Wave and heat processes : Some connections
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Sharp observability estimates for heat equations

The control problem

Let n>1and T > 0, {2 be a simply connected, bounded domain of R”
with smooth boundary I', Q = (0, T) x Qand 2 =(0,T) x I

us —Au=1*f1l, In Q@
u=20 on X2 (1)
u(x,0) =u(x) in Q.

1, = the characteristic function of w of (2 where the control is active.

We assume that u® € L?(Q) and f € [?(Q) so that (1) admits an unique
solution

ue C([0,T];L*(Q)) NL>(0, T; Hy()) -

u = u(x, t) = solution = state, f = f(x, t) = control

Enrique Zuazua (FAU-AvH) Waves & Heat 5 /63



Sharp observability estimates for heat equations

Well known result (Fursikov-Imanuvilov, Lebeau-Robbiano,...) : The
system is null-controllable in any time T and from any open non-empty
subset w of 2.

The control of minimal L?-norm can be found by minimizing

1 T
Jo(¢?) = = / / p? dxdt + / p(0)u’ dx (2)
2 0 W Q)
over the space of solutions of the adjoint system:

—p—Ap=0 inQ
=0 on ¥ (3)
o(T,x) =¢°(x) in Q.

Obviously, the functional is continuous and convex from L?(Q) to R and
coercive because of the observability estimate:

i
[60) = € [ [ P, vPer2@. (@
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Sharp observability estimates for heat equations

One has in fact
T » T
/ / e T p? dxdt < C/ / % dxdt.
0 Q2 0 w

Open problem # 1.1: Characterize the best constant A in this inequality:
A= A(Q,w).

The Carleman inequality approach allows establishing some upper bounds
on A depending on the properties of the weight function. But this does
not give a clear path towards the obtention of a sharp constant.
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Sharp observability estimates for heat equations

Kannai Transform

The Kannai transform allows transferring the results we have obtained

for the wave equation to other models and in particular to the heat
equation (Y. Kannai, 1977; K. D. Phung, 2001; L. Miller, 2004)

1 e
efByp = \/Et/ e~ /4t W(s)ds

where W(x, s) solves the corresponding wave equation with data (¢, 0).

Wee + AW =0 4+ Ki—Kss=0 — U+ AU =0,

Wee + AW =0 4+ IKi—Kss=0 — U+ AU=0.

This can be actually applied in a more general abstract context
(Ut + AU = 0) but not when the equation has time-dependent coefficients.
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Sharp observability estimates for heat equations

GCC

The observability inequality for waves propagation phenomena holds
if and only if the support of the dissipative mechanism, [ or w,
satisfies the so called the Geometric Control Condition (GCC)
(Ralston, Rauch-Taylor, Bardos-Lebeau-Rauch,...)

(@
012[110/

Zo, .
. .‘4 &OO

Rays propagating inside the domain S following straight lines that are
reflected on the boundary according to the laws of Geometric Optics. The
control region is the red subset of the boundary. The GCC is satisfied in
this case. The proof requires tools from Microlocal Analysis.
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Sharp observability estimates for heat equations

Qualitative change from 1 — d to multi-d
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Sharp observability estimates for heat equations

A trapped ray scapping the observation region w makes it impossible these
observablility inequalities to hold.

Trapped ray
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Sharp observability estimates for heat equations

This ray analysis yields sharp results for wave propagation phenomena.

Its link to diffusion processes is less clear....

In a joint work with S. Ervedoza (ARMA, 2011) we have shown
that, whenever the GCC is fulfilled for the wave equation, in time T, then
we have the following upper bound for the diffusion process:

A< T?/8.
Note that for a ball €2, with control on a neighborhood of the boundary,
T = 2/.
We thus get the sharp upper bound in this case:
A< %)2.

We use an inverse Kannai transform.
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Sharp observability estimates for heat equations

Our proof is based on an inverse Kannai transform that, to the best of our
knowledge, was unknown until now:

2 _ 2
W(s) = ! sin <§> exp (S > )U(t) dt, —-S5<s<S68.

