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Introduction

We discuss:

@ Trace inequality for fractional integrals (Riesz potentials,
Riemann-Liouville operators);

@ Boundedness/compactness criteria for fractional integrals defined
with respect to a general measure. Stein-Weiss-type Inequalities.

© Sharp weighted norm estimates for Riesz potentials (sharp Olsen’s
inequality).

We deal with linear and multilinear fractional integrals.
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Part 1
Trace Inequality for Riesz Potentials
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Riesz Potentials

Riesz potentials:

f

Iaf(x)zy(n,a)/yx_(;?n_ady, O<a<n, xeR" (0.1)
]Rn

play important role in harmonic analysis and PDEs, for example, in theory

of Sobolev Embeddings (see, e.g., monographs by [Mazya], [Adams and
Hedberg], etc. )
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Sobolev's Classical Inequality

Let1 < p,g<ocand0 <« < n/p. Then I, is bounded from LP to L9 if
and only if

Sobolev exponent:
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Riesz Potentials

The appropriate fractional maximal operator is given by the formula:
Moo () L /|f( Jldy, 0<a<n, xeR”
X) = sup ———— ) a<n, x .
“ 332 |B[t=o/n Jg i

Taking formally o = 0, we have the Hardy—Littlewood maximal function
Mof = Mf which is significant in Harmonic Analysis, particularly in the
theory of Singular integrals.

The following pointwise estimate is obvious:

Mo f(x) < Canlaf(x), >0,

however the inverse inequality holds in terms of norms.
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Trace Inequality

Trace inequalities for Riesz potentials /, deals with a Borel measure v on
R” for which the inequality

</|/af(x)|qdy(x)>l/q < C</|f(x)|”dx)1/p (0.2)

Rn Rn
Holds.

If v is absolutely continuous, dv(x) = v(x)dx, where v is a non-negative
locally integralble (weight), then the trace inequality is:

1a 1/p
< R/ o f (X)) V(X)dx> < c< R/ |F(x)| dx> (0.3)

October 16-24
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Some applications:
@ Sobolev embeddings (Maz'ya, Adams and Hedberg).

@ Very profound impact of trace inequalities on spectral problems of
differential operators, and in particular on eigenvalue estimates for
Schrodinger operators (see e.g., M. Frazier, B. Jawerth and G. Weiss,
Littlewood-Paley theory and the study of function spaces. Regional
Conference Series in Mathematics, Vo79, Amer. Math. Soc.
Providence; RI, 1991; R. Kerman and E. Sawyer, 1986.
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© Close connection with the solubility of certain semilinear differential
operators with minimal restrictions on the regularity of the
coefficients and data. In fact, the existence of positive solutions of
certain nonlinear differential equations is equivalent to the validity of
a certain two-weighted inequality for a potential-type operator, in
which the weights are expressed in terms of coefficients and data.

D.R. Adams and M. Pierre, Capacitary strong type estimates in
semilinear problemns. Ann . Inst. Fourier (Grenoble ) 41(1991),
117-135.

P. Baras and M. Pierre, Critere d'existence de solutions positives pour
des equations semi-lineaires non monotones. Ann. Inst. H. Poincare
Anal. Non Lineaire 2( 1985), 185- 212

K. Hansson, Imbedding theorems of Sobolev type in potential theory.
Math. Scand. 45( 1979), 77-102.

V. G. Maz'ya, I. E. Verbitsky, Capacitary inequalities for fractional
integrals, with applications to nartial differential equations and
Sobolev multipliers. Ark. Mat.33(1995), 81-115.
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In examples 2 and 3 the diagonal case p = g is essential.

In 1971 D. Adams proved that necessary and sufficient condition on v
guaranteeing (0.3) for 1 < p < g < o0 and 0 < aw < n/p is that measure v
satisfies the condition: there is a positive constant C such that for all balls
B CR",

v(B) < C|B|(X/p=a/ma

He also noticed that this condition is necessary but not sufficient for (0.3)
in the diagonal case p = g (see also Lemarie-Rieusset, 2012).
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In the sequel we will use the notation:

1/q B
[V]p7q,o¢ = sup (V(B)) ’B‘a/n l/p.
B

If v is absolutely continuous, dv(x) = v(x)dx for some weight function v,
then

1/q
[V]P,q,a = sup (v(B)) |B|O‘/”_1/P.
B
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We recall various criteria governing the trace inequality:
© Maz'ya-Verbitsky, Adams and Hedberg (conditions in terms of
Capacities) (involving the diagonal case p = q);
@ Maz'ya-Verbitsky (Pointwise conditions on v again in terms of I,
itself) (involving the diagonal case p = q);

@ E. Sawyer (Involving the operator (I, itself, so-called Sawyer-type
condition) (involving the diagonal case p = q).
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Trace inequality is a special case of the two-weight inequality:

Ha 1/p
(HJ’Iaf(x)| du(X)) < C<R[\f(x)\ W(X)dx> _ (0.4)
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Two-weight criteria for Riesz potentials:

@ E. Sawyer: (Involving the operator (I, itself) (p < q);
@ M. Gabidzashvili and V. Kokilashvili (Transparent, integral-type
conditions) (p < q)

See e.g. the monograph [Kokilashvili-Krbec, 1993].
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Trace Inequality

One of our aims: finding an appropriate Lorentz space LP® such that the
D. Adams-type condition for p = g:

v(B) < C|B|t—ar/n (0.5)
on v is both necessary and sufficient for the validity of the trace inequality
Hafllioy < ClIfllees,

where [, is the Riesz potential on R”.
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Trace Inequality

To study this problem was motivated by the fact that the inequality fails
for p = s, i.e. the inequality

Mooy < ClIf e,

under the condition (0.5).

As we have mentioned (see also the paper by )It is known that the latter
condition is necessary and sufficient for the validity of

HIOZfHLq(V) < CHfHLP’

if and only if p < g even when v is absolutely continuous dv(x) = v(x)dx.
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Trace Inequality

The trace inequality for Riesz potentials /, implies the weighted estimate:
Ifllps < ClIVFlle, f€ G5, du(x) = v(x)dx, (0.6)
which follows from the estimate
[F()I < Ch(IVFD ().

Here LJ is the weighted Lebesgue space defined with respect to the norm

iy = ( [ If(X)qu(x)dx>1/ !
J

October 16-24
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Trace Inequality

In this direction it is known Fefferman—Phong inequality:

Theorem A.
Let1 < p < oo andlet0 < a < n/p. Then the following inequality holds:

lafllp < C|IfllLe

for some p < r, where

1/r
[V s ;—supys\a/n—l/f</vf/P(x)dx> < o0. (0.7)
B
B
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Trace Inequality

It is easy to see that by Holder's inequality we have that condition (0.7) is
stronger than Adams type condition for p = gq:

1/p .
[Vpa = [Vppa i=sup (v(B)) " [BI*/"7/"
B

in particular, [v]p o < [V]5,, for r > p.

October 16-24 Lecture 1 Trace Inequality for Fractional Inte October 25, 2025



Lorentz space

Let f be a measurable function on R" and let 1 < p <00, 1 <s < .
We say that f belongs to the Lorentz space LP* if

00 1/s
il <s{(|{xeR": |f(x)] >T}])s/p751d7> , if1<s< oo,
Lps =

1
supT(|{x€R”:|f(x)| >T}|) g if s = 00
7>0

is finite.
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Lorentz space

If p =s, then LP® coincides with the Lebesgue space LP.

Denote by f* a non-increasing rearrangement of f. Then by integration by
parts it can be checked that (see also [Hunt]):

00 s 1/s
Il (5] (2rrw) %) r1ss <o
Lps =

sup{tY/PF*(t)}, if s = 0.
t>0

October 16-24
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Lorentz space

Now we list some useful properties of Lorentz spaces (see, e.g., [Humt]):
© |xellees = |EP;
Q If1<p<oo, s <syp, then LP®2 — [P31 with the embedding
constant C, 5, s, depending only on p, s; and s;
@ positive constant Cp s such that

Coellfllrs < sup Spis [IFllies

[l s <1

/ f(x)h(x)dx
X

for every f € LP® where p=p/lp—1),s=s

Slder’s i : 1_ 1,1 1_1

Q (Halder's inequality) Let & = 2~ + -, ¢ = & +

Hf1f2||LPv5 < CHleLPl»SlezHLPz,Sz

for all f; € LP~*t and f, € LP>*2, where C = Cp 5 p; py,s1,5-
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Trace Inequality Characterization

Let1 < p < oo andlet0 < «a < n/p. Suppose that v is a non-negative
locally integrable function on R". Then the following statements are
equivalent:

@ there is a positive constant C such that for all f € LP1(R"),

ofll oy S 1fllLpan) (0.8)
@ there is a positive constant ¢ such that for all f € LP1(R"),

IMafllp@ny S I1F o re) (0.9)

[V]p,a = sup (V(B))l/p|B|°‘/”*1/p < 00.
E

Moreover, [V]pa ~ |[lo]| ~ [[Ma]|-
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The case of an SHT

The Case of Spaces of Homogeneous Type
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The case of an SHT

Let (X, d, 1) be a space of homogeneous type (SHT), i.e., X is an
abstract set, and d : X x X — R is a quasi-metric satisfying the
following conditions:
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The case of an SHT

@ d(x,y)=0ifandonly if x =y;

@ d(x,y)=d(y,x) forall x,y € X;

@ Thereis a constant k > 1 such that d(x,y) < k(d(x,z) + d(z,y))
for all x,y,z € X,

and u is a complete measure defined on a o-algebra over X, such that the
balls B(x,r) :={y € X; d(x,y) < r} are measurable with positive and
finite y-measure for all x € X and r > 0. Moreover, the doubling
condition is satisfied:

u(B(x,2r)) < Cpcp(B(x, r)), (0.10)

with a positive constant Cp¢ independent of x and r.
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The case of an SHT

The best possible constant Cpc in (0.10) is called the doubling constant.
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The case of an SHT

There exists many interesting examples of an SHT. We underline some of
them:

@ Rectifiable regular curves (rectifiable curves satisfying G. David
condition);

@ Homogeneous groups.

