂tv −∆v = |∇v |2, (3)

by the chain rule ∆H(u) = H ′(u)∆u + H ′′(u)|∇u|2 with H = log.
So we need −∆v ≤ d

2t .

Apply ∆ to (3) and use Bochner's identity.

∂t∆v −∆(∆v) = ∆
(
|∇v |2

)
= 2∇v · ∇∆v + 2|∇2v |2HS

(
+ 2Ric(∇v ,∇v)

)
.

Now, |∇2v |2HS ≥ 1
d (∆v)2 (a CD-inequality), and thus

∂t∆v −∆(∆v) ≥ 2∇v · ∇∆v +
2

d
(∆v)2

ω(t) := − d
2t solves ∂tω = 2

dω
2. Comparison arg. ↪→ ∆v ≥ ω
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1. Introduction: Classical Li-Yau and CD inequality

Γ-calculus by Bakry and Émery

Let L be the generator of a Markov semigroup.

Γ(f , g) =
1

2

(
L(fg)− fLg − gLf

)
, (carré du champ)

Γ2(f , g) =
1

2

(
LΓ(f , g)− Γ(f , Lg)− Γ(g , Lf )

)
, (iterated carré du champ)

Γ(f ) = Γ(f , f ), Γ2(f ) = Γ2(f , f ).

L satis�es the curvature-dimension inequality CD(κ, d) with κ ∈ R
and d ∈ [1,∞] if (µ is a �xed invariant and reversible measure)

Γ2(f ) ≥ κΓ(f ) +
1

d
(Lf )2, µ− a.e.

L = ∆ on Rd : Γ(f , g) = ∇f · ∇g , Γ2(f ) = |∇2f |2HS . ⇒ CD(0, d)
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1. Introduction: Classical Li-Yau and CD inequality

Suppose that L is a di�usion generator, i.e. for all H ∈ C 2 and
suitable f the chain rule LH(f ) = H ′(f )Lf + H ′′(f )Γ(f ) holds.

• CD(0, d), d <∞, f pos. ⇒ −L(log eLt f ) ≤ d
2t , t > 0 (Li-Yau)

• CD(κ,∞), κ > 0 ⇒ log-Sobolev and Poincaré inequality
(⇒ exp. decay of entropy and variance, hypercontractivity,...)

See the monograph by Bakry, Gentil, Ledoux, Analysis and

geometry of Markov di�usion operators (2014)
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2. Nonlocal operators: examples and di�culties

Consider Markov generators of the form (X a metric space)

Lf (x) =

∫
X

(
f (y)− f (x)

)
k(x , dy).

Key feature: di�erence structure under integral.

Examples:

• Fractional Laplacian: X = Rd , β ∈ (0, 2),

Lf (x) = −
(
−∆)

β
2 f (x) = cβ,d p.v.

∫
Rd

f (y)− f (x)

|x − y |d+β
dy .

• Generators of Markov chains (generalised Laplacians on a graph):

X is a �nite or countable set,

Lf (x) =
∑
y∈X

k(x , y)
(
f (y)− f (x)

)
.
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2. Nonlocal operators: examples and di�culties

Consider positive solutions u of

∂tu − Lu = 0, t > 0.

Questions: Under which conditions does a Li-Yau inequality hold?
Does the Li-Yau estimate imply a parabolic Harnack inequality?

(for L = −
(
−∆)

β
2 addressed in a survey by Garofalo, Fractional

thoughts... (2019), as a key open problem)

Di�culties:

• The chain rule fails for L.

• What is the right form of the Li-Yau inequality?

• CD(0, d) is not strong enough. New CD-conditions required.

• To obtain Harnack, we have to argue with a "nonlocal gradient".
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2. Nonlocal operators: examples and di�culties

Positive results on �nite and locally �nite graphs

• Bauer, Horn, Lin, Lippner, Mangoubi, Yau: Li-Yau inequality on
graphs. J. Di�. Geom., 2015:

square root approach, CDE (κ, d) and CDE ′(κ, d), Li-Yau (with C
t ) and

Harnack on �nite and in�nite graphs

• Münch: Li-Yau inequality on �nite graphs via non-linear curvature
dimension condition. J. Math. Pures Appl., 2018:

Γψ-calculus for concave ψ, CDψ(κ, d), ψ =
√

covers some of the
previous results, ψ = log gives log. Li-Yau, Harnack; �nite graphs

• Dier, Kassmann, Z.: Discrete versions of the Li-Yau gradient estimate.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2021:

log. Li-Yau and Harnack based on CD(F ; 0), F a CD-function, more
general relaxation functions, improved estimates, some even sharp

On discrete curvature: Erbar, Maas (ARMA 2012), Mielke (Calc. Var.