2t 4t

Note however, that, even under the GCC, except for the case of the
radially symmetric geometry, there are no sharp upper bounds for other
domains. For instance for the square with observation on two

consecutive sides we have:

loact
5 =S AS
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Sharp observability estimates for heat equations

The kernel employed in this Kannai transform is characterized by the fact
that
Ork(t,s) + Ossk(t,s) =0, t€ Ry, s€(=S5,5),
k(0,s) =0, se(-S5,5), (5)
lim: o |k(t,s)| =0, se(-S,5).

A particular solution is given by:

k(t,s) = ! sin 85 ex -5
2T )27\ 2t ) TP\ T A

B Sy ) D e P
= )27\ 2t ) TP\ e )P 4

which can be viewed as an infinite order derivate of the Gaussian heat
kernel.

Very much in the spirit of the Tychonoff singular solution of the heat
equation.
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Sharp observability estimates for heat equations

It can also be obtained through the Appell transform: If v(x, t) solves the
heat equation then so does

1
w(x,t) = Glx, )v(5, =)
t t
out of the particular solution
S? S

exp(— 7 t) exp(iax).
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Viscoelasticity

Why viscoelastic materials?

Viscoelastic materials are those for which the behavior combines liquid-like
and solid-like characteristics. !

Viscoelasticity is important in areas such as biomechanics. nower
industry or heavy construction =

Synthetic polymers;

Wood;

Human tissue, cartilage;
Metals at high temperature;

Concrete, bitumen;

'See H. T. Banks, S. Hu and Z. R. Kenz, A Brief Review of Elasticity and
Viscoelasticity for Solids, Adv. Appl. Math. Mech., Vol. 3, No. 1, 1-51.
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Viscoelasticity

Viscoelasticity

A wave equation with both viscous Kelvin-Voigt and frictional damping:

Vie — Ay — Ayy + b(x)yy = 14h, x€Q, te(0,T), (6)
y = 0, xed, te(0,T), (7)
y(x,0) = yo(x), y:(x,0) = yi(x) xef. (8)

Here, Q is a smooth, bounded open set in RV, b & L*°(€2) is a given
function determining the frictional damping and h = h(x, t) is a control
located in a open subset w of 2.

We want to study the following problem:
Given (yp,y1). Find a control h such that the associated solution to

(6)-(8) satisfies
y(T)=y:(T)=0.
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Viscoelasticity

Viscoelasticity = Waves + Heat

it — Ay — Ay; =0

yir — Ay =0
_I_
8t[)/t] — Ay =0

Both equations are controllable. Should then the superposition be
controllable as well?

Interesting open question: The role of splitting and alternating directions

in the controllability of PDE.
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Viscoelasticity

A geometric obstruction

Standard results on unique continuation do not apply.
The principal part of the operator is

O:A.
Then characteristic hyperplanes are of the form
t = 1o

and
x-e—=1.

Vertical hyperplanes make it impossible to prove unique continuation from
w X (0, T) towards the whole domain €2, even in the context of constant
coefficients. Holmgren's uniqueness Theorem cannot be applied.

This phenomenon was previously observed by S. Micu in the context of the
Benjamin-Bona-Mahoni equation 2 In that context the underlying operator
IS

O, — O3

XXt

but its principal part is the same
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Viscoelasticity = Heat + ODE

Note that
yie — Ay — Ayr + yr = (0 — A)(0: + 1).
yr — Ay +(b(x) =1)y = z (9)
zz+z = 1,h+(b(x)—1)y, (10)
y(x,t) =v(x,t) = 0, (x,t) € 02 x (0, T), (11)
z(x,0) = Zz(x), x € €, (12)
yv(x,0) = yo(x), x € €. (13)