October 16-24 Lecture 1 Trace Inequality for Fractional Inte October 25, 2025 28 /36



The case of an SHT

For a given SHT, (X, d, i), and g satisfying 1 < g < oo, as usual, we
denote by L9 = L9(X, u) the Lebesgue space equipped with the standard
norm. Let LP*(X, u) be the Lorentz space defined on (X, d,u). If vis
another measure on X, then we denote the Lebesgue and Lorentz spaces
defined with respect to v by L9(X,v) and LP*(X,v), respectively. If v is
absolutely continuous with respect to y, i.e. dv(x) = v(x)dp(x) for some
p-a.e. positive locally integrable function on X (i.e. v is a weight function
on (X,d, 1)), then we use the symbols L(X, 1) and LY*(X, u) for
L9(X,v) and LP*(X,v), respectively.
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The case of an SHT

Define by I, xf the Riesz potential of a -measurable function f given by
the formula:

oo xF(x) = /X 1(By)*H(y) duly). x € X,

where 0 < a < 1 and By, := B(x,d(x,y)).
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The case of an SHT

Letl<p<qg<ooandlet0< a<1/p. Suppose that (X,d, ) is an
SHT and v is another measure on X.Then the inequality

Mo x fllagx )y S IFllee(x,)
holds if and only if

sup v(B)Y9u(B)*1P < oo,

where the supremum is taken over all balls B in X.
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The case of an SHT

Let1 < p<ooandlet0 <« <1/p. Suppose that (X,d,pn) be an SHT.
Assume that v is is a weight function on (X, d, ). Then the following
statements are equivalent:

@ there is a positive constant C such that for all f € LP'Y(X, ),

Hox Fllooxmy < ClNEll L (x i (0.11)

[Vl = stp ( /B v(x)du(x))l/p u(B)* P < .
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Application for homogeneous groups

Let G be a homogeneous group, which is a nilpotent Lies group with
homogeneous norm r(-), Haar measure dx and homogeneous dimention Q.
Let

l,6f(x) Z/Xf(Xy_l)”_Qf(y) dy, xe G, 0<~v<Q,

be fractional integral operator on G.

Then the following statement holds:
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Application for homogeneous groups

Let1 < p<ooandlet0 <~ < Q/p. Then the following statements are
equivalent:

@ there is a positive constant C such that for all f € LP1(G),

1L ,Gf”L'V’(G) < C||f||Lp,1(G); (0.12)

1/p
[Vlp.y.G :=sup (/ V(X)dx> |B[/Q-1/P <« .
B B

Moreover, C ~ [V]p~,G., where C is the the last inequality.
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This statement was proved in:

G. Imerlishvili and A. Meskhi, A note on the trace inequality for Riesz
potentials. Georgian Math. J., 28(5) (2021), 739-745. doi:
10.1515/gmj-2020-207.

A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-Standard
Function Spaces, A Sequel: Inequalities, Sharp Estimates, Bounded
Variation, and Approximation, Birkhduser-Springer, To appear in 2026.

It should be emphasized that this statement in Euclidean spaces was
proved by another method by M. V. Korobkov and J. Kristensen..
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Related References

M. A. Bhat and G. S. R. Kosuru, Wiener-Lebesgue Point Property for
Sobolev Functions on Metric Spaces. Mediterr. J. Math. 21, 221 (2024).

F. de Almeida and L. S. M. Lima, Adams' trace principle in
Morrey-Lorentz spaces on -Hausdorff dimensional surfaces. Ann. Fenn.
Math., 46(2):1161-1177, 2021.

L. Liu and J. Xiao. A trace law for the Hardy-Morrey-Sobolev space. J.
Funct. Anal., 274(1), 2018.

V. Korobkov and J. Kristensen. The trace theorem, the Luzin N- and
Morse-Sard properties for the sharp case of Sobolev-Lorentz mappings. J.
Geom. Anal., 28(3):2834-2856, 2018.
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Part 2
Trace Inequality for one-sided fractional Integrals

Alexander Meskhi



One-sided Fractional Integrals. Diagonal case.

Now we present boundedness/compactness criteria for one-sided fractional
iIntegrals (Riemann-Liouville operator):

Jzzﬂf(ﬂc):[m AU

0 (:B _ t)l—-a

from LP(0, 00) to LI(0, 00) ( LI*(0, 0)), where 0 < p, g < oo, p > 1 and
1

o > =,
P



Hardy Inequality

Theorem A. Let 1 < p < q < 00. The inequality

(fnml][;m f(t)dt‘qy(m)dm);- < c(/ﬂm |f(m)|”w(9:)da:)%, (2.1.1)

where the positive constant ¢ does not depend on f, f € LP(0,00), holds if

and only if
A= ig]é: (/:UU(m)dm)é(/ﬂtwl_pj(m)dw)ﬁr <0 (?31F - p_f—]‘:)

Moreover, if c is the best constant in (2.1.1.), then c =~ A.



Compactness theorem for

Theorem C. Let (X, 1) and (Y, v) be o—finite measure spaces and let 1 <
r,p < 00, Then the condition

M = [|Ik@ W)l oz o < o0
implies the compactness of the operator
/ k(z,y)f(y)dv(y), z € X,

from L;, (Y) into LE - (X).



Trace Inequality for One-sided Fractional Integrals

Theorem 2.1.1. Letl < p < g < oo, « > 1/p. Then the following
conditions are equivalent.

(i) R, is bounded from L?(0, 00) into LJ(0, c0) ;

(ii) R4 is bounded from L?(0, co) into LI%°(0, 0o) ;

(iii)
_ o0 'U'(il’:) 1/q 1/p' '
B = ﬁgg (ft —i-a)q d:r.:) tF < oo

(iv)

2.‘:-!—1

1
B1 = sup (/ v(s:)a:(“_up)qdm) /e < o0.
kez N J2k

Moreover, || Rolls_, 13 % | Rallos 13 ~ B ~ By.



H'u .y L L

Lof(z) = /E 04

0o (z—t)t-e

Proof. Iienﬁf'i}‘lg |

and

Igﬂf(a:)E/m 04

z — t)1-
: @-p)e

for f € LP(0,00) we write R, f as

Rﬂ!f(m) = Iln:f(m) + I2u:f($)*



for f € LP(0,00) we write R, f as
Rof(z) = Lof(z) + Ioaf(z).
We obtain

”Rﬂrf]g,%(u,m)iclfo ]Imf(il?)|‘i"t"(ﬂf?)'fffﬂ"f-lﬂclfEJ 2o f (z)|?v(z)dz = S1+S2.

If 0 <t< %, then (z—t)* ! < bz*!, where the positive constant b depends
only on a. Consequently, using Theorem A with w = 1, we have

;{;(1_‘1)@

©  y(x) z g
Si<ef ([ 17@)1at) "de < csBUSIE 00

Next we shall estimate S3. Using the Holder inequality and the condition
1/p < «, we obtain



IRaflg00 <t [ Ihaf@I0(@dotcs [ haf(@)t0(a)do=S1+5;

If 0 <t< %, then (z—t)*! < bz®!, where the positive constant b depends
only on . Consequently, using Theorem A with w = 1, we have

© wlzx
sia [ —pobe ([ 1500) e < es B 0y



Next we shall estimate So. Using the Holder inequality and the condition
1/p < a, we obtain

/% m ; ! (:))1_& it da <

<e [ o@)( [, 110Pa)"( [} o) 4o =

2

Sy = ¢ /ﬂm v(z)




Boundedness criteria

= ¢4 Zf {a 1)g+q/p’ f If(t |Pdt)qud$ <

keZ
9k+1 2k+1 ’
<eay f £ (2)[Pdt) w( / o o(a) gDt gg) <
keZ 2
2k+1 qu 2k+1 p
<ecs5 ), (/k |f(@)[Pdt) (fk v(z) - 2(*"Ddz) - 20/ <
kez Y207 2
2k+1 q/p q

<8BS ([ 17@Pd)" < coBoN Ly 0,y

keZ

which proves the sufficiency. Hence (ii1) = (i).
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Boundedness criteria

Now we show that (i) = (iv). Let fr(z) = x(oot-1)(z). Note that if
0 <y < 2F1land 2 € (2F,2F+1), then (z — y)®~ ! > byz®"!, where the
positive constant b; depends only on «v. We have

[ Rafll L3 (0,00) = CT"X[?‘“,E‘Hl)ma“l“Lﬁm(ﬂ,m}zk >

L 2k+1 l/q L
2 CB!|X[2k,2k+1)“Lgm(ﬂ,m)? ® = CB(/ ‘U(ﬂ«‘)dm) 2%,
2k
On the other hand, || fk|| 1»(0,00) = co2¥/? and by virtue of the boundedness of

R, from LP(0, 00) into LI*°(0, o0) we find that B; < oc.
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Boundedness criteria

Next we prove that (iv) implies (iii). Let

— > ‘U(:IZ) /g 1/p
B(t) = ([t x(l_&)qd:n) ¢

and t € (0,00). Then t € (2™,2™*!] for some m € Z. We have

B = ([ ) < ( /j’ 0(a) g

p(l-a m 3;(1* a)q

2k+1

— p,oma/P Z / :.-::(1 &}q )5
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Boundedness criteria

0 2k+1 a/p’
/ —ka/p' v(z)z
b, 2ma/P Z 9~kq/p /;k o) dz <

k=m
o0
< bngng/p’ Z 9-ka/v" < by B
k=m

and therefore B < by By < 0.
As (1) implies (i1) we finally have that (i) = (i1) = (iv) = (iii) = (i).
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Compactness criteria

Theorem 2.1.5. Let1 < p < g < 00, a > ;-,. Then the following conditions
are equivalent.

(i) Rq is compact from LP(0, 0o) into LI(0, o0) ;
(ii) Ry is compact from LP(0, c0) into LI*®(0, o0) ;

(i)

_ © o(r)  \g,L
B:igg(/t m(l*ﬂ)qu) it < 00

and lim B® = lim B®) = (, where
a—0 b—00
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Compactness criteria

(a) — v(z) % 1
B = Uilr:tl{:a, (f :I:(l—”-')q L7

o0 1
B® = sup ( / ﬁ(‘r)) dz)* (t — b)7 ;
T —x

t>b
(iv) B < oo and 11111 B(t) = lim B(t) = 0, where

t—00

B(t) = (/;DD v(z) dx ;-tp%;

m(l—ﬂ}'?