PDE 2013); di�erent approach based on optimal transport
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2. Nonlocal operators: examples and di�culties

CD-functions
Crucial idea: Replace (. . .)2 in CD(0, d) by a more general function.

De�nition

A continuous function F : [0,∞) → [0,∞) is called CD-function, if
F (0) = 0, F (x)/x is strictly increasing on (0,∞), and 1/F is
integrable at ∞. (Example: F (x) = νx2 with ν > 0.)

Lemma

Let F : [0,∞) → [0,∞) be a CD-function. Then there is a unique
strictly positive solution φ of the ODE

φ̇(t) + F (φ(t)) = 0, t > 0,

which has (0,∞) as its maximal interval of existence. This function
φ is strictly decreasing and log-convex, and it satis�es φ(0+) = ∞
and φ(∞) = 0. Call φ the relaxation function associated with F .
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2. Nonlocal operators: examples and di�culties

Equation for log u

Observation in Dier, Kassmann, Z. (2021): Consider Markov chain
setting, i.e.

Lf (x) =
∑
y∈X

k(x , y)
(
f (y)− f (x)

)
.

Suppose u is positive and ∂tu − Lu = 0 in (0,∞)× X . Then

v := log u solves

∂tv − Lv = ΨΥ(v) in (0,∞)× X .

ΨH(f )(x) :=
∑

y∈X k(x , y)H
(
f (y)− f (x)

)
, Υ(z) = ez − 1− z

classical case: ∂tv −∆v = |∇v |2 = Γ(v),

here Γ(f )(x) = 1
2

∑
y∈X k(x , y)

(
f (y)− f (x)

)2
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3. The CDΥ condition

Markov chain setting, X �nite or countable,

Lf (x) =
∑
y∈X

k(x , y)
(
f (y)− f (x)

)
,

where k(x , y) ≥ 0 for x ̸= y , and
∑

y∈X k(x , y) = 0 for all x ∈ X .

Question: Is there a natural analogue to CD(κ, d) with
corresponding implications? (Li-Yau, functional inequalities,...)

Recall: CD(κ, d) means Γ2(f ) ≥ κΓ(f ) + 1
d (Lf )

2.

We have to identify suitable replacements for all three terms.



Li-Yau and Harnack estimates for nonlocal di�usion problems

3. The CDΥ condition

Markov chain setting, X �nite or countable,

Lf (x) =
∑
y∈X

k(x , y)
(
f (y)− f (x)

)
,

where k(x , y) ≥ 0 for x ̸= y , and
∑

y∈X k(x , y) = 0 for all x ∈ X .

Question: Is there a natural analogue to CD(κ, d) with
corresponding implications? (Li-Yau, functional inequalities,...)

Recall: CD(κ, d) means Γ2(f ) ≥ κΓ(f ) + 1
d (Lf )

2.

We have to identify suitable replacements for all three terms.



Li-Yau and Harnack estimates for nonlocal di�usion problems

3. The CDΥ condition

Markov chain setting, X �nite or countable,

Lf (x) =
∑
y∈X

k(x , y)
(
f (y)− f (x)

)
,

where k(x , y) ≥ 0 for x ̸= y , and
∑

y∈X k(x , y) = 0 for all x ∈ X .

Question: Is there a natural analogue to CD(κ, d) with
corresponding implications? (Li-Yau, functional inequalities,...)

Recall: CD(κ, d) means Γ2(f ) ≥ κΓ(f ) + 1
d (Lf )

2.

We have to identify suitable replacements for all three terms.



Li-Yau and Harnack estimates for nonlocal di�usion problems

3. The CDΥ condition

In the di�usion setting(chain rule!) with invariant and reversible
probability measure µ:

H(Pt f ) =

∫
X
Pt f log(Pt f ) dµ, (entropy)

d

dt
H(Pt f ) = −

∫
X
Pt f Γ

(
log(Pt f )

)
dµ, (neg. Fisher information)

d2

dt2
H(Pt f ) = 2

∫
X
Pt f Γ2

(
log(Pt f )

)
dµ.

In the discrete setting: (see Weber, Z. JFA, 2021; Weber Electron.
J. Probab., 2021)

d

dt
H(Pt f ) = −

∫
X
Pt fΨΥ

(
log(Pt f )

)
dµ,

d2

dt2
H(Pt f ) = 2

∫
X
Pt fΨ2,Υ

(
log(Pt f )

)
dµ.
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3. The CDΥ condition

Here

Ψ2,Υ(f ) =
1

2

(
LΨΥ(f )− BΥ′(f , Lf )

)
,

where (Υ′(z) = ez − 1)

BΥ′(f , g)(x) =
∑
y∈X

k(x , y)Υ′(f (y)− f (x)
)(
g(y)− g(x)

)
.