In this form the controllability of the system is less clear. We are acting on
the ODE variable z. But the control action does not allow to control the

whole z. We are effectively acting on y through z. What is the overall
impact of the control?
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Viscoelasticity

Viscoelasticity = Heat + ODE. Second version

Then

Ye T Y
vi — Av

v(x, t) = y(x,t)
v(x,0)

y(x,0)

The question now becomes:

Given (Yo, zp). Find a control h such that the associated solution to

(14)-(18) satisfies

1,h+ (1= b(x))(v —y),

0, (x,t) € 92 x (0, T),
y1(x) + yo(x), x € (),
yo(x), x € Q.

y(T)=v(T)=0.

Enrique Zuazua (FAU-AvH)
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Viscoelasticity = Heat + Memory

Note that .
Vo — Dy — Dy = elye —Ay—A/ v
0

The later, heat with memory, was addressed by Gurrero and Imanuvilov?,
showing that the system is not null controllable.

3S. Guerrero, O. Yu. Imanuvilov, Remarks on non controllability of the heat equation
with memory, ESAIM: COCV, 19 (1)(2013), 288-300.
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The case b=1

When b = 1, the system reads:
Vi — Av 1, h,
yet+ty = V. (19)
But we can consider the system with an added ficticious control:
vi — Av = 1,h,
yve+y = v+ 1,k (20)

Control in two steps:

@ Use the control h to control v to zero in time T /2.

@ Then use the control k to control the ODE dynamics in the
time-interval [T /2, T].

Warning. The second step cannot be fulfilled since the ODE does not
propagate the action of the controller which is confined in w.

Possible solution: Make the control in the second equation move or,
equivalently, replace the ODE by a transport equation.
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Viscoelasticity

This strategy was introduced and found to be successful in

P. Martin, L. Rosier, P. Rouchon, Null Controllability of the Structurally
Damped Wave Equation with Moving Control, SIAM J. Control Optim.,
51 (1)(2013), 660—684.

L. Rosier, B.-Y. Zhang, Unique continuation property and control for the
Benjamin-Bona-Mahony equation on a periodic domain, J. Differential
Equations 254 (2013), 141-178.

by using Fourier series decomposition.

In the context of the example under consideration, if we make the control
set w move to w(t) with a velocity field a(t), then the ODE becomes:

ve +a(t)- Vy =1,k.

And it is sufficient that all characteristic lines pass by wor, in other words,
that the set w(t) covers the whole domain £ in its motion.

Question: How to prove this kind of result in a more general setting where

b # 1 so that the system does not decouple?




Viscoelasticity

An example of moving support of the control

X(Cdo,t,()) X(wo,t,())
Y Q) T

4 N 4 N

® I'(i) ®

I'(?)
2 (¢) Qy(t) Q1 (1)

\ J \ J

./ ./
0<t<ty 11 <1<ty
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Observability

We consider the dual problem of (21)-(25):

pe—Dp+(b(x)—1)p = (b(x)—1)a,  (x.t) € Qx (0, T)21)

—qt+qg = p, (xt)eQ2x(0,T), (22)

p(x,t) = 0, (x,t) € 02 x (0, T), (23)
p(x, T) = po(x), x € £}, (24)
g(x, T) = qo(x), x € €. (25)

he null controllability property i equivalent to the following observability
one

i
16(0)|P + [1a(0)1? < C /O / gl dxdt, (26)
for all solutions of (21)-(25).

