Khonatbek Khompysh

I am a current Postdoctoral Researcher at the Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University. 

I am also on an internship at Ghent University funded by the government program “500 Galym” of the Republic of Kazakhstan.

I obtained my PhD (candidate of physical and mathematical sciences) degree from the Al-Farabi Kazakh National University (Kazakhstan) in 2010 under the supervision of Prof. Sakhaev Sh. and Prof. Abylkairov U.U.

Research interests:
My area of specialization is related to evolutionary partial differential equations and non-Newtonian hydrodynamics. In particular, my interest is focused on the study of existence, uniqueness, and the qualitative properties (blow up and large time behavior) of solutions of direct and inverse problems for Kelvin-Voigt equations for homogeneous and nonhomogeneous fluids, linear and nonlinear pseudo-parabolic equations with p-Laplacian.

List of Publications:
Researchgate link: https://www.researchgate.net/profile/Khonatbek-Khompysh

    1. ARTICLES
    2. Khompysh Kh. Blow-up phenomena for generalized pseudoparabolic equation with
      variable exponents and coefficients//Applicable Analysis, 2023, 102(6), pp 1786–1797
      https://doi.org/10.1080/00036811.2021.2003342 (WoS, Scopus)
    3. Antontsev S.N. Khompysh Kh., Inverse problems for a Boussinesq system for
      incompressible viscoelastic fluids//Mathematical Methods in the Applied
      Sciences, 2023, 2023, 46(9), pp. 11130–11156.
      https://doi.org/10.1002/mma.9172 (WoS, Scopus)
    4. Khompysh Kh. Nugymanova, N.K. Inverse problem for integro-differential KelvinVoigt equations //Journal of Inverse and Ill-Posed Problems, 2022,
      DOI: 10.1515/jiip-2020-0157 In press (WoS, Scopus)
    5. Khompysh Kh., A.Kabidoldanova, An initial-boundary value problem for KelvinVoigt equations with
      (p(x),q(x),m(x))
      structure // International journal of
      mathematics and physics, 13(1) 2022, 41-47 DOI:
      https://doi.org/10.26577/ijmph.2022.v13.i1.04 (WoS, Scopus)
    6. Khompysh Kh., A. Shakir, A.Kabidoldanova, Solvability of a nonlinear inverse
      problem for a pseudoparabolic equation with p-Laplacian//Journal of Mathematics,
      Mechanics and Computer Science (Вестник КазНУ им. Аль-Фараби, Серия
      математика, механика, информатика) №2 (110) 2021, 35-46.
      DOI:https://doi.org/10.26577/JMMCS.2021.v110.i2.04 (WoS)
    7. Antontsev S.N. and H.B. de Oliveira, Khompysh Kh. Kelvin-Voigt equations for
      incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and
      damping// Nonlinear Differ. Equ. Appl. 29, 60 (2022). https://doi.org/10.1007/s00030-
      022-00794-z (WoS, Scopus)
    8. Khompysh Kh., Kenzhebai Kh., An inverse problem for Kelvin–Voigt equations
      perturbed by isotropic diffusion and damping//Mathematical Methods in Applied
      Sciences, 2022, 45(7), pp. 3817–3842, https://doi.org/10.1002/mma.8018 (WoS,
      Scopus)
    9. S.N. Antontsev, Khompysh Kh., An inverse problem for generalized Kelvin–Voigt
      equation with p-Laplacian and damping term// Inverse Problems, 37(8), 085012
      https://doi.org/10.1088/1361-6420/ac1362 (WoS, Scopus)
    10. S.N. Antontsev and H.B. de Oliveira, Khompysh Kh., The classical Kelvin–Voigt
      problem for incompressible fluids with unknown non-constant density: existence,
      uniqueness and regularity//Nonlinearity 34 (2021) 3083–3111
      https://doi.org/10.1088/1361-6544/abe51e (WoS, Scopus)
    11. S.N.Antontsev and H.B. de Oliveira, Khompysh Kh. Kelvin-Voigt equations with
      anisotropic relaxation, diffusion and damping: blow up and large time behavior//
      Asymptotic Analysis, vol. 121, no. 2, pp. 125-157, 2021.
      https://dx.doi.org/10.3233/ASY-201597. (WoS, Scopus)
    12. S.N. Antontsev and H.B. de Oliveira, Khompysh Kh. Generalized Kelvin-Voigt
      equations for nonhomogeneous and incompressible fluids// COMMUN. MATH. SCI. c
      2019 Vol. 17, No. 7, pp. 1915–1948,
      DOI: https://dx.doi.org/10.4310/CMS.2019.v17.n7.a7 (Q1).
