I am an Associate professor at the Faculty of Education at the University of Novi Sad and a postdoctoral fellow at UGent in group for Analysis and PDE’s. I received PhD degree in mathematics at the Faculty of Mathematics at University of Vienna. My main research interest is mathematical analysis of intego-differential and partial differential equations, where equations arose from mechanics.

**List of Publications:
**

[21] Lj. Oparnica, E. Süli, Well-posedness of the fractional Zener wave equation for heterogenous viscoelastic materials, accepted for the publication in *Fractional Calculus and Applied Analysis*

[20] Lj. Oparnica, D. Zorica, and A. Okuka. Fractional Burgers wave equation, *Acta Mechanica*, 230(12), 4321-4340, 2019.

[19] T. M. Atanackovic, Ljubica Oparnica, and Dusan Zorica, Bifurcation analysis of rotating axially compressed imperfect nano-rod. *ZAMM, Z. Angew. Math. Mech.* DOI: 10.1002/zamm.201800284, 2019.

[18] S. Konjik, Lj. Oparnica, and D. Zorica. Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. *Zeitschrift für angewandte Mathematik und Physik*, 70:51, 2019.

[17] G. Hörmann, Lj. Oparnica, and D. Zorica. Solvability and microlocal analysis of the fractional Eringen wave equation. *Mathematics and Mechanics of Solids*, 23(10): 1420–1430, 2018.

[16] G. Hörmann, Lj. Oparnica, and D. Zorica. Microlocal analysis of fractional wave equations. *ZAMM, Z. Angew. Math. Mech.*, 97(2):217-225, 2017.

[15] T. M. Atanackovic, M. Janev, Lj. Oparnica, S. Pilipovic, and D. Zorica. Space-time fractional Zener wave equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* A.*, 471(2174):20140614, 25, 2015.

[14] G. Hörmann, S. Konjik, and Lj. Oparnica. Generalized solutions for the Euler-Bernoulli model with Zener viscoelastic foundations and distributional forces. *Anal. Appl. (Singap.)*, 11(2):1350017, 21, 2013.

[13] T. M. Atanackovic, Sanja Konjik, Ljubica Oparnica, and Dušan Zorica. The Cattaneo type space-time fractional heat conduction equation. *Contin. Mech. Thermodyn*., 24(4-6):293–311, 2012.

[12] S. Konjik, Lj. Oparnica, and D. Zorica. Waves in viscoelastic media described by a linear fractional model. *Integral Transforms Spec. Funct.*, 22(4-5):283–291, 2011.

[11] T. M. Atanackovic, S. Konjik, Lj. Oparnica, and D. Zorica. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. *Abstr. Appl. Anal.* pages Art. ID 975694, 32, 2011.

[10] T. M. Atanackovic, S. Konjik, Lj. Oparnica, and S.Pilipovic. Generalized Hamilton’s principle with fractional derivatives. J. Phys. A, 43(25):255203, 12, 2010.

[9] S. Konjik, Lj. Oparnica, and D. Zorica. Waves in fractional Zener type viscoelastic media. *Math. Anal. Appl.*, 365(1):259–268, 2010.

[8] T. M. Atanackovic, Lj. Oparnica, and S. Pilipović. Semilinear ordinary differential equation coupled with distributed order fractional differential equation. *Nonlinear Anal.*, 72(11):4101–4114, 2010.

[7] T. M. Atanackovic, Lj. Oparnica, and S.Pilipović. Distributional framework for solving fractional differential equations. *Integral Transforms Spec. Funct.,* 20(3-4):215–222, 2009.

[6] G. Hörmann and Lj. Oparnica. Generalized solutions for the Euler-Bernoulli model with distributional forces. *J. Math. Anal. Appl.*, 357(1):142–153, 2009.

[5] Book: Lj. Oparnica. *Generalized functions in mechanical models, Differential and fractional differential equations.* Verlag Dr. Möler, Berlin, 2009.

[4] T. M. Atanackovic, Lj. Oparnica, and S.Pilipović. On a nonlinear distributed order fractional differential equation. *J. Math. Anal. Appl**.*, 328(1):590–608, 2007.

[3] G. Hörmann and Lj. Oparnica. Distributional solution concepts for the Euler-Bernoulli beam equation with discontinuous coefficients. *Appl. Anal.*, 86(11):1347–1363, 2007.

[2] T. M. Atanackovic, Lj. Oparnica, and S.Pilipović. On a model of viscoelastic rod in unilateral contact with a rigid wall, *IMA Journal of Applied Mathematics* Volume 71, Issue 1, Pages 1–13, 2006

[1] Lj. Oparnica. Generalized fractional calculus with applications in mechanics. *Matematički vesnik, *Volume 54, pages 151–158, 2002.

** **