But the structure of the underlying PDE operator and, in particular, the
existence of time-like characteristic hyperplanes, makes impossible the
propagation of information in the space-like directions, thus making the

Enrique Zuazua (FAU-AvH) Waves & Heat 30 / 63




Lack of observability for b =1

—p: —Ap =0 (x,t) € Q2 x (0, T), (27)
—qt+4q = P, (Xv t) SRS (07 T)a (28)

It I1s Impossible that

i
1P(O)12 + [9(0) | < C /O / ql2dxdt, (29)
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Viscoelasticity

Remedy: Moving control

Let us assume that w = w(t).
The controllable system under consideration then reads:

ye — Ay +(b(x) 1)y = z, (30)
Zr +Z = ]-w(t)h =+ (b(X) o ]-)_)/, (31)
y(x,t) = 0, (x,t) € 92 x (0, T), (32)
z(x,0) = z9(x), x € €, (33)
y(x,0) = y(x), xef. (34)
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Viscoelasticity

Motion of the support of the control

In practice, the trajectory of the control can be taken to be determined by

the flow X(x, t, ty) generated by some vector field
f e C([0, T]; W?>*(RN:RM)), i.e. X solves

oX
5 Xt to) = F(X(x, £, o), 1),

(35)
X(X, to, to) = X.
Admissible trajectories: There exist a bounded, smooth, open set
wog C RN a curve ' € C*([0, T];RN), and two times t1, to with
0<t; <ty < T such that:
[(t) € X(wo,t,0)NQ, Vtel0,T]; (36)

QC Ute[O,T]X(C‘JOa L, 0) — {X(X, t,O); X €wp, tE [O, T]}; (37)

Q2 \ X(wo, t,0) is nonempty and connected for t € [0, t;] U [to, T([38)

2\ X(wo, t,0) has two connected components for t € (t1,t2); (39)
Waves & Heat 33 / 63



Viscoelasticity

A failing moving support

O

X(WOJ ta O)

wo X(w07 Ta 0)

Figure: Example for which condition (39) fails.

Remark: Note that it would be OK for b = 1.
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Viscoelasticity

A successful motion

X(Cdo,t,()) X(u)o,t,())
D Q T

- N -

® I'(i) ®

['(t)
2 (¢) Qa(t) Q4 (t)

. J .

—_ —_
0<t<ty 11 <1<ty
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Viscoelasticity

Proof of the observability inequality

Our strategy is based on the use of Carleman inequalities for the heat and

the ODE.
Two main difficulties appear:

@ Carleman inequalities for heat and ODE equations with a moving
control region;

@ We must have the same weight functions in the Carleman for both
equations.

Fortunately, we can handle both difficulties. Note that similar strategies
were implemented successfully for the system of thermoelasticity in

P. Albano, D. Tataru, Carleman estimates and boundary observability for a
coupled parabolic-hyperbolic system, Electron. J. Differential Equations,

22 (2000), 1-15.
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Viscoelasticity

There exist some constants A\g > 0, sp > 0 and Cp > 0 such that for all
A > Ao, all s > 59 and all p € C([0, T]; L?(R2)) with
p: +Ap € L%(0, T; L?(RQ)), the following holds

-
/ / [(s0) (| Ap|? + |pe]?) + N2(s8)|Vp|? + A*(s0)3|p|°]e %% dxdt
0 JQ

T T
< Go (/ / pr + Ap|?e > Pdxdt / / )\4(50)3|pze2590dxdt) :
0 JQ 0 Jw(t)

(41)

for all wg C wj.
Similarly:

/ / (\°s0)|q|?e*P dxdt

.
< C (/ PARE —25¢dxdt+//()A2(59)2|q\2e—2590dxdt.
w(t
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Viscoelasticity

In the previous Lemmas, the weights have the form:

(e%MWHLOO — M (1))

_ SABlloe _ gADO6E)Y A 4
p(x,t) = glt)(e? e 0)) T
Ap(x,t)
_ Mp(x,t) o, € 4
O(x.t) = glt)e T 0 (43)

where ¢ € C>®(Q x [0, T]) is a weight having the following properties:
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Viscoelasticity