    13. S.N. Antontsev and H.B. de Oliveira, Khompysh Kh. Existence and large time
      behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and
      incompressible fluids//2019 J. Phys.: Conf. Ser. 1268 012008. doi:10.1088/1742-
      6596/1268/1/012008
    14. S.N. Antontsev and H.B. de Oliveira, Khompysh Kh. Kelvin–Voigt equations
      perturbed by anisotropic relaxation, diffusion and damping//J. Math. Anal. Appl. 473
      (2019) 1122–1154, Thomson Reuters, IF=1.138,
      https://doi.org/10.1016/j.jmaa.2019.01.011
    15. Antontsev S.N., Khompysh Kh. Generalized Kelvin-Voigt equations with p-Laplacian
      and source/absorption terms//J. Math. Anal. Appl. 456 (2017) 99–116. Thomson
      Reuters, IF=1,138, https://doi.org/10.1016/j.jmaa.2017.06.056
    16. Antontsev S.N., Khompysh Kh. Kelvin–Voight equation with p-Laplacian and
      damping term: Existence, uniqueness and blow-up//J. Math. Anal. Appl. 446 (2017)
      1255–1273. http://dx.doi.org/10.1016/j.jmaa.2016.09.023 Thomson Reuters,
      IF=1,138).
    17. Khompysh Kh., Identification of right hand side nonlinear Kelvin-Voigt equations//
      Vestnik KazNPU after Abay, 4(54), 2016. pp. 123-131. (in Russian)
    18. Abylkairov U. U., Khompysh Kh. An inverse problem of identifying the coefficient in
      Kelvin-Voight equations// Applied Mathematical Sciences, Journal for Theory and
      applications, Vol. 9, 2015, no. 101-104. -P. 5079-5089. Hicari Ltd, http://www.m-hikari.com
      http://dx.doi.org/10.12988/ams.2015.57464, Scopus.
    19. Abylkairov U. U., Mukhambetzhanov S. T., Khompysh Kh. On the ε-approximation
      for the modified equations of the heat convection //Universal Journal of Mathematics
      and Mathematical Sciences © 2014 Pushpa Publishing House, Allahabad, India
      http://pphmj.com/journals/ujmms.htm V.5, N. 1, 2014, P. 37-51.
    20. Abylkairov U.U., Khompysh Kh., Sakhaev Sh. On a system of equations with a small
      parameter arising in the numerical analysis of the equations of thermal convection for
      non-Newtonian fluids. // Scientific journal. Joint issue BULLETIN OF THE VKGU
      after D. Serikbaev and Computing Technologies of the Institute of Computational
      Technologies of the Siberian Branch of the Russian Academy of Sciences. UstKamenogorsk city, 2013 P.5. Pp. 76-79. (in Russian)
    21. Abylkairov U.U. Khompysh Kh. Classical Unique Solvability of the Quasistationary
      Problem of Heat Convection // scientific journal. Joint issue BULLETIN OF THE
      VKGU after D. Serikbaev and Computing Technologies of the Institute of
      Computational Technologies of the Siberian Branch of the Russian Academy of
      Sciences. Ust-Kamenogorsk city, 2013 P.5. Pp. 70-76. (in Russian)
    22. Khompysh Kh. On the Rate of Convergence of Solutions of One
      ε –regularized Problem of Heat Convection for the Kelvin-Voight Fuids// The Bulletin of KazNU,
      Series of Mathematics, Mechanics and Informatics. Almaty, 2012. №1(72) 2012. pp.
      79-86. (in Russian).
    23. Khompysh Kh. An ε -approximation and its convergence rate of equation of heat
      convection for Kelvin-Voigt fluids//Vestnik ENU after L.Gumilev, №4(89) 2012, pp.