De�nition

L satis�es CDΥ(κ,F ) with κ ∈ R and CD-function F if for all
(suitable) f : X → R (and with F0 := Fχ[0,∞))

Ψ2,Υ(f ) ≥ κΨΥ(f ) + F0(−Lf ) onX .

L satis�es CDΥ(κ, d) with κ ∈ R and d ∈ [1,∞] if

Ψ2,Υ(f ) ≥ κΨΥ(f ) +
1

d
(Lf )2 onX .
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3. The CDΥ condition

Important properties (see Weber, Z. in JFA, 2021):

• CDΥ(κ,∞) with κ > 0 implies the modi�ed log-Sobolev
inequality (MLSI) with constant κ (⇒ exp. decay of entropy)

MLSI(α) with α > 0: H(f ) ≤ 1
2αI(f ) for all f ∈ P(X ) ,

where (with dµ = πd#)

P(X ) = {ρ : X → [0,∞) s.t.
∫
X ρ dµ =

∑
x∈X ρ(x)π(x) = 1},

H(f ) =
∫
X f log f dµ =

∑
x∈X f (x) log(f (x))π(x),

and (using detailed balance, i.e. π(x)k(x , y) = π(y)k(y , x))

I(f ) =
∫
X
fΨΥ(log f ) dµ

=
∑
x∈X

f (x)
∑
y∈X

k(x , y)Υ
(
log f (y)− log f (x)

)
π(x)

=
1

2

∑
x ,y∈X

k(x , y)
(
f (y)− f (x)

)(
log f (y)− log f (x)

)
π(x).
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2αI(f ) for all f ∈ P(X ) ,

where (with dµ = πd#)

P(X ) = {ρ : X → [0,∞) s.t.
∫
X ρ dµ =

∑
x∈X ρ(x)π(x) = 1},

H(f ) =
∫
X f log f dµ =

∑
x∈X f (x) log(f (x))π(x),

and (using detailed balance, i.e. π(x)k(x , y) = π(y)k(y , x))

I(f ) =
∫
X
fΨΥ(log f ) dµ

=
∑
x∈X

f (x)
∑
y∈X

k(x , y)Υ
(
log f (y)− log f (x)

)
π(x)

=
1

2

∑
x ,y∈X

k(x , y)
(
f (y)− f (x)

)(
log f (y)− log f (x)

)
π(x).
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3. The CDΥ condition

• CDΥ(κ,∞) is characterised by the gradient bound

ΨΥ(Pt f ) ≤ e−2κtPt

(
ΨΥ(f )

)
, t > 0.

• curvature bounds are preserved under tensorization

Li : generator of a Markov chain on Xi , i = 1, 2; L := L1 ⊕ L2
generates a chain on X1 × X2.

If Li satis�es CDΥ(κi ,∞) with κi ∈ R, i = 1, 2, then L satis�es
CDΥ(κ,∞) with κ = min{κ1, κ2}.

• CDΥ is compatible with the di�usion setting; there is a natural
notion of Γ⊕ΨΥ and (Γ⊕ΨΥ)2, tensorization principle for hybrid
processes
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3. The CDΥ condition

Further remarks:

• LΨΥ′(f ) = 2Ψ2,Υ(f ) + Bexp(f , Lf ) with Bexp(f , Lf ) ≥ 0 in the
situation of the CD condition from [DKZ]

• direct link between CDΥ(κ,∞) and entropic curvature bound not
known; CDΥ(κ, d) is equivalent to Münch's CDψ(d , κ) with
ψ = log (not obvious!); CDΥ(κ,∞) is closely linked to
Monmarché's generalised Γ-calculus (2019)

• CDΥ(κ, d) ⇒ CD(κ, d).
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3. The CDΥ condition

Examples:

• unweighted complete graph Kn: CDΥ(
√
2n,∞) holds for all

n ≥ 2; this is optimal for n = 2 since CD(2,∞) is optimal;
CD(1+ n

2
,∞) is optimal for n ≥ 2

• n-dimensional hypercube: CDΥ(2,∞) holds for all n ∈ N and is
optimal (since CD(2,∞) is optimal for all n ∈ N); easy proof by
induction and tensorization and the result for K2

• unweighted 3-star: CDΥ(0,∞) fails at center point, but there
holds CDΥ(κ,∞) with some κ ∈ (−∞, 0)
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4. Long-range jump operators

Consider nonlocal operators on the lattice Z of the form

Lf (x) =
∑
j∈Z

k(j)
(
f (x + j)− f (x)

)
, x ∈ Z, (4)

with a kernel k : Z → [0,∞) satisfying 0 <
∑

j∈Z k(j) <∞,
k(−j) = k(j) for all j ∈ N, and k(0) = 0.