There exist a number 6 € (0, T/2) such that

Vip(x, t) # 0, t € [0, T], x € Q\ X(wi,t,0), (44)
Ye(x, t) # 0, tc [0, T], x€Q\ X(wy,t,0), (45)
Ye(x, t) > 0, t €[0,6], x € Q\ X(w1,t,0), (46)
Ye(x, t) <0, te [T =9, T], XEE\X(wl,t,(X)M)
g—f(x, t) <0, t € [0, T], x € 09, (48)
3 _
w(Xa t) > Z“¢‘|LOO(Q><(O,T))7 (S [07 T]7 x € S (49)

for all
o C wi, w1 C w.
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Viscoelasticity

There exist a number 6 € (0, T/2) such that

Vip(x, t) # 0, t € [0, T], x € Q\ X(wi,t,0), (44)
Ye(x, t) # 0, tc [0, T], x€Q\ X(wy,t,0), (45)
Ye(x, t) > 0, t €[0,6], x € Q\ X(w1,t,0), (46)
Ye(x, t) <0, te [T =9, T], XEE\X(wl,t,(X)M)
g—f(x, t) <0, t € [0, T], x € 09, (48)
3 _
w(Xa t) > Z“¢‘|LOO(Q><(O,T))7 (S [07 T]7 x € S (49)

for all
o C wi, w1 C w.

Remark: Basically, ¢ drags the critical points of ¢(x,0) inside the
control region during the evolution of the flow.
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Viscoelasticity

Obstruction for the weight function

{{z,t); 0<t<T, e X(w,t,0)}

{)
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Viscoelasticity

Final comments

@ Can the technical geometric assumptions on the moving control be
removed?’

@ Can one derive similar results by simply assuming that the support of
the control covers the whole domain?

@ To which extent this methodology can be applied in problems where
there are vertical characteristic hyperplanes (BBM, heat with
memory,...)?

@ Other models with memory.

@ Nonlinear versions.
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Long time numerical simulations

Climate modelling

@ Climate modeling is a grand challenge computational problem, a
research topic at the frontier of computational science.

@ Simplified models for geophysical flows have been developed aim to:
capture the important geophysical structures, while keeping the
computational cost at a minimum.

@ Although successful in numerical weather prediction, these models
have a prohibitively high computational cost in climate modeling.

Qcean dynamic lopograpsy and currents
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Long time numerical simulations

Sonic boom

@ Goal: the development of supersonic aircraft that are sufficiently quiet
so that they can be allowed to fly supersonically over land.

@ The pressure signature created by the aircraft must be such that,
when it reaches the ground, (a) it can barely be perceived by the
human ear, and (b) it results in disturbances to man-made structures
that do not exceed the threshold of annoyance for a significant
percentage of the population.

N0 Mid-field

Far field I\
—]

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.
2012, 44:505 — 26.
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Long time numerical simulations

Geometric integration

Long time numerics: Geometric/Symplectic integration
Numerical integration of the pendulum (A. Marica)?

“HAIRER, E., LUBICH, Ch., WANNER, G.. Geometric Numerical

Integration. Structure-Preserving Algorithms for Ordinary Differential
Equations. 2nd ed. Berlin : Springer, 2006, 644 p.

Euler explicit, t=20 Euler implicit, t=20
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Long time numerical simulations

Joint work with L. Ignat & A. Pozo

Consider the 1-D conservation law with or without viscosity:
21 _
us + [u }X = Uy, X € R, t > 0.

Then*:
o Ife=0, u(-,t) ~ N(-, t) as t — o0;
o Ife >0, u(-,t) ~upm(-,t) as t — o0,

up is the constant sign self-similar solution of the viscous Burgers
equation (defined by the mass M of ug), while N is the so-called
hyperbolic N-wave.

In both cases:
u(x, t) ~ t7Y2F(x/V1), t = 0.

*Y. K. Kim and A. Tzavaras, Diffusive N-waves and metastability in the Burgers
equation, SIAM J. Math. Anal., 33 (3), 607 — 633.
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Long time numerical simulations

0.2+

=mw= Diffusive wave
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Long time numerical simulations

Conservative schemes for the inviscid equation

Let us consider now numerical approximation schemes

. At
+1_ .
= ) Ax(gﬂrl/z—gjn_l/z), jez,n>0.
uj(.) = f;jfjll//; uo(x)dx, JjE€Z,

The approximated solution upa Is given by

una(t,x) = u;

iy Xjm12 <X < Xji1/2, th St < tpya,

where t, = nAt and x; 1/, = (j + 5)Ax.