      42-47. (in Kazakh).
    24. Khompysh Kh., Sakhaev Sh. On Stability of the Solutions of the One Nonlinear Value
      Problem of Magnetohydrodynamics// Vestnik KazNPU after Abay. Series of PhysicalMathematical Sciences, №1(21), pp.226-231. Almaty 2008. (in Russian).
    25. Khompysh Kh. An Initial-Boundary Value Problem with Free Surface Condition for
      the Modified Heat Convection and it’s ε -Approximations // Vestnik of Al-Farabi
      KazNU, Series of Mathematics, Mechanics and Informatics. Almaty, 2008, №2(57),
      pp. 36-41. (in Russian).
    26. CONFERENCE PROCEEDINGS
    27. Khompysh Kh., Sharypkhan S. Sakhaev Solvability one of stationary problem of
      magnetohydrodynamics // International Conference on Analysis and Applied
      Mathematics (ICAAM 2016) AIP Conf. Proc. 1759, 020096-1–020096-5;
      http://dx.doi:10.1063/1.4959710/ Proceedings conf. (Индек. в Thomson Reuters).
    28. Abylkairov U. U., Khompysh Kh. ε-approximation of the equations of heat convection
      for the Kelvin-Voight fluids//AIP Conference Proceedings 1676, 020059 (2015); doi:
      10.1063/1.4930485 View online: http://dx.doi.org/10.1063/1.4930485
      (индексируемые в Thomson Routers)
    29. Khompysh Kh., Sakhaev Sh.S. On estimates of solutions of the linear stationary
      problem of magnetohydrodynamics problem in Sobolev spaces//AIP Conference
      Proceedings 1676, 020033 (2015); doi: 10.1063/1.4930459 View online:
      http://dx.doi.org/10.1063/1.4930459 (индексируемые в Thomson Routers)
    30. Abylkairov U. U., Khompysh Kh., Zhensykbaev K.S. Solvability of the initialboundary value problem for Stokes equation inhomogeneous fluids//Transactions of
      the International Scientific Conference «Modern Problems of Applied Mathematics and
      Information Technologies –al-Khorezmiy 2014», V. №1, 15-17 september 2014,
      Samarqant, Uzbekistan, -P. 184-185.
    31. Khompysh Kh., Sakhaev Sh. Solution of the of conjugate problem of electrodynamics
      // Proceedings of the international scientific conference “Actual problems of applied
      mathematics and information technologies-al-Khorezmi 2014″, T. №1, September 15-
      17, 2014, Samarkant, Uzbekistan, -S. 140-144. (in Russian)
    32. Khompysh Kh. Inverse Problem with Integral Overdetermination for System of
      Equations of Kelvin-Voight Fluids //Advanced Materials Research Vol. 705 (2013) pp
      15-20. © (2013) Trans Tech Publications, Switzerland.
      doi:10.4028/www.scientific.net/AMR.705.15
    33. Aitzhanov S.E., Nurbaeva D.M., Ilesova A.N., Khompysh Kh., Tashkenbaeva A.U.,
      Sherniazova K. An Inverse Problem for Linear Navier-Stokes Equations with Integral
      Overdetermination// Materials of V-th International Scientific Methodological
      Conference «Mathematical Modeling and Information Technologies in Education and
      Science» Almaty 2010. V. 1. pp. 12-18. (in Kazakh)
    34. Aitzhanov S.E., Bolatuky B., Markhaba K., Toganbai A.S., Khompysh Kh.,
      Khumarbek E. Solvability of the Inverse Problem for Non-Stationary System of
      Magnetohydrodynamics//Materials of Vth International Scientific Methodological
      Conference «Mathematical Modeling and Information Technologies in Education and
      Science» Almaty 2010. V. 1. pp. 6-12. (in Kazakh)
    35. Abylkairov U.U. Khompysh Kh., Extremal problem for Navier-Stokes
      system//ABSTRACTS of the third congress of the world mathematical society of
      Turkic countries. Almaty June 30- July -4 2009, vol.1, P. 154.