Important example: (linked to frac. discr. Laplacian for β ∈ (0, 2))

kβ(j) =
c

|j |1+β
, j ∈ Z \ {0}, with c , β > 0.

Theorem: (Spener, Weber, Z., Calc. Var. PDE 2019)
• k non-incr. on N,

∑
j∈N k(j)j2 <∞ ⇒ ∃d <∞ : CD(0, d) holds.

• k = kβ , β > 2 ⇒ CD(0, d) holds for some d <∞.

• k = kβ , β < 2 ⇒ CD(0, d) fails for all d <∞.
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4. Long-range jump operators

More �exibility by CDΥ(0,F )
What about Ψ2,Υ(f ) ≥ F0(−Lf )? Note that

Ψ2,Υ(f )(x) =
1
2

∑
j,l∈Z

k(j)k(l)e f (x+l)−f (x)Υ
(
f (x+j+l)−f (x+j)−f (x+l)+f (x)

)
,

where Υ(z) = ez − 1− z .

Theorem: (Spener, Weber, Z., DCDS 2024)

•
∑

j∈N k(j)1−δ <∞, δ ∈ (0, 1) ⇒ Ψ2,Υ(f ) ≥ c |Lf |γ , γ = 1+δ
δ .

• k = kβ , β ∈ (0,∞) ⇒ CDΥ(0,F ) holds with some CD-function
F , which grows exponentially at ∞ and satis�es F (x) ∼ cxγ as

x → 0 where γ = 2 for β > 2 and (β∗ =
1+

√
5

2
)

γ =
1+ 2β

β
for β ∈ (0, β∗], γ =

β − ε

β − ε− 1
for β ∈ (β∗, 2].
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4. Long-range jump operators

Theorem: (Spener, Weber, Z., DCDS 2024)

Let β ∈ (0,∞) and Lβ the operator associated with kβ . Any bdd.
function u : [0,∞)× Z → (0,∞) that is C 1 in time and solves
∂tu = Lβu on (0,∞)× Z satis�es the Li-Yau estimate

−Lβ log u(t, x) ≤ φ(t), (t, x) ∈ (0,∞)× Z,

where φ is the relax. function corresp. to F from above.

(φ(t) ∼ −c log t as t → 0 and φ(t) ∼ ct−
1

γ−1 as t → ∞)
Moreover, we have the Harnack inequality

u(t1, x1) ≤ u(t2, x2) exp
(∫ t2

t1

φ(t) dt +
2|x1 − x2|min{1+β,2}

t2 − t1

)
,

for 0 ≤ t1 < t2, x1, x2 ∈ Z. (t1 = 0 possible, φ is integrable at 0!)

Remark: Same result for frac. discrete Laplacian −(−∆)
β
2 & heat

kernel estimates
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4. Long-range jump operators

The fractional Laplacian has in�nite dimension
Let β ∈ (0, 2) and consider for x ∈ Rd

Lu(x) = −(−∆)
β
2 u(x) = cβ,d

∫
Rd

u(x + h)− 2u(x) + u(x − h)

|h|d+β
dh.

Γ(u)(x) = cβ,d

∫
Rd

(u(x + h)− u(x))2

|h|d+β
dh,

Γ2(u)(x) = c2β,d

∫
Rd

∫
Rd

[u(x+h +σ)−u(x+h)−u(x+σ)+u(x)]2

|h|d+β|σ|d+β
dh dσ.

Theorem: (Spener, Weber, Z., Comm. PDE 2020)
For any R > 0, κ ∈ R and N ∈ (0,∞) there is a u ∈ C∞

c (Rd) s.t.

0 < Γ2(u)(x) < κΓ(u)(x) +
1

N
(L(u)(x))2 , ∀x ∈ B(0,R).