Is the large tine dynamics of these discrete systems, a discrete version of

the continuous one?

Enrique Zuazua (FAU-AvH) Waves & Heat 49 / 63



Long time numerical simulations

3-point conservative schemes

© Lax-Friedrichs

y) 2
uc + v Ax (v —u
g F (u,v) = ( )

@ Engquist-Osher

u(u +Jul) | v(v —|v|)

EO _
g (U, V) - 4 ' 4 9
© Godunov 2
m[ln]WT, if u<v,
G welu,v
u,v
g”(uv) max W;, if v<u
we[v,ul
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Long time numerical simulations

Numerical viscosity

We can rewrite three-point monotone schemes in the form

n+1 2 2
u: ( )= —(u4)
J J+1 -1/ n n
At AN R(ujauj—l—l) R( —1> J)

where the numerical viscosity R can be defined in a unique manner as

. A 2 2
R(u,v) = A V)z(v 2 2 (uz ’ Vz 2g(u, v))'
For instance: S
R (u,v) = 5

A
REO(u,v) = S (v|v| - ulu]).

v %sign(\u| —v])(v? —u?), v<0<u
R”(u,v) =
2(viv| — ulul). elsewhere.
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Long time numerical simulations

Properties

These three schemes are well-known to satisfy the following properties:

o Similarly they verity uniform BV |, estimates

But do they capture correctly the asymptotic behavior of solutions as

ney converge to the entropy solution

ney are monotonic

ney preserve the total mass of solutions

ney are OSLC consistent:

o

n

n
| — U
1 J+1 S

2A X

[ — L decay with a rate O(t~1/2)

2
nAt

t— oo?

Enrique Zuazua (FAU-AvH)
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Long time numerical simulations

Main result: Viscous effective behavior

Theorem (Lax-Friedrichs scheme)

Consider ug € LY(R) and Ax and At such that )\|u”

A = At/Ax. Then, for any p € [1,00), the numerica
the Lax-Friedrichs scheme satisfies

1 1
lim t275)
t—0o0

ua(t) — w(t) ()

where the profile w = w),, Is the unique solution of

2
W(O) — MAéo,

2 2
WtI(W> :(A2X) Wy, X €E€R,t>0,
X

with Ma = fR uOA.

<1
o0, A

solution ua given by

0,

Enrique Zuazua (FAU-AvH) Waves & Heat
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Long time numerical simulations

Why?
n-+1 2 2
u ( )* —(u )
J J+1 —1 LF/ n LF
N\t 4 /\ x =R (u./ ? uj ) R ( —1> J)
with
V — U
R (u, v) >
Thus
ujn+ ( +1)2 (u] ' ,) N 1 | n 2] (Ax)zu
At 4Ax o L+l =l 2
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Long time numerical simulations

Main result: Inviscid effective behavior

Theorem (Engquist-Osher and Godunov schemes)

Consider ug € L}(R) and Ax and At such that A <1

0o, A
A = At/Ax. Then, for any p € [1,00), the numerical solutions ua given

by Engquist-Osher and Godunov schemes satisfy the same asymptotic
behavior but for the hyperbolic N — wave w = w,, 4, unique solution of

un

2

Wt+(w7) —0, xeR,t>0,

. 0, x < 0,
w(0) = Madg, lim / w(t,z)dz =< —pa, x =0,
t—0 0
da — pa, x>0,
with Ma = [, u} and
pa = —minger [~ ux(z)dz and  ga = maxyer [ upx(z)dz.
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Long time numerical simulations

Proof

Scaling transformation:

un(x, t) = Au(Ax, A\°t)

The asymptotic behavior of u(x,t) as t — oo is reduced to the analysis of

the behavior of the rescaled family uy as A — oo but in the finite time
horizon 0 < t < 1.
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Long time numerical simulations

Example

Let us consider the inviscid Burgers equation with initial data

—0.05, x € [-1,0],
up(x) = ¢ 0.15, x €[0,2],

0, elsewhere.

he parameters that describe the asymptotic N-wave profile are:
M=025, p=0.05 and g =0.3.