15



(v)

2k+l

B, = sup ( / v(z)z @1/ p)qd:s)
kez *J2k

1
‘' <o

and lim By(k)= lim B;(k) =0, where

k——00 k—+o0

Bi(k) = (/;EH v(z) d:t:)ﬁl'

k m(lfp*ﬂ)q

16



Compactness criteria

Proof. Let 0 < a < b < 0o. We write R, f as

(n,%)) +

R&f - X{g}q]R&(f ) X(u,a)) + X(a*h)Rﬂt(.f ) X{ﬂ,b}) + X[b,m]R&(f " X
+X[b,m}Rﬂ'(f ' X{%‘m}) = Piof + Poof + Poof + Paaf.

For Py f we have Paaf(z) = [ ki(z,y)f (y)dy, with ky(z,y) = (z -
y)“‘lx{ﬂ,ﬁ) (z) for y < z and k;(z,y) = 0 for y > z. Consequently

[ o ([t ) ae < ([ A d)it < oo

3;(1_’1)?

and by Theorem C' we conclude that P, is compact from L (0, oo) to L4 (0, 0o).
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Compactness criteria

In a similar manner we show that P, is compact, too.
Using Theorem 2.1.1 for the operators P;, and Pj4,, we obtain

|Piell < c1B@ and ||Py,] < o BY/?).
Consequently
IRa — Poa — Psall < ||Piall + | Paall < 1B + ;B2 — 0

asa — 0and b — .

Thus the operator R, is compact, since it is a limit of compact operators.
Hence (111) = (1).
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Compactness criteria

Now we prove that (i) = (iv).
Note that the fact B < oo follows from Theorem 2.1.1. Thus we need to
prove the remaining part. Let f;(x) = X, ,, ()t~ !/P. Then the sequence f; is

weakly convergent to 0. Indeed, assuming that ¢ € LP', we obtain

1
7

{fﬂ‘:’“ ft(m)@(i")difl < (/ﬂt |§0($)]pﬁd:r)p — 0 as £t — 0.

On the other hand, we have

”Raft“z,g(n,m) > (/; v(z) (/ (:1: ft(y) )qrd::..r")é >
> ca(ftm v(z) d:c)‘*t? = c3B(1).

3;(1"51)?
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0<a<y Maz'ya-Verbitsky type conditions

Theorem 2.3.1. Letl < p < owandletd < a < %. Then the inequality
o0 o0
[ |Baf@Po(@)ds < o [If(@)Pdz, feL(RY),  (23.)
0 0

holds if and only if Wav € LP. (R.) and

loc

Wo[WaolP (z) < cWav(z) ae. (2.3.2)
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Maz'ya-Verbitsky type conditions

First let us consider the integral equation

dt, 0 < a<l, (1.14.1)

o) = [ LD [ o0

(t—z)l-© t—z)l-o
T

with given non—negative v € Lj (R4 ).

Recall that by R, and W, we denote the Riemann—Liouville and Weyl ope-
rators respectively, i.e.

R.f(z) = f; F(8)(z —8)*dt, >0, a >0,

Wof(z) = _me(t)(t —2)*ldt, >0, a> 0.

21



Applications to Non-linear Integral Equations

Theorem 1.14.1. Letl < p < o0, 0 < a < 1, p = o= £, and Ap =
(' —1)(p')7".
i) If Wov € L], (R4 ) and the inequality
Wo[WovlP(z) < ApWav(z) aee. (1.14.2)

holds, then (1.14.1) has a non-negative solution ¢ € L?

(Wav)(z) < ¢(z) < p'(Wav)(2).
i) If 0 < a < —; and (1.14.1) has a non-negative solution in L] (R.), then

WQU € L (R+) and
Wa[(Wov)P](z) < cWou(z) a.e. (1.14.3)

1oc(F2+). Moreover,

loc

for some constant ¢ > 0.
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Applications to Non-linear Integral Equations

Proof. We shall use the following iteration procedure. Let (o9 = 0, and let
fork=0,1,2,---

Pr+1(T) = Wa(@ﬁ)(m) + Wav(z). (1.14.4)
By induction it is easy to verify that
WHU(:B) < 'on(x) < (|0E:+1($)1 k = 0: ]-: 23 T (1155)
From (1.14.4) we shall inductively derive an estimate of @i ().
Let
pr(z) < cxWav(z) (1.14.6)
for some £k = 0,1,---. It is obvious that ¢c; = 1. Then (1.14.2), (1.14.3) and

(1.14.5) yield
pr+1(z) < (Apcy + 1) (Wav)(z),
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Applications to Non-linear Integral Equations

where A, is the constant in (1.14.2). Thus ¢x4; = Ay + 1 fork =1,2,---
Now by induction and the definition of A, we deduce that the sequence (cx )
is increasing. Indeed, it is obvious that ¢; < cg. Let ¢ < ck41. Then

Ch+1 = APCE +1< Apck.|_1 +1= Ck+2-

It is also clear that (¢ ), is bounded from the above by p’ and consequently
it converges. As the equation 2 = A,2P + 1 has only one solution, z =
p', it follows that khm ¢, = p'. On the other hand, the sequence (k) 18

nondecreasing and by (1.14.6) we get

p(z) = lim p(z) < p'(Wav)(2).

k—o00
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Applications to Non-linear Integral Equations
By our assumption Wyv € LY

1oc(R+) and from the preceding estimate we
conclude that o € L7 (R4). Moreover, (Wov)(z) < ¢(z) < p'(Wav)(z).

loc

Now we prove the statement 11). Suppose (1.14.1) has a solution ¢ €

LY (R'). We have

loc

Wa(oP)(z) < p(z) < o0  a.e. (1.14.7)
Hence Wy (pP) € LT (Ry). Then from (1.14.7) we get

loc

Wao[Wa (") (2)P(z) < Wa(pP)(z) ae.
Applying Theorem 2.3.1, we deduce that

“Raf”Lf < Ilf“L'p'a (1'14'8)
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Applications to Non-linear Integral Equations

where p(z) = ¢P(z). But (W,v)(z) < ¢(x). Due to (1.14.7) we get
Rafly < elfl;s (L149)
with p;(z) = (Wav)P(z). Using Lemma 2.3.2 we arrive at

[Rafllyr < 110

Applying Theorem 2.3.1 we come to condition (1.14.3). O
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Two-welght criteria: off-diagonal case

For measurable f : R — R put

Raf(z) = / (z —y)* ' fy)dy,

where z € R and o« > 0.
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Two-welght criteria: off-diagonal case

Theorem 2.2.3. Let1 <p < q<ooand0 < a < 1. For the boundedness
of Re from L, (R) into LI(R) it is necessary and sufficient that the conditions

z+h h ;

1{{‘? i wl—p ( ) 1;/13'!
o= ([ o) ([ g nt) <o
1 IE%]-}E}U( v(y)dy (z — y)(1-a)p’ dy < 00

r—h —00

a+h

, 1y, TR0 v 1/q
sup ( / w' P (y)dy) ( / (y()l_ ) dy) < 00.
a€R,h>0 (y — a){l—a)q

a—h a+h
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Alexander Meskhi
Lecture 2
Integral operators on non-homogeneous spaces

A. Meskhi



In the last two-three decades considerable attention of researchers was
attracted to the study of problems of Harmonic Analysis such as the
mapping properties of integral operators (Singular and fractional integral
operators) defined on metric measure spaces with non-doubling measure

(see the papers by [F. Nazarov, S. Treil, and A. Volberg], [X. Tolsa], [J.
Garcia— Cuerva and E. Gatto|, [J. Garcia— Cuerva and J. M. Martell|, [V.

Kokilashvili and A.M.], |T. Hytonen|, etc.). Such spaces are called also

non-homogeneous spaces.
The boundedness results for singular and fractional integral operators in

Lebesgue spaces are mainly obtained under the "mild” growth condition
Oon a measure.

Today we discuss similar problem for fractional integrals in Lorentz spaces,
generally speaking, in multilinear setting and present recent results in this

direction.



Fractional Integrals with measure. Boundedness Criteria

In this lecture we deliver boundedness and compactness triteria for
fractiona integrals defined with respect to a measure in Lebesgue spaces.

Let (X, d, 1) be anonhomogeneous space, i.e. a topological space endowed
with a locally finite complete measure i and quasi-metricd : X x X — R!

satisfying only the conditions



Non-homogeneous spaces

(i) d(z,z) =0forall z € X

(ii) d(z,y) > O0forall z # y, z,y € X;

(iii) there exists a positive constant ag such that d(z,y) < agd(y,z) for
every T,y € X,

(iv) there exists a constant a; such that d(z,y) < a;i(d(z, z) + d(z,y)) for
every z, y, 2 € X,

(v) for every neighbourhood V' of the point z € X there exists » > 0 such
that the ball B(z,r) = {y € X : d(z,y) < r} is contained in V;

(vi) the ball B(z,r) is measurable for every x € X and for arbitrary » > 0;



Space of homogeneous type. Doubling Condition

We do not require the condition:

(vii) there exists a constant b > 0 such that uB(z, 2r) < bu(B(z,r)) < 00
foreveryz € Xandr, 0 <r < oo.



Space of homogeneous type. Doubling Condition

First we consider the integral operator

Kof (@) = [ (d(a,9)" " fu)du, 0< <1
X

Theorem 6.1.1. Let 1l < p < g < ooandlet0 <y < 1. The operator K
acts boundedly from LT (X) into L], (X) if only if there exists a constant ¢ >
such that

pq(l—7)
B(xz,r gcrﬁ, B = : 6.1.1
uB(a,r) o (6.1.1)

for arbitrary balls B(x,T).



To prove this theorem we need some results about the maximal function

ﬂf(m):f_ggﬁﬂ(;mﬂ / |f(y)|du,

B(z,r)

where Ny = a1(1 + 2ag) and the constants ag and a; are from the definition
of a quasi—metric.

Proposition 6.1.1. M is bounded in Lﬁ(X ), where 1 < p < o0.

This can be proved by a well-known method using the following covering
lemma.



N

Lemma A. Suppose E is a bounded set ( i.e.contained in a ball ) in X such
that for each © € E there is given a ball B(x,r(x)). Then there is a ( finite
or infinite ) sequence of points x; € E such that {B(z;,7(z;))} is a disjoint
family of balls and { B(z;, N,r(z;)} is a covering of E.