(i) negative answer to a question by Garofalo (2019)
(ii) CDΥ(0, d) must fail as well, but scaling suggests φ(t) ≤ c

t ;
thus only little hope w.r.t. the CD approach! Other CD-conditions?
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5. Reduction to the heat kernel

Reduction to the heat kernel for the heat equation

Lemma: Let Pf (x) =
∫
Rd H(x , y)f (y) dy , for su�ciently regular,

positive functions H and f . Then∫
Rd

∣∣∇x logH(x , y)
∣∣2H(x , y)f (y) dy ≥

∣∣∇ logPf (x)
∣∣2Pf (x). (5)

Proof: By Hölder's inequality we have

(∂xiPf (x))
2 =

( ∫
Rd

∂xiH(x , y)f (y) dy
)2

≤
∫
Rd

(∂xiH(x , y))2

H(x , y)
f (y) dy

∫
Rd

H(x , y)f (y) dy ,

which directly leads to (5) by summing up and employing the chain
rule for the gradient (∇(log g) = ∇g

g ).
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5. Reduction to the heat kernel

For the heat kernel H(t, x , y) = (4πt)−
d
2 e−

|x−y|2
4t we have

−∆x

(
logH(t, x , y)

)
=

d

2t
=: φ(t). (6)

For any positive solution u of the heat equation,

∂tu − u∆(log u) = u|∇(log u)|2.

In particular,

∂tH(t, x , y) + H(t, x , y)φ(t) = H(t, x , y)|∇x(logH(t, x , y))|2
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5. Reduction to the heat kernel

Consider a positive solution u(t, x) =
∫
Rd H(t, x , y)u0(y) dy of the

heat equation (Widder's type theorem!). Then

∂tu(t, x) + φ(t)u(t, x) =

∫
Rd

(
∂tH(t, x , y) + φ(t)H(t, x , y)

)
u0(y) dy

=

∫
Rd

(
|∇x(logH(t, x , y))|2H(t, x , y)

)
u0(y) dy

≥ |∇(log u(t, x))|2u(t, x) (by the Lemma)

= ∂tu(t, x)− u(t, x)∆(log u(t, x)).

Hence

−∆(log u(t, x)) ≤ φ(t) =
d

2t
.

Note that we only need −∆x

(
logH(t, x , y)

)
≤ φ(t).

Conclusion: Li-Yau for heat kernel implies Li-Yau for pos. solutions.
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5. Reduction to the heat kernel

Reduction to the heat kernel for the fractional heat equation

Question: Is there a similar argument for the fractional heat
equation (FHE)?

Let u be a positive solution of the FHE. Then

∂t(log u) + (−∆)
β
2 (log u) = ΨΥ(log u),

where

ΨΥ(v)(x) = cβ,d

∫
Rd

Υ
(
v(y)− v(x)

)
|x − y |d+β

dy

with Υ(z) = ez − 1− z . Equivalently,

∂tu + u(−∆)
β
2 (log u) = uΨΥ(log u).
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5. Reduction to the heat kernel

Recall the key inequality from the local case∫
Rd

∣∣∇x logH(x , y)
∣∣2H(x , y)f (y) dy ≥

∣∣∇ logPf (x)
∣∣2Pf (x),

where Pf (x) =
∫
Rd H(x , y)f (y) dy and H and f are su�ciently

regular, positive functions.

Key lemma: (Weber, Z. in Math. Ann. 2023) Let P,H, f be as
before. Then∫

Rd

ΨΥ(logH(·, y))(x)H(x , y)f (y) dy ≥ ΨΥ(logPf )(x)Pf (x).

Proof: Use the convexity of r 7→ Υ(log r) = r − log r − 1.

Remark: The lemma extends to more general nonlocal operators.
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5. Reduction to the heat kernel

Positive (strong) solutions u of the FHE can be expressed as

u(t, x) =

∫
Rd

G (β)(t, x − y)u0(y) dy , (7)

where G (β) is the fund. sol. of the FHE, see Barrios, Peral, Soria,
Valdinoci, ARMA (2014).

Set H(t, x , y) = G (β)(t, x − y). Using the lemma we can argue as
before to see the implication

(−∆)
β
2 (logG (β))(t, x) ≤ φ(t) ⇒ (−∆)

β
2 (log u)(t, x) ≤ φ(t).

Question: For which function φ do we have

(−∆)
β
2 (logG (β))(t, x) ≤ φ(t) ?
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5. Reduction to the heat kernel

Lemma: For all β ∈ (0, 2), t > 0, and x ∈ Rd , we have

(−∆)
β
2 (logG (β))(t, x) ≤ CLY (β, d)

t
,

where the �nite constant CLY (β, d) > 0 is given by

CLY (β, d) =
cβ,d
2

sup
y∈Rd

∫
Rd

log
(

Φβ(y)
2

Φβ(y+σ)Φβ(y−σ)

)
|σ|d+β

dσ,

with Φβ(y) = G (β)(1, y), y ∈ Rd .