We take Ax = 0.1 as the mesh size for the interval [—350,800] and
At = 0.5. Solution to the Burgers equation at t = 10°:

x10°  Lax-Friedrichs x10° Engquist-Osher 4% Godunov

——N-wave ——N-wave ——N-wave
2 2 2
1 1 1
03 0 0
-1 -1 -1
-100 0 100 200 300 100 ) 100 200 300 -100 0 100 200 300
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Similarity variables

Long time numerical simulations

| et us consider t

ne change of variables given by:

s=In(t+1

),

= x/VI+1,

which turns the continuous Burgers equation into

W5—|—(

(£,8)

2

Np,q(f) = 4

1 1

“w? — —gw) =0, £(€R,s>0.
2" /e

The asymptotic profile of the N-wave becomes a steady-state solution:
(
57 Vv 2p < 5 < v 2 )
\O, elsewhere,
I I (x,t) 1
T [ 7 7 7

_ ]
Enrique Zuazua (FAU-AvH)
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Long time numerical simulations

Examples

s Solution at 8 = 0 Solution at s = —21In((+8 — V&) /10)
ol ]

4

DO L ——]

At ] L
ot . L
-3 . . . . -3

-12 =10 -8 -6 -4 -2 0 2 4 -12 -10 -8 -6 -4 -2 0 2 4

Solution at s = —21n ((2 + +/2)/10) Solution at s = 20

Convergence of the numerical solution using Engquist-Osher scheme
(circle dots) to the asymptotic N-wave (solid line). We take A¢ = 0.01

and As = 0.0005.
Snapshots at s =0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations

Examples
s Solution at 8 = 0 Solution at s = —21In((+8 — V&) /10)
ol
4
DO L ——]
At
ot
-3 . . . . -3
-12 =10 -8 -6 -4 -2 0 2 4 -12 -10 -8 -6 -4 -2 0 2 4

Solution at s = —21n ((2 + +/2)/10) Solution at s = 20

-12 -10 -8 -8 -4 -2 0 2 4 -12 -10 -8 -8 -4 -2 0 2 4

Solution at s = —21n (v2/10) Solution at s = 100

Numerical solution using the Lax-Friedrichs scheme (circle dots), taking
A& = 0.01 and As = 0.0005. The N-wave (solid line) is not reached, as it
converges to the diffusion wave.

Snapshots at s =0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations

Physical vs. Similarity variables

Comparison of numerical and exact solutions at t = 1000. We choose A&

such that the | : ‘1 , error is similar. The time-steps are At = Ax/2 and
As = A£/20, respyectively, enough to satisfy the CFL condition.
For Ax = 0.1:
Nodes | Time-steps | : ‘ ‘ : ‘ ‘ : ‘
1,A 2,A 00, A
Physical 1501 19987 0.0867 | 0.0482 | 0.0893
Similarity | 215 4225 0.0897 | 0.0332 | 0.0367
For Ax = 0.01:
Nodes | Time-steps | : ‘ ‘ : | ‘ : ‘
1,A 2,A 00, A
Physical 15001 199867 0.0093 | 0.0118 | 0.0816
Similarity | 2000 39459 0.0094 | 0.0106 | 0.0233
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Long time numerical simulations

Conclusions

@ Within the class of convergent numerical schemes we have shown the
need of discriminating those that are asymptotically correct.

@ We have shown the significant reduction on the computational cost
when using the intrinsic similarity variables.
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