For the proof Lemma A see [100], p. 15 (see also [56], p. 623).
Proof of Proposition 6.1.1. For A > 0 we set

Ex={ze€X: Mf(z)> A}



Modified Maximal Operator

Let E be a bounded set. Then for arbitrary x € FE) N E there exists a ball
B(z,r(z)) such that

1

MB(IE,Nur(m))B(I T/( N [f(y)ldp > A

By Lemma A, from the family { B(z,r(z))} we can choose a finite or infinite
sequence of balls such that

(ExNE)C LDj B(zj, Nor(z;)).
j=1



Space of homogeneous type. Doubling Condition

Further we obtain the estimates

p(ExNE) < 3 (uBlay, Nor(@;) <A7'Y [ 1fw)ldu <
7=l I=1B(x; 1 (x;))

<A [ 1 (@)ldp
X
Thus the weak type inequality

plo: Mi@) >N <237 [1f(@)lan)
X

10



Space of homogeneous type. Doubling Condition

holds.
In addition, it is obvious that M has strong (oo, 00) type. Finally using Mar-

cinkiewicz’s interpolation theorem we have the boundedness of M in LE(X)
for1 < p < 0.

11



Boundedness of Fractional Integral Operator

Proof of Theorem 6.1.1. Necessity. Let Ko be bounded from L% (X) to

Li(X):
1/q 1/p
( )[ |7Cﬂf($)|qdﬁ) < C3( }[ If(fﬂ)lpdﬂ) .

In this inequality set f = X p(q,r), Where a € X and r > 0. We have

( f ( f (d(w,y))’*“ldp)qdp)wgf:s(w(z,r))lfp. (6.1.2)

B(a,r) B(a,r)

When z € B(a,r)and y € B(a,r) itis obvious thatd(z, y) < cor. Thus from
(6.1.2) 1t follows that

r7~1uB(a,r)(uB(a,r))? < ca(uB(a,r))"/?.

12



When z € B(a,r)andy € B(a,r) it is obvious that d(z,y) < cor. Thus from
(6.1.2) 1t follows that

r’~uB(a,r)(uB(a,r))? < ca(uB(a,r))/?.

From the last estimate we conclude that (6.1.1) holds.
Sufficiency. Let us introduce the notation

Q(x) = sup ”B(E’r).
r>0 r

Forx € X and r > O represent Ky f(x) by

Kof@) = [ day) fwdp+ [ dey) " fy)du =
B(z,r) X\ B(z,r)
= I (z) + I2(x).

13



Boundedness of Fractional Integral Operator

Set Dy, = B(z,27%r)\B(z,27%!r). Then we have

@] <Y [y Ifw)ds < Y2172k x
k=0

k=0Dk

uB(z, Ng2~Fr)

du <
X#B(&",N{}z_k?‘) / |-f(y)‘ ” —_
B(z,2=kr)

o0 .
< cpr? BN 27RO M £ () - Qo) < TP M f(2) - Q(a).
k=0

14



Boundedness of Fractional Integral Operator

The last estimate holds because of the condition v — 1 + 8 > 0. Therefore

1(2)| < cor? Q) M £ ().
Now let Hy = B(z, 2¥t1r)\B(z, 2*r). Holder’s inequality yields

, 1/p’
L@ < Wl [ @ep)Pds)

X\B(z,r)

15



Boundedness of Fractional Integral Operator

From the last inequality we have

o0 , 1/p’
B@) < 1700 (X [ @) an) " <

k=DHk

- 1/p
< C?“f”LP P (X) ( Z 25:(’}' 1)p’ (’]f’ 1)10 (:L‘, 2k+lr)) <
=0

< CS”f”L”(X)( Z ok(y—1)p" pn(v—1)p (2k+1 )5)1;’15' (Q(m))lfp
k=0

16



Hence

o0
-1 —1\n! ! !
Iy(2)] < esl|fllzxyr” +5( 3 o(=DPHB) P Q)P <
k=0
< allf g ()P
(6.1.3)
The estimetes for I; and I imply the following pointwise inequality:

Ko f (2)] < ro(r?HPQ(z) M f (z)+

| , 6.1.4
+r Q@) Y| £l x))- 014

17



Boundedness of Fractional Integral Operator

Taking into account condition (6.1.1) and estimate (6.1.4), we deduce that
Kof(@)] < enn(r" ™ PMf () + 77 £l g )

for arbitrary z € X and r > 0.
In the last inequality we put

r=|f||5 (Mf(z))"#

Thus we obtain the estimate

{'rﬂlg-ﬁiip — 1_(=14+8)p
1Ko f(z)| < ﬂm”f”;,ﬂ(;{) (Mf(z)) B (6.1.5)

10




From the definition of 5 we see that

q(l_('r-1+ﬁ)p)=p_

p
Using Proposition 6.1.1, from (6.1.5) we conclude that

1Ko fllza(xy < eusllfllzz(x):

The proof is complete.
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Sobolev inequality

Corollary 6.1.1. Let1 < p < % and ;1}- = % — . Then Kq acts boundedly
from LE(X) into LY (X) if and only if

uB(z,r) < cr.

This 1s a statement of Sobolev type for nonhomogeneous spaces.

20



Compactness

21



In the theory of potential analysis and compact embeddings between
function spaces, compact fractional integral operators play a significant role.
We start our discussion about these operators with the classical compact-

pn
n—ap’

ness result, which states that if (¢ is a bounded domain in R, p < ¢ <
then the Riesz potential operator

Jo,cf(x) = / - f(;l_ﬂ dy, 0<a<n,
G

is compact from LP(G) to LI(G) (see, e.g., [12, p. 146]).

22



Let (X,d, ) be a quasi-metric measure space. Our aim is to provide
a complete characterization of those measures p for which the fractional
integrals (or Riesz potentials) T', , associated with y and a parameter vy €
(0,1) given by the formula

Tul@)= [ 720 ), fer(p, sex
X

are compact operators from LP(X, p) into LY(X, ) for 1 < p < ¢ < .

23



As an application we obtain weighted variant of compactness criteria
for Riesz potential operator .J, i, where GG is a bounded domain of R" and
0 < a < n, and for fractional integral operators defined on a rectifiable
curve [' in the complex plane C:

-
Kare(t) = f T _wg_lz_ﬂ dv(T), pe LP(T',v), tel,
I

where 0 < a < 1 and v is the arc-length measure on I'.

24



For such measure p we define a family {{23¢}sc(0.4,) Of positive and
finite functions 2;: X — (0, 00) given by the formula:

p(B(z,7))

Qpe(x) = sup z € X,

k]
O<r<f rf

which will play an important role in the proofs of the main results.

25



THEOREM 3.1. Let 0 < v <1 < p < q < oo and let (X,d,u) be
a quasi-metric measure space with finite u. Then, the integral operator
T’ ;. is compact from LP(X, ) to LY(X, p) if and only if it is upper Ahlfors

(3-regular with (3 given by (1 —~)/8 =1/p' +1/q, and

I Qg4(z) = 0.
fim, sup £25,(z)

In the proof of the above Theorem we will use the following lemmas.

26



LEMMA 3.1. Let pu be a upper Ahlfors 3-regular measure on a quasi-
metric space (X,d,p) with 3 < (1 —~)r for some v € (0,1) and r > 0,
Then there is a positive constant C' = C(r,7) such that, for all £ € (0, dx)
and all z € X,

f d(z. y)("r—l]'-" du(y) < Cp8+y=1)r
B(x,f)°

27



P r o o f. For simplicity of notation, we put 5 := (v — 1)r. Then, for
any fixed ¢ € (0,dx) and x € X, we have

Ij(z)

|
B
&
<
)
I
—
-1
~
=
—
’*-‘-7.."
|
"E:
=
:‘J--'
E-I

where for every A > 0,

Eprz = {y € B(x,0)% d(z,y) < A"},

28



Observe that the set Ej ) , is an empty set whenever A > £". This implies
that

IE(:I.') — ,{L(EE!_},L!E) d\.

Y~

29



Clearly, E; ), C B(z, ALY ) and so by our hypothesis on p there exists a
constant Cy > () such that

P:'(Ef,l,:tr) < Cﬂ)‘ﬁjﬂw A > 0.

Combining the above facts with 8/n > —1 yields

30



m
fg(:{:) < CD/)‘ﬁfﬂ d\ = Co gﬂ-l-fi'&
0

B/n+1

and this completes the proof. O
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LEMMA 3.2. Let pu be a upper Ahlfors S-regular measure on a quasi-
metric space (X,d,u) with 8 < (1 — ~)r for some v € (0,1) and r > 0.
Then there is a positive constant C' = C(r,~y) such that, for all £ and s
satisfying the condition 0 < s < { < dxy, and all x € X,

@ = [ A ) da(y) < O @) (s 4 £07079),
B(x,0)\B(x,s)
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P r o o f. Following the proof of Lemma 3.1 we let 1 := (v —1)r. Then,
for any fixed 0 < s < { <dyxy and r € X, we have

gN

I o(z) = / u((B(z,0)\ B(z, s)) N B(x, \V7)) dA
0

_ f w((B(z,0) \ B(z,5)) N Bz, \Y/7)) dA
£n

33



M
+ f u((B(z,€) \ B(z,s)) N Bz, \'")) dX

0
§" £
< [ p(B(z, }slf”)) dX + [ p(B(z,0))dA
/ /

—- ff,s(m) + QE,S(I'.)*

34



Now we observe that A > ¢7 is equivalent to A/" < ¢ (by 1 < 0) and so

u(B(z, A1) < Qg () A1,
This estimate combined with 3/ > —1 yields with C' = C(r,vy) > 0,
fes(x) < C Qg ()77,
To finish it is enough to observe that

gos(z) < O'u(B(z,0)) < 0TPQg ().
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Now we are ready to proof our main result.

Proof of Theorem 3.1. For simplicity of notation we put T := T, ,
and L™ := L"(X,p) for any 1 < r < co. We have explained that the
boundedness of T, ;, from L? to L? is equivalent to the Ahlfors S-regularity
of u. We prove sufficiency of the condition

lim sup Q3.¢(z) = 0.
fim sup p.e(x)
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Fix ¢ € (0,dx). Following [6], for every f € LP, we decompose T'f as
follows

Tf(z) = / F(y)d(z, y)" " du(y) / £ (v)d(z, y)" " du(y)

B(z,f) B(z,t)°
=:Uf(z) + Vof(z), zelX.