Note that G (β)(t, x) = t−
d
βΦβ

(
xt−

1
β
)
. CLY (1, d) =

d(d+1)

2B
(

d+1
2

, 1
2

) .
CLY (β, d) is the smallest constant among all C > 0 satisfying

(−∆)
β
2 (logG (β))(t, x) ≤ C

t
, t > 0, x ∈ Rd .
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5. Reduction to the heat kernel

Theorem: (Weber, Z., Math. Ann. 2023))
Let β ∈ (0, 2) and u : [0,∞)× Rd → (0,∞) a strong solution of

∂tu + (−∆)
β
2 u = 0 in (0,∞)× Rd .

Then for all (t, x) ∈ (0,∞)× Rd , we have the Li-Yau inequality

(
−∆

)β
2 (log u)(t, x) ≤ CLY (β, d)

t
(8)

and, equivalently, the di�erential Harnack inequality

∂t(log u)(t, x) ≥ ΨΥ(log u)(t, x)−
CLY (β, d)

t
. (9)

Remark: di�erent form of di�erential Harnack inequality with a

|∇ log u|2 term by Ghosh, Kassmann, unpublished (2020/2021)

Question: Can we derive a Harnack inequality from (9)?
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5. Reduction to the heat kernel

Li-Yau implies Harnack for the fractional heat equation
Turns out to be much more involved than in the classical case and
in the discrete setting!

Theorem : (Weber, Z. in Math. Ann., 2023)
Let β ∈ (0, 2) and u : (0,∞)× Rd → (0,∞) be su�ciently
smooth. Then the di�erential Harnack inequality

∂t(log u)(t, x) ≥ ΨΥ(log u)(t, x)−
CLY (β, d)

t
, (t, x) ∈ (0,∞)×Rd ,

implies that there exists a constant C = C (β, d) > 0 s.t. for all
0 < t1 < t2 <∞ and x1, x2 ∈ Rd there holds

u(t1, x1) ≤ u(t2, x2)
( t2
t1

)CLY

exp

(
C

[
1+

|x1 − x2|β+d

(t2 − t1)
1+ d

β

])
.
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5. Reduction to the heat kernel

Some known results on the parabolic Harnack inequality for the
space fractional heat equation:

• Bass, Levin, Trans. Amer. Math. Soc. (2002); Chen, Kumagai,
Stochastic Process. Appl. (2003): local solutions, probabilistic
methods

• Chang-Lara, D'avila, J. Di�erential Equations (2016): local
solutions in a rough non-var. setting, purely analytic proof

• Kassmann, Weidner, arxiv (2024): local solutions in rough
variational setting

• Bonforte, Sire, Vázquez, Nonlinear Anal. (2017): global
solutions, estimates based on fundamental solution, Harnack
inequalities of forward/backward/elliptic type
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5. Reduction to the heat kernel

Improved di�erential Harnack inequality

The fundamental solution G (β), β ∈ (0, 2), satis�es

t|∂tG (β)(t, x)| ≤ cβ,dG
(β)(t, x), t > 0, x ∈ Rd , (10)

see Vázquez, de Pablo, Quirós, Rodriguez (JEMS 2017).
Bonforte, Sire, Vázquez (2017) also use (10) and show in addition
t∂tG

(β) ≥ −d
βG

(β). By means of (10) we can show

Theorem: (Weber, Z., in prep.)
For any strong sol. u : [0,∞)× Rd → (0,∞) of FHE (β ∈ (0, 2))

|∂t(log u)|+ΨΥ(log u) ≤
C̃ (β, d)

t
in (0,∞)× Rd . (11)

(11) yields Harnack inequalities of forward/backward/elliptic type.
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6. Hybrid problems: approach based on CD-conditions

Consider the reaction-di�usion system (i = 1, . . . ,m)

∂tui (t, x)−∆ui (t, x) =
m∑
j=1

k(i , j)
(
uj(t, x)−ui (t, x)

)
, t > 0, x ∈ Rn,

(12)
where k is as in the Markov chain setting. Simplest example:{

∂tu1(t, x)−∆u1(t, x) = u2(t, x)− u1(t, x),
∂tu2(t, x)−∆u2(t, x) = u1(t, x)− u2(t, x).

special structure of RHS in (12) ⇒ cooperative parabolic system,
Harnack estimates known (Földes, Polá�cik in DCDS, 2009)

Question: Can we derive di�erential Harnack inequalities?