    36. Khompysh Kh., Sakhaev Sh. Solvability Global in Time of the Initial-Boundary Value
      Problem with Free Surface Condition for the Modified Heat Convection // Transactions
      of the International Scientific Conference «Modern Problems of Applied Mathematics
      and Information Technologies –al-Khorezmiy 2009», V. №1, pp. 114-118. Tashkent,
      Uzbekistan, pp. 184-185. (Russian).
      ABSTRACTS
    37. Antontsev S.N., Khompysh Kh. Kelvin-Voight equations with p-Laplacian:
      Extinction and blow up //Abstracts of the International Conference Lavrentyev
      readings on mathematics, mechanics and physics devoted to the 115th anniversary of
      Academician MALavrentiev, September 7-11, 2015. Novosibirsk, 2015. -pp. 14-15
    38. Antontsev S.N., Khompysh Kh. Kelvin-Voight equations with p-Laplacian:
      Existence, uniqueness, asymptotic behavior and blow up// Abstracts Russian-French
      Workshop “Mathematical Hydrodynamics”, August 22–27, 2016 Novosibirsk, Russia.
      P. 9.
    39. Khompysh Kh. An inverse problem for one dimensional Pseudoparabolic
      Equation//The 4 rd Abu Dhabi University Annual International Conference
      Mathematical Sciences and its Applications, Abstracts book, December 27-30, 2015.
    40. Abylkairov U.U., Khompysh Kh., The inverse problem for Kelvin-Voigt equations //
      International scientific conference “Actual problems of mathematics and mathematical
      modeling” is dedicated to the 50th anniversary of the establishment of the Institute of
      Mathematics and Mechanics of the Academy of Sciences of the Kazakh SSR, Almaty
      June 1-5, 2015 Abstracts -pp. 219-221, (in Russian)
    41. Abylkairov U. U., Mukhambetzhanov S. T., Khompysh Kh., Blow-up of Solutions of
      a One dimensional Pseudoparabolic Equation//The 3 rd Abu Dhabi University Annual
      International Conference Mathematical Sciences and its Applications, Abstracts book,
      December 27-30, 2014. P. 46
    42. Abylkairov U.U., S.E.Aitzhanov, Khompysh Kh. Unique Solvability of the Inverse
      Problem Unique solvability of the inverse flow problem for Navier-Stokes equation.
      // Proceedings of the International Scientific and Practical Conference “Theory of
      Functions, Functional Analysis and their Applications” dedicated to the 90th
      anniversary of the Corresponding Member. AN KazSSR, Professor T.I. Amanov.
      Semey, Kazakhstan, October 3-5, 2013. -T.1. -P. 236-237. (in Russian)
    43. Abylkairov U. U. Khompysh Kh. Inverse Problem for the Equations of Motion of the
      Kelvin–Voight Fluids//Abstracts of the International Conference «Inverse and ill-posed
      problems of mathematical physics» dedicated to the 80th anniversary of the birthday of
      Academician Mikhail Mikhailovich Lavrent’ev Novosibirsk, Russia, 5–12 August
      2012, -P. 61.
    44. Abylkairov U.U., Khompysh Kh., Sakhaev S.Sh. On a Global Solvability One of the
      Initial-Boundary Value Problem of Heat Convections for the Kelvin-Voight
      Fluids//ABSTRACTS of the 4-th congress of the Turkic word mathematical society.
      Baku, Azerbaijan. July 2011. P. 142
      BOOKS, TEXTBOOKS:
    45. Khompysh Kh., Sakhaev Sh. Special Functions and Their Applications, Almaty, 2012.
      Kazakh University. P. 124 Textbook. (in Kazakh).
    46. Khompysh Kh. Equations of Mathematical Physics, Almaty, 2017. Kazakh
      University. P. 124 Textbook. (in Kazakh).
    47. Khompysh Kh. Equations of Mathematical Physics: Theory, exercisesб and individual
      tasks, Almaty, 2018. Kazakh University. P. 293 Textbook. (in Kazakh).
    48. Khompysh Kh. And Zhapsarbaeva L.K. Equations of Mathematical Physics,
      Almaty, 2020. Kazakh University. P. 303 Textbook. (in English).