Observe that operator V; is an integral operator generated by kernel K,
given by

Ky(z,y) :== XB(z,0c®)d(z, )", (z,y) € X x X.

37



We claim that Vj: LP — L9 is compact for sufficiently small £. To prove
this, we show that K, € L¥ (L] and then we apply Corollary 2.1. First
we note that our hypothesis on g implies that 5 < (1 — v)p’. Applying

Lemma 3.1 with » = p’, we conclude that there exists a positive constant
C' = C(p,q,7) such that, for all z € X and ¢ € (0,dx),

f d(z,y) 7 dp(y) < CLOTIPHE,
B(z,f)°

This proves that K, € L*[L9] C LP'[L9] and so the claim is proved.
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We will now estimate the norm of the operator Uy. For El,;l}f 0< felr
with ||f||z» < 1 and all z € X, we have

Upf(x) =) f fy)d(z, y)" du(y)

k=0p(z.2-k¢)\ B(x,2-(k+1)¢)

's) . L
< Cy Z(Z'kf)”’_liggmziﬁikg; f F()dp(y)

k=0 B(z.2-k¢)

< CLO M f(2)Qp.0(),

39



where C = 277 and

ﬁg f(x)= sup :

du, zeX.
0<r<t¢ 1(B(z, Nor)) f 1 dn

B(z,r)

For a given z € X we put

re 1= (Myf(z)) 7P Qg 0(z) V2.

40



We consider two cases. Case (i): £ < r,. Then we have that for some
constant C' > 0 which depends on p,q and 7,

1— ply=1+45)

Uef (@) < C () 0P (M f()) 7
= O Qp,¢(2)1=7/8 (M, f ()"
Case (ii): £ > r,. We represent Uy f(x) as follows:

Uef (z) = f F(y)d(z, y)"~" du(y) + f f)d(z, y)"dp(y)

B(z,r:) B(z )\ B(z,r:)
=: Rof(x) + Sef(x).
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Further, repeating the arguments used above we deduce that there exists
a constant C' = Uy 4~ > 0 such that

1 pla—1+5)

Ryf(z) < C Qg y(z)1-0/5 (E;f(:r)) ’
— Gﬂﬁig(m)(l-ﬂm (ﬁf(m))pﬁ

Now we estimate Sy f(z). By Lemma 3.2 with s = r,, Hélder’s inequality,
the fact that 5+ (y—1)p’ < 0 and the condition | f||z» < 1, for some C' > 0,
we have
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1/p'
Sef(@) < ( f d(z,y) D" d#(y))
B(z,0)\B(x,r:)

)

L/p
< CQgg(x)'/P (*rg”'l)ﬁ‘ +8 4 ply=1)p +ﬁ)

< 200 ()P )Y = 200 () VB (Myf ()P

Hence,
Sef(z) < 26'( EBB ﬂﬁif(y))“_ﬁ]fﬁ (Mgf(m))p’!q.
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[

Consequently, there exists C* > 0 such that for all z € X, we have
Urf(z) < C( sup Q.o ()" (Myf ().
ye

Combining the above estimates, we conclude that there exists a constant

C > 0 such that

HUE’”LP_,,LQ < 6'( sup Qﬁi(m))“-’ﬂfﬁ*
reX

Thus we have proved that

Ty = Vell oy o < Vel oy < 5(325 ﬂﬂ,f(m))(l-ﬂm*
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Therefore, our hypothesis yields that

”T,.W—m =0 as [ —=0.

Since { V7 }re(0.d5) 1s a net of compact operators, T, ,, is necessarily compact.
This completes the proof of sufficiency.

Now we prove necessity. Assume that 7, ,: L, — L, is compact op-
erator. We claim that limy_,gsup,. y Q25¢(x) = 0. Suppose the contrary.
Then there exists a sequence (£,,) with £,, — 0 as n — oo such that

Lr—14

sup 254, () >2¢, neN

re X
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for some € > 0. This implies that there exist sequence (z,) in X and real
sequence (r,) with r, — 0 as n = oo (by r, < ¢,,) such that, for each
n € N, we have
u(B(zn, )
B

n

> E. (%)

Consider a sequence (f,,) given for each n € N by

fo = —2BGntn) __
U u(B(an, )Y/
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Clearly, ||fn|/z» = 1 for each n. We claim that f, — 0 weakly in L? as
n — oo. In fact, for any functional z* in (LP)* there exists a function

g € L¥ such that

2 (f) = fx fodu, feIP(X,p).

Combining Hélder’s inequality with pu(B(z,7)) < Cr” for all z € X and
r < dy yields

2 (fo)l < fallo X (e s = H(B(@n, o)) P < CrEIP.
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Hence f,, — 0 weakly in L? as required. Since 7%, , is a compact operator,
it follows that T, f, — 0 in L9. To conclude observe that by (*), we get

that

q 1/q
Tt ([ ([ s a) du)

1 1—141
> (B ra) T
ﬂ
B 7 _
— (ZH)T-I(#( (IE_} Tﬂ))) :_} (QE)T-IEL_'ET,
Fn

which is a contradiction. This completes the proof. O
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To indicate some applications of Theorem 3.1, we need some further
notation. Let G (resp., I') be a subset in R" (resp., a rectifiable curve in
the complex plain C), then we let

G(z,r) = B(z,r)NG, (resp., ['(z,7):= D(z,7r)NT),

where B(z,r) (resp., D(z,r)) is a ball in R™ with radius r > 0 and center
x (resp., disc in the complex plain C with radius r and center z).
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If A is a measurable subset of a quasi-metric space (X, d, i), then we
consider A with the induced quasi-metric and with a measure p restricted to
the induced o-algebra on A. In particular, balls in A have a form ANB(x, ),

where B(x,r) is any ball in X. Consequently, we have that G(z,r) and
I'(z,r) are balls in X = G and X = I respectively.

We emphasize that basic mapping properties of fractional integral op-
erators on FKuclidean spaces defined with respect to the Lebesgue measure
can be found, e.g., in the monograph [19].
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THEOREM 3.2. Let 1 < p <gq < oo andlet n(l/p—1/q) < a < n.
Suppose that GG is a bounded domain in R" and v is a weight function
on G. Then the operator J, ¢ is compact from L, _,(G) to L{(G) if and
only if pu given by du = vd),, is upper Ahlfors o-regular with o defined by

(n=")/a = 1/¢/ +1/q, and

I Qyp(z) = 0.
el
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Proof It is easy to see that the operator J, g is compact from

L?, ,(G) to LY(G) if and only if the operator
_ [ I
hul@) = [ g2 S du(o

G

is compact from LP(G,p) to LYG,p) with dp = vdA,, d(z,y) = |z — y|"
and v = a/n. By Theorem 3.1 we have that the latter compactness holds
if and only if
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w(G(z, 7)) : 0
su <oo and limsupfl, (z)=0,
IEG,*.E:JG ril ‘E_"DIEE' m( )
where
_ Gz,
Qpe(z) = sup (Cle T))T rel
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with

l—-y 1 1 .
=~ 4+, Glz.r):={yeG;|z—y| <rt/m}.
1 poq

To conclude it is enough to observe that for R = r™ we have

uw(G(z,r))  p(G(z, R)) _ u(G(z, R))

1 pg(n—a) T
r R r+a-pg R
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THEOREM 3.3. Letl <p<g<ocandletl/p—1/q < a < 1. Suppose
that I' is a rectifiable curve on C and v is a weight function on I'. Then the

operator Ko is compact from L?, _,(T) to Li(T') if and only if pu defined by
dp = vdv is upper Ahlfors B-regular with 3 given by (1—a) /8 =1/p'+1/q,

and

lim sup Qs 4(z) = 0.
Hm sup 8,e(2)
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Compactness Criteria. Proof.

We conclude with the following remark that our results could be ap-
plied to get sufficient conditions for compactness of positive operators from
LP(X, pu) into L9(X, pu), which are dominated by discussed compact Riesz
potential operators. For example, we shall associate to a given metric mea-
sure space (X,d, ) a fractional kernel K, € L°(u x u) of type v € (0,1)
L.e., such that K., satisfies the following condition:

C
d(z,y)t—

for all z,y € X with x # y and some C' > 0. The corresponding kernel K,
generates a fractional integral operator given by

Kof @) = [ b@nf@)ds fel(), aeX
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Compactness Criteria. Proof.

We conclude with the following remark that the sufficient condition for
compactness of Riesz potential T, , from L”(X,p) into LY(X,p) for 1 <
p < q < oo assures the compactness of the fractional integral operator
K.. To get this statement it is enough to apply a deep result due to
Dodds and Fremlin (2] true even in setting of abstract Banach lattices,
which states that if £ and F' are Banach lattices with E* and F' having
order continuous norms and S: E — F' is a positive operator dominated
by a compact operator T (i.e., 0 < S < T'), then S is necessarily a compact
operator.

57



Let (X.p,n) be a non-homogeneous space and let

B f(y) N
Lf@) = [ IS dut). 0<a<t
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11

Theorem 3.1. Let 1 < p < g <oo, ;— 7 <a<1 a# . Suppose that

ap—1<fB<p—1and A= q(i + g —r:r) — 1. Then the inequality

- ;
([ ims@oten oy au)” <o [ 1r@Psenn? @), @
X X
with the positive constant ¢ independent of [ and xq, o € X, holds if and only if

5a,
B = sup nBla.r) < 0. (2)
acX, r>0 r
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Fractional Integrals with measure
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Introductions

In the last two-three decades considerable attention of researchers was
attracted to the study of problems of Harmonic Analysis such as the
mapping properties of integral operators (Singular and fractional integral
operators) defined on metric measure spaces with non-doubling measure
(see the papers by [F. Nazarov, S. Treil, and A. Volberg], [X. Tolsa], [J.
Garcia— Cuerva and E. Gatto], [J. Garcia— Cuerva and J. M. Martell], [V.
Kokilashvili and A.M.], [T. Hytonen], etc.). Such spaces are called also
non-homogeneous spaces.