Li-Yau and Harnack estimates for nonlocal di�usion problems

6. Hybrid problems: approach based on CD-conditions

Idea: Consider the index i ∈ {1, . . . ,m} as additional spatial
variable, de�ne u(t, x , i) := ui (t, x). Write the system as

∂tu −∆u − Ldu = 0, in (0,∞)× Rn × {1, . . . ,m},

where Ld acts in i , Ld f (i) =
∑m

j=1 k(i , j)
(
f (j)− f (i)

)
.

More generally, consider an operator sum of Markov generators
Lc ⊕ Ld on X × Y where:

Lc acts w.r.t. the continuous variable x ∈ X (with di�usion
property),
Ld acts w.r.t. the discrete variable y ∈ Y .

Hybrid CD-condition?
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6. Hybrid problems: approach based on CD-conditions

Def.: Lc ⊕ Ld satis�es CDhyb(κ, d) for some κ ∈ R and d ∈ [1,∞]
if for all suitable f : X × Y → R

(Γ⊕ΨΥ)2 (f ) ≥ κ
(
Γ⊕ΨΥ

)
(f ) +

1

d

(
(Lc ⊕ Ld)f

)2
.

Here

(Γ⊕ΨΥ)2 (f ) :=
1

2

(
(Lc ⊕ Ld) (Γ⊕ΨΥ) (f )

− 2Γ
(
f , (Lc ⊕ Ld)(f )

)
− BΥ′

(
f , (Lc ⊕ Ld)(f )

))

Tensorization principle: (Kräss, Z. on arxiv, 2023)

If Lc satis�es CD(κ1, d1) and Ld satis�es CDΥ(κ2, d2), then
Lc ⊕ Ld satis�es CDhyb(κ, d) with κ = min{κ1, κ2}, d = d1 + d2.
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If Lc satis�es CD(κ1, d1) and Ld satis�es CDΥ(κ2, d2), then
Lc ⊕ Ld satis�es CDhyb(κ, d) with κ = min{κ1, κ2}, d = d1 + d2.
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6. Hybrid problems: approach based on CD-conditions

Back to the sum L = ∆⊕ Ld on Rn × Y , Y = {1, . . . ,m}.
Assume: Y connected and k(y1, y2) > 0 ⇔ k(y2, y1) > 0.
k0 is minimum of all pos. k values.

Theorem: (Kräss, Z. on arxiv, 2023)

Let u : [0,∞)× Rn × Y → (0,∞) be su�ciently smooth and
∂tu −Lu = 0 on (0,∞)×Rn ×Y . Assume L satis�es CDhyb(0, d)
for some d ∈ [1,∞). Then v = log u satis�es

−Lv =
(
|∇v |2 +ΨΥ(v)

)
− ∂tv ≤ d

2t
on (0,∞)× Rn × Y .

Moreover, for x1, x2 ∈ Rn, y1, y2 ∈ Y and 0 < t1 < t2 <∞,

u(t1, x1, y1) ≤ u(t2, x2, y2)
( t2
t1

) d
2
exp

( |x2 − x1|2

4(t2 − t1)
+ 2

dist(y1, y2)
2

k0(t2 − t1)

)
.

Remark: There is also a version for local (w.r.t. x) solutions.



Li-Yau and Harnack estimates for nonlocal di�usion problems

6. Hybrid problems: approach based on CD-conditions

Back to the sum L = ∆⊕ Ld on Rn × Y , Y = {1, . . . ,m}.
Assume: Y connected and k(y1, y2) > 0 ⇔ k(y2, y1) > 0.
k0 is minimum of all pos. k values.

Theorem: (Kräss, Z. on arxiv, 2023)

Let u : [0,∞)× Rn × Y → (0,∞) be su�ciently smooth and
∂tu −Lu = 0 on (0,∞)×Rn ×Y . Assume L satis�es CDhyb(0, d)
for some d ∈ [1,∞). Then v = log u satis�es

−Lv =
(
|∇v |2 +ΨΥ(v)

)
− ∂tv ≤ d

2t
on (0,∞)× Rn × Y .

Moreover, for x1, x2 ∈ Rn, y1, y2 ∈ Y and 0 < t1 < t2 <∞,

u(t1, x1, y1) ≤ u(t2, x2, y2)
( t2
t1

) d
2
exp

( |x2 − x1|2

4(t2 − t1)
+ 2

dist(y1, y2)
2

k0(t2 − t1)

)
.

Remark: There is also a version for local (w.r.t. x) solutions.