The boundedness results for singular and fractional integral operators in
Lebesgue spaces are mainly obtained under the "mild” growth condition
on a measure.

Today we discuss similar problem for fractional integrals in Lorentz spaces,
generally speaking, in multilinear setting and present recent results in this
direction.
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Fractional Integrals with General Measure

In particular, we present a complete characterization of a measure p
guaranteeing the boundedness of the multilinear fractional integral
operator T,sfz) (defined with respect to a measure p) from the product of
Lorentz spaces [ ; L to the Lorentz space L}(X) are established. The
results are new even for linear fractional integrals T, ,, (i.e., for m = 1).
From the general results we have a criterion for the validity of
Sobolev—-type inequality in the multilinear setting.
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Introduction. Fractional Integrals on Quasi-metric Measure

Space

The potential operator defined on a quas-metric measure space (X, d, u):

50 = [ Gt duly). x < X.
X

is a generalization of the Riesz potential
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Introduction. Bilinear Fractional Integrals

The bilinear version of I, in R” is the

Bulf.0)x) = [ f(”’:'),ﬁix‘f)dt, O<a<n

Rn

The study of these fractional integrals was initiated by L. Grafakos (1992).
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Introduction. Multilinear fractional Integrals

As a tool to understand B,, the operators

Ia?(x) = / ) fm(ym) — dy, xeR",

(I =nl+-+x=yml)

Rn

written in the m— linear form, where 0 < o« < nm, ? = (f,-, 1),

Y = (y1,-+,¥n), were studied as well (see the paper by C. Kenig and
E. Stein, 1999, Grafakos and Kalton, 2001).
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Introduction. Multilinear Fractional Integrals

Let (X, d, 1) be a quasi-metric measure space. The following operator is
the generalization of I, for a giasi-metric measure space (X, d, u):

O<y<m xeX.

M7 () = / fi(y1) - fm(ym)dp(¥)
| (d0xy) + o dlxym) ™
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Introductio:. Multilinear Fractional Integrals

Our aim is to characterize completely those measures measures ensuring
the boundedness of T&TL) from [T7Z; Ly (X) to L}(X), where

F = (R ) di(Y) = dpa(n) - dp(ym), LZ(X) and L(X) are
Lebesgue spaces defined on an (X, d, u).
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Introduction: Introduction. Multilinear Fractional Integrals

This result is new even for linear case m = 1. In particular, as a corollary,
we have a complete characterization of a measure 1 guaranteeing the
boundedness of the fractional integral operator

144
TV’“g(X):/d(X(y))lfydM(y) 0<y<l1, xeX,
X

from LL(X) to L}(X) given by V. Kokilashvili and A. M, 2001.
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We refer also to the papers by J. Garcia-Cuerva and J. M. Martell (2001),
J. Garcia-Cuerva and A. E. Gatto (2004) for the Sobolev—type inequalities
in the classical Lebesgue spaces for non-doubling measure.
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Quasi-metric

Let (X, d, 1) be a topological space with a complete measure p and a
quasi-metric d : X x X — R satisfying the conditions:

(i) d(x,y) =0 if and only if x = y;

(i) d(x,y) = d(y, x) for all x,y € X;

(iii) there is a positive constant  such that for all x,y,z € X,

d(x,y) < k(d(x,z) + d(z,y)).
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Non-homogeneous space

In the sequel we assume that all the balls B(x, R) with center x and radius
R are u— measurable with finite measure, and that for every neighborhood
V of x € X, there exists R > 0 such that B(x,R) C V.

A measure p is said to be Ahlfors upper - regular if there is a positive

constant by such that
W(B(x, R)) < boR” (0.1)

for all x € X and R > 0.
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For a given quasi-metric measure space (X, d, ) and g satisfying

1 < g < o0, as usual, we will denote by L9(u) = L9(X, i) the Lebesgue
space equipped with the standard norm. The weak space

L9%®(u) := L9°°(X, p) is to be the Banach space of all measurable
functions f endowed with the quasi-norm

1L = sup Ap({x € X; |F(x)] > A})Y9.

If X =R" is equipped with the Lebseguae measure and du(x) = w(x)dx,
where w is a weight function, then we use the notation:
L9(X, p) = Li(R") (resp LT°(X, p) = L™ (R")).
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he following statement was proved in [?] (see [?] for fractional integrals
defined on Euclidean spaces).

Let (X,d, 1) be a quasi-metric measure space and let 1 < r < q < o0,

0 <~y < 1. Then J,, is bounded from L"(X, u) to L9(X, p) if and only if
— (=g
= rq+r—q-

W is upper Ahlfors B regular, where 3

From the previous statement it follows that (see [GHarcia-Cuerva nd
Gatto, V. Kokilasjbili and A.M.]):

Ifl<r<oo 0<vy< % and g = 1_—% then J, ,, is bounded from
L"(X, u) to L9(X, ) if and only if u is upper Ahlfors 1-regular.
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To prove Theorem 1, the authors useNthe boundedness of the modified
Hardy-Littlewood maximal operator M in L"(X, u) space with 1 < r < 0.

In fact M has the following property (see, e.g.,[Edmundas , Kokilashvili
and Meskhi, 2002], Ch. 6 ):

Proposition

The operator M is weak (1,1) type and strong (r,r) type for r > 1.
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To study mapping properties of fractional and singular integrals defined
with respect to a non-doubling measure p it is important to have the
boundedness of modified Hardy-Littlewood maximal operator

—~ 1
Ma(x) = s / dy.
g(x) 8 (B o) )‘g' s

where the constant Ny depends only on a quasi-metric (see, e.g., [?,
Chapters 6, 8] and references cited therein). To obtain the main results of
this paper we use the boundedness of the following modified
multi(sub)linear maximal operator:
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_supH xNor /\ﬁ\du, (0.2)

B(x,r)

with the same constant Ny depending on a quasi-metric d.
This operator is a modification of the multi(sub)linear Hardy-Littlewood
maximal operator

Mf(x) = su / fildu, xe€X,
( ,,>E))H,U,(BXI’ B( )‘J‘ :
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which turned out to be useful to control the multilinear
Calderén-Zygmund operators and was introduced in [?] (see also [?]).

A multi(sub)linear maximal operator M acts on the m- fold product of
Lebesgue spaces and is smaller than the m-fold product of the
Hardy—Littlewood maximal function. There it was used to obtain a precise
control on multilinear singular integral operators of Calderén—Zygmund
type and to build a theory of weights adapted to the multilinear setting.
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Main Results

Let (X, d, 1) be a quasi-metric measure space. Let m e N, 1 < p; < oo for
each j € {1,...,m}. Suppose that 1 < p < q < oo and that 0 <y < 1.
Then the following statements about the operator T, ,, are equivalent:

(i) T, is bounded from LP* (X, p) x --- x LPm(X, p) to LI(X, u);

(ii) T, is bounded from LP*(X, ) x -+ x LP"(X, ) to L9°°(X, p);

(iii) The measure  is upper Ahlfors 3-regular with B = %.
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Remark. Observe that conditions of Theorem 3 implies that 8 > 0.
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Theorem 3 implies the following corollary.

Let meN, 1< pj <oo,je{l,...,m}. Suppose that 0 <y < ,71, and
% — % = . Then the following statements are equivalent:

(i) T, is bounded from LP* (X, p) x --- x LPm(X, ) to LI(X, u);
(ii) T, is bounded from LPY(X, p) x - - x LPm(X, ) to L9°(X, p);
)

(iii) The measure v is upper Ahlfors 1-regular.
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Theorem 3 yields also the characterization of the following version of the
weighted inequality for the multilinear potentials /,f:

2 fily1) - fm(Ym) -
WA= [ e e e &

)

(Rm)m

where x € R", 0 < e < nm, dy := dy; - - - dym.
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Let me N, 1< pj <oo,je{l,...,m}. Suppose that 1 < p < q < 00

and that n[% = %] < a < n. Then the following statements are equivalent:

(i) there is a positive constant C such that
ltaFllisceny < CTL IS 2, o
j=1 i
(ii) there is a positive constant ¢ such that
laflliscany < < TLIG 15 ey
j=1
(iii) there exists a positive constant C such that for all a € R" and r > 0,

(mn—oa)pq
/ v(y) dy < Creamip—a.
B(a,r)
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Linear case

Let (X, d, ) be a quasi-metric measure space, 0 <y < 1. Let 1 <r < %

and % = % — . Let s and g be such that f) = %. Then inequality

I Ty u8llzax) < Cligllrsexy,

with the positive constant C independent of g holds if and only if

uB(x, R) < byR.
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Linear case

Taking a Borel measure v on R" and fractional integral

)
lof(x) = / !X—()}//|)”_O‘ dv(y), xeR", 0<a<n,
Rn

as a corollary we have the following characterization of the Sobolev
inequality in Lorents spaces defined on R” with respect to v:

Let0<a<nandlet1<r<§. We set

nr

p= :
n—aor

Let s and q be such that ,5) = %. Then inequality
llov&ll2amny < Cllg s @nys

with the positive constant C independent of g holds if and only if
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Proof of the main statement

We prove the theorem in the case u(X) = oco. The proof for u(X) < oo is
similar. Taking the test functions é, = (fl(a’r), ce frf,"’”)), where

G(a,l’) = XB(ar) for each j € {]_, e m}, we have that

m

TT 1620, = (1(B(a, r)*?.
j=1

On the other hand, since T%Mf_‘(x) > Cyy ™™ (1u(B(a, r))m for

x € B(a,r), by using the boundedness of T, , from [, LPi(X, 1) to
L9>°(X, i), we have that (ii) = (iii). Since (i) = (ii) it remains to show
that (iii) = (i). Without loss of generality we assume that

0 < f; € LPi(X, p) for each 1 < j < m. We introduce the notation:

k(Xv)/la s ,}/n) = d(val) +eeet d(X?ym);

Q(x) := sup M

L (0.3)

r>0
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We have
T = Gy [0 talrm) [ L)
Xm k(X,)15-+5Ym)
G [ [ RO ) d()
0 {Vk(X,y15eym) <t}
< /t”mln/ fi(yj)du(y;) dt
0 J=1B(x,1)
r m
:CmW/t H/ () dplyy) dt
0 =lg B(x,t)
o0 m

+ Cny [ 7T [ B0 dply;) dt
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Now we estimate /1(x, r) and h(x, r) separately. For that we use the trick
similar to that of L. Hedberg [?]. We have

h(x,r) < CryM F(x) /t’yml(u XNot> dt

AN

Cony M F(x) (Q(x))m / gr=m=1+mB gy
0

where M is the modified multi(sub)linear Hardy-Littlewood maximal
operator defined by formula (0.2).
Here we used the estimate

u(B(x, t) < Q(x)t”,

where Q(x) is defined above
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Observe now that v — m — 1 4+ mf3 > —1 because p < g. Consequently,
taking into account the obtained estimate above, we conclude that

h(x,r) < Comoy M F(x)(sz(x))mﬂ—m+mﬂ. (0.4)
Further, by applying Holder's inequality we have that
oo o m 1/P/- . l/pj
b0 < Gy [0 L (uB0) ([ P Opdutn))
r J=1

B(x,r)

m—1/p 7 o _ 0
< G (200) ™7 ([ 2 920) T 6l
k=1

r

m
P o —
ALEXANDER MESKHI Kutaisi International Trace Inequality for Fractional Integrals, and |

October 24, 2025



In the last equality we used the fact that v — m+ (m — 1/p) < 0. This
fact holds because p > 1. Summarizing these estimates we find that

T () < € (M) (Q0) 7= m (@) "ol T |
j=1
(0.5)
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Taking
m
— M f_" 7p/ﬁ f‘ . p/ﬁ
r:= (M f(x)) HH well P (¢ 0)
j=1

in the above inequality and using the condition sup,cq Q(x) < oo, we find
that

m
= ~ = 1—B(y—m+B8m
Ty uF(x) < Cyp (W ()50 *“(Hufrm(x,u)

> £(y—m+Bm)
j=1

(0.6)
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Combining Proposition regarding the boundedness of M with
q[1 - %(7 — m+ Bm)] yields

7 = FYL— 2 (y—m-5m) 4 BO-mh
1Tl o < Counll WY ||Lq(x,ﬂ><H ||zs~||m(x,u)>
j=1

m B(y—m+Bm
_ MFIPLa Il s (r=mtBm)
- %u” HLP(X,H) HHJHLPJ(X,M)

ji=1

m m m
(y—m+pBm)
< Cou TTIRIZ an,nfpjw = G T Il x,
j=1 j=1

U

Now we observe that Corollary 5 follows from Theorem 3 by taking
X =R", du(x) = v(x)dx, d(x,z) = |x — z|" there. The condition
n[% — %] < o < n guarantees that 0 < 3 < n.
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Olsen’s inequality. Sharp Estimates
Lecture 3
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Olsen Inequality

In the literature Classical Olsen’s inequality is called the following bilinear

inequality:
(0.1)

()l = Cllellelf]

where X, E and F are Morrey spaces (generally speaking, different) and I,
is the Riesz potential (fractional integral) operator:

F7

f
Ia(f)(x):/k_(;%_ady, 0<a<n xeR"
Rn
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Introduction

Inequalities of type (0.1) play an important role in the study of perturbed
Schrodinger equation (see Olsen, 1995). We refer to the papers by Y.
Sawano, S. Sugano, and H. Tanaka for subsequent improvements of

Olsen’s original inequality and applications.
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Introduction

Our aim is:

1) to establish (0.1) in the sharp form, i.e. the Morrey norm HgHE in (0.1)
be optimal (can not be replaces by the smaller norm) (it is connected with
the trace problem);

2) to derive such an optimal inequality (0.1) for multilinear fractional
integrals.
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Perturbed Schrodinger equation

This inequality comes from the study of solvability of the estimation of the
solution of Perturbed Schrodinger equation (see Olsen 1995).
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Perturbed Schrodinger equation

This inequality comes form the estimation of the solution of

Au(x) + V(x)u(x) =0, u(x)] =1, (0.2)
[2}93
where Q = {x : x € R3|x| < R}.
By substituting v(x) = u(x) — 1 in (0.2), we have
Av(x) +v(x)V(x) = —V(x), v(x)| =0. (0.3)
o
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Perturbed Schrodinger equation

Applying the inverse Dirichlet Laplacian to both sides of (0.3) we get
A+V)v=-V=(1+AY)w=-AV=v=
=(1- (A7) (A7)

e}

:V:E:(—AAVY.

n=1

Taking again u(x) = v(x) + 1 we find that

u:1+§i<—A4vy.
n=1

Let G(x,y) be Green's function for Dirichlet Laplacian —A. Then

u=1+ [ G(x,x1)V(x1)dxa+ | G(x,x1)V(x1) | G(x1,x)V(x2)dxadxy+---
/ o]
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Perturbed Schrodinger equation

Since

we have

4
el <1+ C Ca) gy
J |x — xq]

2 / V(x) V(x)

|x — x1] |x1 — xa|
Q

dxodxy + -+ .
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Perturbed Schrodinger equation

Morrey space Mf, 1 < p < t < oo is defined with respect to the norm:

( / |f(x)|”dx> v

Q

1
t

T =

Iflme = sup Q)
Q

If p = t, then we have the classical Lebesgue space LP.

Olsen studied the problem when V is in the Morrey space I\/Ig/2 which
turned out to be right space by the following reason:
Call the scaled function ug(x) = u(Rx) . Then it satisfies the equation

Aug(x) + R*V(Rx)ug(x) = 0.

for |x| < 1 with the boundary condition ug(x) =1 for x| = 1. Let

Vr(x) = R?2V(Rx). A reasonable requirement for a norm on the potential
V is for the norm to be invariant under the transformation V +— Vg. The
spaces l\/Ié’/2 has this invariance property.
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Perturbed Schrodinger equation

Olsen proved that if V € /\/Ig/z, u is the solution of

Au(x) + V(x)u(x) =0, u(x)] =1,

o

vix)=u(x)—1,1<p<3/2,1<s<t<oo,s<2pt/3, then

1
IVlimg < CllVIIue 121

1 1/s
L s
(g [ V) = cllviug,
Q

if || V]|M§/2 < ¢ with sufficiently small €.

and
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Perturbed Schrodinger equation

In the proof of the theorem it is important to use the sharp estimate for
the mapping

V(y) dy
.

V() V() / |
Q

in Morrey spaces.
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p
I f(x) —/’X_(yyfn_ady, x €R".
Rn
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Introduction. Bilinear Fractional Integrals

The bilinear version of I, in R” is the

Bulf.0)x) = [ f(”’f'),ﬁix‘f)dt, O<a<n

Rn

The study of these fractional integrals was initiated by L. Grafakos (1992).
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Introduction. Multilinear fractional Integrals

As a tool to understand B,, the operators

_ fi(y1) - fm(Ym) X n
za?(x)_/(|X_y1|+m+|x_ym|)mnad7, ER",

Rn

written in the m— linear form, where 0 < o« < nm, ? = (f,-, 1),

Y = (y1, -, ¥a), were studied as well (see the paper by C. Kenig and
E. Stein, 1999).
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Abstract

We established a sharp Olsen type inequality

HgIa(fL SRR fm)‘

m
1 = CHg”Lg H H'Z
j=1

L

J
for multilinear fractional integrals, where L}, L7, Lspjf, j=1,...,m, are
Morrey space with indices satisfying certain homogeneity conditions. This
inequality is sharp because it gives necessary and sufficient condition on
weights function V for which the inequality

m

vy S CH H’SHLF;’
j=1

|Za(fss - - -, fm)

holds.
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Abstract

We also derive a characterization of the trace inequality

| Ba(fi, )|

2
L9(dp) = CHl Hf/’ Lff(R")’
J:

in terms of a Borel measure i, where B, is the bilinear fractional integral

operator given by the formula
Bu(fi, b)(x) = [ ACHDECD g 0 < o < i,
]Rn

|t|nfo¢

Some of our results are new even in the linear case, i.e. when m=1.
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Weight results for Z,, in Lebesgue spaces

For the multilinear fractional operator Z, and Moen (2009) obtained
one-weight criteria, as well as “power bump” conditions for the
two—weight inequalities. Various type of one and two—weight multilinear
problems for these operators in Lebesgue spaces were studied by many
authors (see e.g. the papers by Moen, Pradolini, Chen and Xue, Sawano,
Nakai, Mastylo, Kokilashvili and A.M. , Shi and Tao etc)
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Morrey Spaces

Let 1 < g <r < oo and let du be a Borel measure on R". We denote by
L7(du) the Morrey space of all measurable functions f on R” such that

1/q
Wl = g, s ( / () d )) <o (04)
QReQ q r

If V is a locally integrable a.e. positive function on R”, i.e. a weight on
R”, then we denote L7(du) by L7 (V).
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Fractional Integrals in Morrey Spaces: Known Results

Proposition A. (Spanne, unpublished) Let 0 < o < n,
l<py<sp<o0,1<qy<ry<oo. Supposethat%—r—t:%
Then I, is bounded from L& to L.

s

1
q0

Proposition B. (Adams, 1975) Let 0 < a <n, 1 < pp < 59 < 00,
1< go < rp < oco. Suppose that % = % -9, ‘Z—(‘)’ = ’s’—g. Then I, is
bounded from L& to L.