Li-Yau and Harnack estimates for nonlocal di�usion problems

6. Hybrid problems: approach based on CD-conditions

Illustration: Consider the simple RD-system{
∂tu1(t, x)−∆u1(t, x) = u2(t, x)− u1(t, x),
∂tu2(t, x)−∆u2(t, x) = u1(t, x)− u2(t, x).

Here, Y is the two-point graph, Ld satis�es CDΥ(0, d2) with
d2 ≈ 1, 258. ∆ satis�es CD(0, n). By tensorization, L = ∆⊕ Ld
satis�es CDhyb(0, d) with d = n + d2.

We obtain that for
0 < t1 < t2 <∞, x1, x2 ∈ Rn, and i , j ∈ {1, 2},

ui (t1, x1) ≤ uj(t2, x2)
( t2
t1

) n+d2
2 exp

( |x2 − x1|2

4(t2 − t1)
+

2|j − i |2

t2 − t1

)
.

Remark: Open problem: di�erent di�usion coe�cients; then

tensorization fails, since the operators in the sum do not commute



Li-Yau and Harnack estimates for nonlocal di�usion problems

6. Hybrid problems: approach based on CD-conditions

Illustration: Consider the simple RD-system{
∂tu1(t, x)−∆u1(t, x) = u2(t, x)− u1(t, x),
∂tu2(t, x)−∆u2(t, x) = u1(t, x)− u2(t, x).

Here, Y is the two-point graph, Ld satis�es CDΥ(0, d2) with
d2 ≈ 1, 258. ∆ satis�es CD(0, n). By tensorization, L = ∆⊕ Ld
satis�es CDhyb(0, d) with d = n + d2. We obtain that for
0 < t1 < t2 <∞, x1, x2 ∈ Rn, and i , j ∈ {1, 2},

ui (t1, x1) ≤ uj(t2, x2)
( t2
t1

) n+d2
2 exp

( |x2 − x1|2

4(t2 − t1)
+

2|j − i |2

t2 − t1

)
.

Remark: Open problem: di�erent di�usion coe�cients; then

tensorization fails, since the operators in the sum do not commute



Li-Yau and Harnack estimates for nonlocal di�usion problems

6. Hybrid problems: approach based on CD-conditions

Illustration: Consider the simple RD-system{
∂tu1(t, x)−∆u1(t, x) = u2(t, x)− u1(t, x),
∂tu2(t, x)−∆u2(t, x) = u1(t, x)− u2(t, x).

Here, Y is the two-point graph, Ld satis�es CDΥ(0, d2) with
d2 ≈ 1, 258. ∆ satis�es CD(0, n). By tensorization, L = ∆⊕ Ld
satis�es CDhyb(0, d) with d = n + d2. We obtain that for
0 < t1 < t2 <∞, x1, x2 ∈ Rn, and i , j ∈ {1, 2},

ui (t1, x1) ≤ uj(t2, x2)
( t2
t1

) n+d2
2 exp

( |x2 − x1|2

4(t2 − t1)
+

2|j − i |2

t2 − t1

)
.

Remark: Open problem: di�erent di�usion coe�cients; then

tensorization fails, since the operators in the sum do not commute



Li-Yau and Harnack estimates for nonlocal di�usion problems

References

THANK YOU FOR YOUR ATTENTION!



Li-Yau and Harnack estimates for nonlocal di�usion problems

References

References

▶ A. Spener, F. Weber, R. Zacher: Curvature-dimension inequalities for
non-local operators in the discrete setting. Calc. Var. Part. Di�. Equ. 58
(2019), Paper No. 171.

▶ A. Spener, F. Weber, R. Zacher: The fractional Laplacian has in�nite
dimension. Comm. Partial Di�erential Equations 45 (2020), 57�75.

▶ F. Weber, R. Zacher: The entropy method under curvature-dimension
conditions in the spirit of Bakry-Émery in the discrete setting of Markov
chains. J. Funct. Anal. 281 (2021), no. 5, Paper No. 109061.

▶ F. Weber, R. Zacher: Li-Yau inequalities for general non-local di�usion
equations via reduction to the heat kernel. Math. Ann. 385 (2023), 393�419.

▶ S. Kräss, F. Weber, R. Zacher: Li-Yau and Harnack inequalities via
curvature-dimension conditions for discrete long-range jump operators
including the fractional discrete Laplacian. Discrete Contin. Dyn. Syst. 44
(2024), 1982�2028.


	1. Introduction: Classical Li-Yau and CD inequality
	2. Nonlocal operators: examples and difficulties
	3. The CD condition
	4. Long-range jump operators
	5. Reduction to the heat kernel
	6. Hybrid problems: approach based on CD-conditions
	References