In the unweighted case the following multilinear result is also known.
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Fractional Integrals in Morrey Spaces: Known Results

Proposition C. (Tang) Let0 < a<mn, 1 < qg<r < oo,
1< pi<si<oo,i=1,...,m be such that

1 1

s r p q n
where p and s are defined by

1 71
iz Pi iz

Then there exists a positive constant C such that for all f; € L?f ,

j=1,...,m, we have

IZa(F)lls < CTT N2
=1 ’
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Fractional Integrals in Morrey Spaces: Known Results

Recall D. Adams Trace Theorem for for the Riesz Potentials /,:

Theorem. Let 1 < p< g < oo andlet0 < a < n/p. Suppose that i is a
Borel measure on R". Then the inequality

Ha(F)Laquy < ClIFllee
holds if and only if

[

(1] := sgp(u(a))i\o " < oo, (0.6)

Moreover, ||l tpspa() = [14]-
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Fractional Integrals in Morrey Spaces: Known Results

We have analogous multilinear characterization is the following form:
Theorem B. [V. Kokilashvili, M. Mastylo and A. M. 2014] Let
l1<pi<oo,i=1,...,m. Assume that0 < a <n/pandp<q< .
Then the following assertions are equivalent:

(i) For all f; in LPi we have

1Za () aqvy < CTT Il o
i=1

(ii) the following condition holds:

1
[Vla,p,q == sup (/ V(X)dx) q|Q’%_% < 00
QeQ o
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Main Results

Theorem. Letl1 < g<r<oo, 1 <pi<si<oo,i=1,...,m,

1<p<q,0<a<§. Let%—%:%—%:%—%, where%zzj'llslj,

% = ZJ'": 1 ﬁ. Then there exists a positive constant C depending only on
J

n, o, q,r pi, S, i =1,...,m, such that for all f; Lgf,jzl,...,m,

inequality

w0 < Cllell o TTIA
j=1

g Za(F)|

IR
J
holds. Moreover, this estimate is sharp in the sense that we can not

replace ||g|| s by the smaller Morrey norm, i.e. we can not enlarge Morrey
space here.
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Main Results

Theorem. Let 1 < g<r<oo, 1 <pi<si<oo,i=1,...,m,

101 1 1 1 1
1<p<q,0<a<ﬂ Letf—EZE—fwheref—ZJmlg

% = ZJ'" 1 . Suppose that V is a weight function on R”. Then the

following statements are equivalent:
(i) there is a positive constant C such that for all measurable f we have

IZa(F)lls vy < CHH - (0.7)

(ii) Condition

[V]ap,qg == sup </ V(x)dx> q|Qy%*% < 0 (0.8)
QeQ A

is satisfied.
Moreover, under either assumption, we have the norm equivalence
1Zall = [V]a,p,q-



Main Results

In the linear case, i.e., when m =1, we have:

Corollary

Letl<qg<r<oo,1l<p<s<oo, l<p<qgandld<ac<iy. Let

% — % = % — % =2 — %. Then there is a positive constant C depending
only onn, «, q, r, p, s such that for all f € LY and g € L] we have

g 1a(F)|

1o < Cllellglf]

Le
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Main Results

We also have a result for the bilinear fractional integral operator B,,.

Letl<qg<r,1<pi<si<oo,i=12 Lletl<p<qg<ooand

pfL 1y 1 _1_1 1_o 1 1_ 1,1
?<a1<nlm{5_1’5'/3_5_s r—n E'Wherep_p1+pz'
s=5 T35 Then there is a positive constant C depending only on n, «,

g, r, r, pi, p2, S1, S» such that for all fi,f, g > 0 we have

lg Ba(fi 2)lley < Cllgllglifill 21121l 22 (0.9)

v
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Main Results

Furthermore, we have the trace inequality for B, which analogous to that
of Adams (1971); see also (Eridani, V. Kokilashvili and A. M. for Morrey
spaces) in the linear case.

Lletl<qg<r,1l<pi<si<oo,i=12 andletl <p<q<oo. Let
sor1 17 11 _ 1 1 1 _ 1 1 1_ 1,1

O<a<min{s, g} s-g=s—pwhre =g +o. s=5+t5

Then there is a positive constant C depending on n, o, q, r, p1, P2, S1, S

such that for all fi,f > 0,

1Ba(fi, )l g(any < Clidllill a2l 22 (0.10)

holds, where [u] is defined in (0.6).
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Main Results

As a corollary we have the trace inequality for classical Lebesgue spaces.

Lletl<pi<oo,l<p<g<ooandlet)<a< min{%,é}. Suppose
that p is a Borel measure on R". Then there is a positive constant C such

that for all fi, > > 0,

1Ba(f, 2)ll Loy < Cledllfillem (|72l

where (1] is defined in (0.6).
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Proof of the main result

First we recall the following statement:

Let1 < pj<oo,i=1,...,m. Assume that « < n/p and p < q < oc.
Then the following estimate holds:

7Py < € Whaa TL 6l .11
j=1
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Proof of this Proposition is based on the next statement:

Lemma A. [V. Kokilashvili, M. Mastylo and A.M., 2014] Let

1< pi<oo,i=1,---,m. Suppose that 0 < o, 3 < n/p with the
condition 3 < . There is a positive constant C = C, g , such that for all
non-negative f; € LPi, i =1,..., m, the pointwise estimate

To(F)(x) < C[(Maﬁ(F)(x))‘m’<ﬁ HfiHLPi)w}
i=1

holds for all x € R".
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Proposition D. ([Moen 2009]) Let 1 < p; < o0, i =1,...,m. Assume
that 0 < a < n/p and p < q < co. Then the inequality

|Ma(F Niaqvy < CH(/\f }P'dx)l/pi, (0.12)

holds for the multilinear fractional maximal operator M, if and only if
(0.8) is satisfied. Moreover, if C is the best possible constant in (0.12),
then C ~ [V]apq-

Proposition D is proved [Moen, 2009] in the two—weighted setting under
the power-bump condition on weights but here we need that result only in
a special case. Finally, for the purposes of this paper we need the following
sharpening of Theorem B.
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Proposition (Kokilashvili, Mastylo, Meskhi, 2014)

Let1 < pi<oo,i=1,...,m. Assume that o < n/p and p < q < 0.
Then the following estimate holds:

1Za(F)lovy < € WVIapa [T 116l (0.13)
j=1

v
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Proof. We adapt the arguments in [V. Kokilashvili, M. Mastylo and A K,
2014]. Let 3 be as in Lemma A. We set

1
=4 (0.14)
P n P

Then taking condition (0.8) and identity (0.14) into account we see that
the following relations hold:

2 = sup v(Q)|Q|((e=B)/n=1/pP)ar —
VI b = S22 V(Q)IQ)

(V]9 g = sup v(Q)] Q77PN < o0,
QeQ

Applying Lemma A and Proposition D we write
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=

CaﬁpHMa a(f)e- ST

IN

B
H Il G
La(V) -

= Ca,8,plMa—p(f Z%H/?V) H ”foP, Fasrs

1 Za ()l Laqvy

IA

cMz?fz,p,qlanuzz/"Hiifufpf“/P

= c[Vlapq H [1ill o
i=1

.. a—12 L
In the two equalities we used that % = a_ﬁfﬂ, which is a consequence of
P
(0.14).
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Proof of the main result

First observe that p<g</fand 7 <a < { < g. Without loss of
generality we assume that g >0, f; >0, j = 1,..., m. For any ball

B := B(a,r), let 2B := B(a, 2r) be the ball with center a and radius 2r.
We write f; = fjo + fjoo, where

)= fixos, £ ="fixesy: j=1,..,m.

Let £; >0, j=1,...,m. In view of this representation we write
m
Tof (x) S Ta(F2, . B C)+Ta( R, £ (04D Ta(F . ) (),
j=1
where (1, ..., Bm € {0,00} and the sum contains at least one 5; = 0 and
,Bj = OQ.
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Consequently,

nga(’?)HLq(B) < [|gZa( flov"‘ fm) HL‘?(B) + Hgla(floow'-’frzo)um(s)

.....

Using Proposition 31 for V = |g|9, we write

m (1_1
Nl = C”g”LqH HX2Bf”L”J < CHgHLqH HX2BfHij Z =1 (Pj sj)
Jj=1 j=1
= CHgHLq pJ (;17 5) = CHgHLqH HXZBfHMPJ (1_%)‘
Jj=1 i1

October 25, 2025 38/48



Let us estimate Ny. First observe that if x € B and y; € (2B)€, then by

simple geometric observations we find that 3|a— y;| < [x — y;| < 3|a—y;].
Thus, we get
oo
To(£°, . .. / ammn= 1( / f-°°(yj)dyj> ds

{yJ Ix—y;l<s}

7°m< | rom)e

I=ya y/|<2s}

sc [ 1<Huf|m(sazs)) [s"/)as

j=1
o0 1 nonoy m 1_1
<CH||6||L54/ st R (5 g
j=1 JJ2r
o0 n 11
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< e ) < o Bl ([ i) T
([ 7 yeoetaa) < e (B/g()d> I

B

< ol HgIILqHIIfII 2

In the last equality we used the condition % —

NI

@
n

1
q
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It remains to estimate ). For simplicity we take m > 3, 51 = 2 = o©
and 3 = --- = B = 0. Recall that |x — yj| = |a — y;| for all x € B and
yj € (2B), j =1,2. Thus, without loss of generality, we have that one of
the terms of ¥ can be estimated as follows:

To(F2, 55,1, ) (%)

A1) R(2)f(ys) - fnlym)
(Ix =yal 4+ [x = ym[)m=e

(2B)cx(2B)x2Bx...x2B

<o [ i) ([ s

(2B)x(2B)¢ (2B)x---x(2B)
= C/l . /2.
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Now we estimate /1 and [ separately. By Holder's inequality and simple
observations we obtain:

L =C s_’""+o‘_1d5> fi(y1)f2(y2)dy1dy2

(2B)x(2B)c  |a—y1l+|a—y2|

ccf( ] aommtman)em

2r  {y1,y2:la—y1|+la—y2|<s}

0o 2 ) 1/pi L+ —mnta-—1
<c| ] (/ f,-”’(yi)dyi> sP % ds
=1 B(a,s)

2r =
5 1/p; Ll -t
1 ‘ —mn—=14n{ 5+ J+n| -+
<C H(l,, / f,-p:(y;)dyf> gammn=ten(Gr ) e g
2r 4 |B(375)‘ i B(a,s)
2

< [Tl ltml ol i s
:
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In the latter estimate we used fact that
( 1 1> 1 1 1 1
a—mn+2n—n{ —+ — —i—n[——i———( _,_7)}
p1 P2

1 1
:a—mn—|—2n—n[—|—} <0
51 S?

which is a consequence of the condition o < ¢. Further, by using Holder's
inequality again, we find that

! n m 1 n m 11
b < Tl SR ) (S i)
i=3 '

— T Il SR (R =2]),
=3 !

Consequently, summarizing estimates for /; and 5 we find that
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1/q N
</ T (o 6560, . ,f£,>q(x)gq(x>dx> < arrlislnli=leli-ilyg
B

1 1 m
— el gl T 16,
=1 ’

In the last equality we again used the condition:

T
Q|
0 [
NI
|
39
e
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